
INFERENCE OF FUNCTIONAL CONNECTIVITY FROM DIRECT AND INDIRECT
STRUCTURAL BRAIN CONNECTIONS

Fani Deligiannia∗,b, Emma Robinsona, Christian F. Beckmannc, David Sharpc,
A. David Edwardsb, Daniel Rueckerta

a Department of Computing, Imperial College London, London, UK
b Institute of Clinical Sciences, Imperial College London and MRC Clinical Sciences Centre, London, UK

c Clinical Neuroscience Department, Imperial College London, London, UK

ABSTRACT

We propose statistical inference based on the Least Abso-
lute Shrinkage and Selective Operator (Lasso) regression as
a framework to investigate the relationship between structural
brain connectivity data (DTI) and functional connectivity data
(fMRI). Regions of interest (ROIs) are obtained from an ac-
curate atlas-based segmentation. We use direct structural con-
nections to model indirect (higher-order) structural connectiv-
ity. Subsequently, we use Lasso to associate each functional
connection with a subset of structural connections. Lasso of-
fers the advantage of simultaneous dimensionality reduction
and variable selection. We use a cohort of 22 subjects with
both resting-state fMRI and DTI and we provide both qual-
itative and quantitative results based on leave-one-out cross
validation. The results demonstrate that the performance of
prediction is enhanced through the incorporation of indirect
connections. In fact, the mean explained variance was im-
proved from 54%±6.53 to 58%±4.31 when indirect connec-
tions of up to second order are added and the improvement in
performance was statistically significant (p < 0.05).

Index Terms— Brain connectivity, rs-fMRI, whole-brain
connectivity matrices, functional connectivity, structural con-
nectivity, indirect structural connections

1. INTRODUCTION

Typically, in task-related activation the fMRI BOLD signal is
compared to the BOLD signal during a control task, which
reflects the baseline brain activity. This methodology has
considerably advanced our knowledge on functional special-
ization, which investigates how different brain areas are con-
sistently engaged in some aspects of cognitive or motor pro-
cessing. These results are interpreted under the implicit as-
sumption that the brain during rest is in a relatively constant
state. On going research is focused in investigating resting-
state (rs)-fMRI based on functional integration/connectivity
as it is measured by temporal correlation between spatially
remote neurophysiological events [1]. Recent results suggest

that networks, which are neurophysiologically relevant, are
consistently active during resting-state. However, their relia-
bility is limited due to physiological noise and lack of struc-
tural evidence to confirm their presence [2].

Therefore, investigating the relationship between func-
tional and structural brain connectivity is vital in understand-
ing and interpreting neurophysiological findings. A number
of statistical tools have been used to quantitatively measure
this relationship [3, 4, 5]. These methodologies showed that
there is a high correlation between rs-fMRI and DTI data. In
Deligianni et al. inference of functional connectivity from
structural brain connectivity was implemented with a combi-
nation of Principal Component Analysis (PCA) and Canoni-
cal Correlation Analysis (CCA) [5]. Prediