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Summary

Sex-ratio distorters are found in numerous species
and can reach high frequencies within populations.

Here, we address the compelling, but poorly tested,
hypothesis that the sex ratio bias caused by such ele-

ments profoundly alters their host’s mating system.
We compare aspects of female and male reproductive

biology between island populations of the butterfly
Hypolimnas bolina that show varying degrees of fe-

male bias, because of a male-killing Wolbachia infec-
tion. Contrary to expectation, female bias leads to an

increase in female mating frequency, up to a point
where male mating capacity becomes limiting. We

show that increased female mating frequency can be
explained as a facultative response to the depleted

male mating resources in female biased populations.
In other words, this system is one where male-killing

bacteria trigger a vicious circle of increasing male
fatigue and female promiscuity.

Results and Discussion

The mating system of a species is largely shaped by the
operational sex ratio (OSR), the number of males and fe-
males willing to mate at any given time [1, 2]. The OSR
determines both the level of competition within each
sex with respect to gaining matings and the level of con-
flict between the sexes as to whether mating should take
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place. Because of the fundamental importance of the
OSR, it has been proposed that sex-ratio distorters
play a major role in the reproductive evolution of their
host [3]. Many sex-ratio distorters, such as maternally
inherited or X-linked selfish genetic elements, bias the
sex ratio of their hosts toward females [4, 5]. The excess
of females is expected to lead to an increase of mating
opportunities for males and a decrease in the average
number of matings per female. As a result, competition
between male hosts for access to mates and fertilization
is reduced, as is the intensity of conflict between the
sexes over mating and fertilization. Despite the wide-
spread occurrence of sex-ratio distorters, their impact
on the ecology and evolution of their host’s mating sys-
tem is to a large extent unknown and has been limited to
one observation of role reversal [6].

In this study, we examine alterations of the mating
system and reproductive strategy driven by a male-kill-
ing Wolbachia infecting Pacific Island and southeast
Asian populations of the butterfly Hypolimnas bolina.
This species represents an ideal study system for our
purpose because discrete local populations differ natu-
rally in Wolbachia infection frequency [7, 8]. We as-
sessed the natural sex ratio in 20 populations (Figure 1)
based on estimates of prevalence and penetrance of the
male-killer [9] (Table 1 and Tables S1 and S2 in the Sup-
plemental Data available with this article online; see also
Experimental Procedures). We combined these data
with measures of female mating frequency and male
mating investment. In Lepidoptera, ejaculates are en-
closed in physical structures called spermatophores,
which are deposited within the female bursa copulatrix
and remain there once the sperm have been moved
to the female’s spermathecae. This peculiarity enables
us to assess the mating history of wild-caught females
by scoring the number of spermatophores found per
female.

We first tested the hypothesis that an increasing fe-
male bias in the population leads to a decrease in female
mating frequency (the number of copulations per fe-
male) as males become increasingly rare. Surprisingly,
this prediction is not met by the empirical data. The
change in female mating frequency with population
sex ratio is not a gradual decrease but instead has a
strong quadratic component (Table 1 and Figure 2).
Female mating frequency first increases with female
bias before decreasing at extreme female bias where
the rarity of males finally becomes limiting and results
in elevated female virginity rates (Table S1). In the two
most female-biased populations, mated females lay
a high proportion of unfertilized eggs (Table S1), indi-
cating that sperm is limiting even if a female manages
to secure a mate [8].

The field data demonstrate that in H. bolina, moderate
sex-ratio distortion does not lead to a shift in the mating
system toward reduced female mating frequency.
Rather, female mating frequency increases with female
bias in the population until male mating capacity
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Figure 1. Geographic Distribution and Sex Ratio of the Populations Sampled

Detailed information on each study site is given in Table 1, Table S1, and the Experimental Procedures. Colors provide a simplified view of sex-

ratio variation: white (even sex ratio), gray (slightly biased: from 1.2 to 2.9 females per male), and black (highly biased: from 4.9 to 38.7 females per

male).
becomes limiting. In butterflies, the decision to mate is
mainly under female control [10, 11]. Moreover, smaller
spermatophores make females sexually unreceptive
for shorter periods [12], suggesting that the increased
female mating frequency seen in H. bolina could result
from reduced male mating investment in female-biased
populations. Consistent with this hypothesis, we found
a negative correlation between male mating investment
(spermatophore size) and the average number of mat-
ings per male (the product of sex ratio and female
mating rate) (Figure 3). Furthermore, excluding the two
populations where female mating rate is constrained
by lack of access to males, female mating rate and
male spermatophore size are correlated (Spearman’s
rank correlation test, rho = 20.49, S = 1447, p = 0.037).
Thus, in H. bolina, just as in other butterfly species, fe-
males appear to adjust mating frequency in accordance
with the decreasing male investment per copulation.

The decrease in spermatophore size with increasing
female bias could result from two non-mutually exclu-
sive processes: (1) With increasing mating rate, males
deplete resources needed for the production of sper-
matophores and hence are unable to maintain a large in-
vestment (resource depletion), and (2) the increased
number of mating opportunities for males in female-
biased populations leads to an adaptive change in
male investment per mating toward a more even distri-
bution of reproductive resources between females and
maximization of fertilization returns (ejaculate partition-
ing) [13]. We evaluated the importance of these two pro-
cesses by measuring male reproductive investment
over two successive copulations for initially virgin males
from three populations differing in sex ratio: Tubuai
(non-female biased: 0.89 females per male), Rurutu
(2.89 females per male), and Moorea (4.94 females per
male) (Table 1). In order to eliminate confounding fac-
tors, we took a ‘‘common garden’’ approach and used
wild individuals’ offspring, reared synchronously under
seminatural conditions on the island of Moorea. This
experiment provides compelling evidence for the ‘‘re-
source depletion’’ hypothesis (Tables S3 and S4). Mat-
ing investment in experimental males was strongly af-
fected by resource depletion in that spermatophore
diameter decreased significantly in successive matings
(main effect ‘‘mating’’: F1,48 = 28.98, p < 0.0001; linear co-
efficient b = 20.34, t48 = 25.38, p < 0.0001) and more so
the shorter the time period between successive matings
(interaction ‘‘time between matings’’ 3 ‘‘mating’’: F1,48 =
5.79, p = 0.02; b = 20.0025, t48 = 2.41, p = 0.02). In con-
trast, there was no evidence for reduced mating invest-
ment in males originating from female-biased popula-
tions. In the overall analysis of variance, the island of
male origin did not have a significant effect on either
the size of the spermatophore (main effect ‘‘island’’:
F2,46 = 2.48, p = 0.09) or the extent of the size
reduction between first and second mating (interaction
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Table 1. Sex Ratio, Mating Rates, and Spermatophore Size in Natural Populations

Map Population F/M Ratio Female Mating Rate (SE) Male Mating Rate Sp. Diam. (SE)

1 Mekong Delta 0.89 1.13 (0.13) 1.01 1.56 (0.05)

2 Kota Kinabalu 0.89 0.96 (0.04) 0.86 2.03 (0.06)

3 Australia 0.89 0.87 (0.13) 0.78 1.78 (0.12)

4 Efate 1.55 0.71 (0.18) 1.10 1.54 (0.07)

5 Tanna 1.19 1.25 (0.63) 1.48 1.61 (0.11)

6 Aneityum 1.17 1.19 (0.11) 1.39 1.64 (0.04)

7 Lifou 1.29 1.38 (0.15) 1.78 1.53 (0.06)

8 Grande Terre 0.89 0.80 (0.13) 0.72 1.55 (0.09)

9 Ile des pins 4.94 1.43 (0.11) 7.06 1.44 (0.04)

10 Viti Levu 2.14 1.02 (0.04) 2.18 2.04 (0.05)

11 Kapa 0.89 1.35 (0.14) 1.21 1.59 (0.05)

12 Niue 0.89 1.10 (0.10) 0.98 1.64 (0.04)

13 Upolu 38.66 0.54 (0.03) 20.87 1.15 (0.03)

14 Olosega 0.89 1.00 (0.05) 0.89 2.09 (0.09)

15 Moorea 4.94 2.18 (0.20) 10.77 1.40 (0.02)

16 Tahiti 16.95 1.29 (0.19) 21.87 1.23 (0.03)

17 Ua Huka 5.90 1.33 (0.12) 7.85 1.44 (0.03)

18 Rurutu 2.89 1.78 (0.09) 5.14 1.58 (0.01)

19 Tubuai 0.89 1.33 (0.08) 1.19 1.70 (0.02)

20 Raivavae 0.89 1.31 (0.14) 1.17 1.74 (0.03)

Column headings are described as follows: map: reference number in Figure 1; F/M ratio: estimated population sex ratio, given as number of

females per male; female mating rate (SE): the mean number of spermatophores per female (standard error); male mating rate: the estimated

male mating rate (female mating rate 3 F/M ratio); sp. diam. (SE): the mean spermatophore diameter in mm (standard error). Additional details

are provided in the Supplemental Data (Table S1).
‘‘island’’ 3 ‘‘mating’’: F2,48 = 1.41, p = 0.25). Indeed, the
raw data (Table S3) suggest that mating investment is,
if anything, lower and more constant in males from the
population with an even sex ratio compared to those
from female-biased populations. It remains to be inves-
tigated whether the spermatophore composition (sperm
type, sperm amount, and nutritional resources) varies
with the population sex ratio.

The results of our study present a counterintuitive
scenario for the effects of sex-ratio distortion on the
mating system of H. bolina. Contrary to expectation,

Figure 2. Female Mating Rate as a Function of Population Sex Ratio

Model comparison showed that a regression containing both a linear

and a quadratic term (dashed curve) fits the data significantly better

than a purely linear one (F1,17 = 12.10, p = 0.002) or a purely

quadratic one (F1,17 = 11.34, p = 0.004). Female mating rate was

estimated from the mean number of spermatophores per female.

Sex-ratio is given as log2 of number of females per male.
increasing female bias in the population leads to an
increase in female mating frequency as a response to
the decreasing size of spermatophores transferred by
males. As demonstrated in our experiment, the de-
crease in male investment per mating in female-biased
populations is not due to the evolution of different ejac-
ulate delivery strategies but rather to the depletion of
male reproductive reserves. The female response to
the diminishing male resources reinforces the effects
of the male-killing bacteria on sexual selection: Female
bias in itself shifts the OSR from male bias to female
bias; the resulting depletion of male mating resources
leads to decreased spermatophore size, which in turn
causes an increase of the females’ willingness to mate.

Figure 3. Spermatophore Size as a Function of Male Mating Rate

Negative correlation is highly significant (Spearman’s rank correla-

tion test, rho = 20.66, S = 2206, p = 0.002).
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The resulting positive feedback between male fatigue
and female promiscuity is only broken when female
bias becomes so extreme that male mating capacity is
a limiting factor, as observed on the islands of Tahiti
and Upolu. The unexpected consequence of this posi-
tive feedback is that moderate female bias tends to
increase the intensity of sexual selection that males ex-
perience through sperm competition because females
become increasingly promiscuous as long as male mat-
ing capacity is not yet limiting. Our experiment suggests
that under these circumstances, the evolution of re-
duced male mating investment in female-biased popula-
tions is prevented. The present study thus demonstrates
that predictions concerning the effects of sex-ratio dis-
torters on their host’s mating system can be misleading
if they fail to consider the simultaneous changes in both
male and female mating strategies, which in H. bolina
lead to surprising outcomes.

Experimental Procedures

Sampling

Adult female and male Hypolimnas bolina were collected from the

following locations (sample ID as given in Figure 1): sample 1

(date: June 2004; country: Vietnam; locations: Mekong Delta, Can

Tho, and Soc Trang provinces); sample 2 (date: May 2001; country:

Malaysia; locations: Malaysian Borneo, Kota Kinabalu, Sabah Prov-

ince), sample 3 (date: March 2004 and 2006; country: Australia; loca-

tions: Brisbane, Cairns, Coffs Harbour); samples 4, 5, and 6 (date:

July 2005; country: Vanuatu; locations: islands of Efate, Tanna,

and Aneityum, respectively), samples 7, 8, and 9 (date: August

2005; country: New Caledonia; locations: islands of Lifou, Grande

Terre, and Iles des Pins, respectively); sample 10 (date: July and

August 1999; country: Fiji; location: Suva and Nadi, island of Viti

Levu); sample 11 (date: October 2004; country: Kingdom of Tonga;

location: island of Kapa); sample 12 (date: October 2004; country:

Niue; location: island of Niue); sample 13 (date: July–August 2000

and July–August 2001; country: Independent Samoa; location:

Apia, island of Upolu); sample 14 (date: August 2001; country: Amer-

ican Samoa; location: island of Olosega); samples 15–20 (date: reg-

ular sampling from March 2002 to March 2006; except for sample 17

obtained on a single expedition in April 2003; country: French Poly-

nesia; locations: islands of Moorea, Tahiti, Ua Huka, Rurutu, Tubuai,

and Raivavae, respectively).

Variation in the size of our samples (Table S1) results from differ-

ences in the number of days we spent sampling in the different pop-

ulations (Spearman’s rank correlation between sample size and the

number of days spent in the field: rho = 0.58, S = 559, p = 0.008).

Sample size therefore does not reflect biological differences, such

as density or catchability, between populations.

DNA Extraction, PCR, and Sequencing

DNA was prepared from a small tissue sample (2–5 mm3) with

Qiagen DNeasy tissue kits. Prior to Wolbachia PCR assays, DNA

extracts were diluted 103, and their quality was assessed with a gen-

eral ‘‘metazoan’’ PCR of the COI mitochondrial gene (primer pair

LCO/HCO) [14]. Nonamplifiable material was discarded from the

analysis. The presence of the male-killing Wolbachia (strain wBol1)

was assessed by amplification of the Wolbachia surface protein

gene (wsp) with primer pair 81f/522r, which specifically amplifies

a portion of the wsp gene from B clade Wolbachia [15]. Strain iden-

tity was confirmed by the obtainment of identical wsp sequences

from 27 individuals where a B-clade Wolbachia was detected.

Sequences were attained directly from PCR product with primer

81F, after amplification with the 81F/691R primer pair [15].

Breeding Data: Hatch Rates and Adult Sex Ratio

Wild-caught females were induced to oviposit under sunlight, on

very young Synedrella nodiflora (Asteraceae). Five to six days after

oviposition, eggs were classified as follows: those that hatch suc-

cessfully, those that do not hatch but show development (a gray
embryo is seen through the chorion), and those that do not show

signs of development (unfertilized). Unmated females and unfertil-

ized eggs were discarded for hatch-rate measurements. Larvae

were reared through to adulthood on Asystasia gangetica (Acantha-

ceae), and adults were sexed based on wing color patterns.

Estimation of Sex Ratio in Natural Populations

H. bolina males are territorial and more conspicuous than females

[16], precluding a direct estimation of population sex ratio from field

observations. Sex ratio in natural populations was thus estimated on

the basis of prevalence and penetrance of male killing with a compi-

lation of previously published breeding data together with the pres-

ent study [7, 8, 17] (Table S2). In these studies, wild infected females

produced a total of only 12 males for 1657 females (0.7% males, sum

of 120 crosses). In contrast, uninfected females produced 807 males

and 721 females (52.8% males, sum of 50 crosses). The population

sex ratio can be estimated from this breeding data as females/

males = 0.472/((1 2 Pf) 3 0.528 + Pf 3 0.007), where Pf stands for the

infection prevalence in females. This estimation of sex ratio relies on

the following assumptions: (1) equal fecundity and survival of in-

fected and uninfected females; (2) equal survival of male and female

as adults; (3) infected and uninfected females producing the same

number of adult daughters (no local competition among larvae).

However, because the same method was used throughout the pop-

ulations under study, our overall analysis and conclusions do not

rely on these assumptions. The southeast Asian populations, where

male killing is fully suppressed [9], were treated as though they were

uninfected (Pf = 0). In all other populations, male killing was unsup-

pressed, as evidenced by breeding experiments and the dearth of

infected males in the wild [7] (Tables S1 and S2).

It is important to note that our method for estimating population

sex ratio precludes any bias due to different capture rates of males

and females because only one sex is sampled. Furthermore, the

PCR-based detection of infection renders sampling of females blind

because infection status is detected a posteriori.

Mating Frequency and Spermatophore Size

Female mating frequency was estimated by the dissection of wild

caught females and extraction of spermatophores from the bursa

copulatrix. Spermatophores were photographed with a digital

camera (DFC 280) connected to a stereomicroscope (Leica MZ6).

Millimeter paper was used for calibrating images, and spermato-

phore diameter was measured with ImageJ version 1.33u.

Spermatophore Size in Standardized Conditions

The size of spermatophores produced by laboratory-reared males

was measured as above. The experiment involved comparisons be-

tween males from the islands of Moorea, Rurutu, and Tubuai, took

place in Moorea (Gump Research Station, University of California

Berkeley in French Polynesia), and involved the offspring of wild par-

ents, with the following number of lines: Moorea (six lines), Rurutu

(six lines), Tubuai (eight lines). Upon emergence, adults were

weighed on a Mettler Toledo balance (Excellence Plus XP203S)

and labeled individually with Tough Tags (USA Scientific) stuck on

the ventral side of front wings (after scales were removed with

a wet cotton stick). After labeling, adults were placed in an outdoor

cage (1.80 m 3 1.80 m 3 3.60 m, Bioquip, model 1412A) exposed to

sunlight, with a bright yellow synthetic sponge impregnated with

15% w/v sugar solution available for feeding; the sponge was iso-

lated from ants with Tanglefoot. The cage was split in two parts to

isolate males from females. When at least half of the emerged fe-

males reached sexual maturity (circa 4 days after emergence [18]),

the mating experiment was initiated on sunny days by the mixing

of males and females from 9:00 to 14:00. Mating pairs were retrieved

every 15 min and isolated in a small cage. After mating, mated males

were placed back in the large cage, and mated females were iso-

lated and frozen prior to dissection. The experiment as described

was carried out in two blocks in November 2004 and November

2005.

Statistical Analysis

All analyses were performed in R [19]. Data from the mating experi-

ment were analyzed with a linear mixed-effect model with the nlme

package [20]. Mixed-effect models assume that the individual
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measures of a response variable are determined by a number of pre-

dictor variables with fixed effects (as in a straightforward linear

model) but allow for random variation in the coefficients of all or

a subset of the predictor variables between groups of data points.

Variation in coefficients is included as additional random effects in

the linear model and can hence be separated from the estimates

of coefficients of the fixed effect common to all groups. Mixed-effect

models are appropriate in cases where data points are clustered and

dependent. In our case, dependencies exist between repeated mea-

sures involving the same male. Our statistical model therefore in-

cluded ‘‘male’’ as a random grouping variable, and the intercept

(mean spermatophore diameter) was allowed to vary between

males. The fixed part of the model was determined by the underlying

biological questions of our study and included ‘‘male weight’’ as

a covariate, the main effects ‘‘time between matings’’ (a continuous

variable), ‘‘mating’’ (with levels ‘‘first’’ and ‘‘second’’), and ‘‘island’’

(of male origin), as well as the interactions ‘‘time between matings’’ 3

‘‘mating’’ and ‘‘island’’ 3 ‘‘mating.’’ A model comparison revealed

that adding additional interaction terms did not significantly reduce

the residual variance. Data from the two experimental blocks were

pooled because prior analysis revealed neither a significant block

effect nor significant interactions between the block and any other

predictor included in the final model. The final model was fitted

with the restricted maximum-likelihood method implemented in

nlme for analysis of variance and estimation of linear coefficients.

Supplemental Data

Supplemental Data include four tables and can be found with this

article online at http://www.current-biology.com/cgi/content/full/

17/3/273/DC1/.
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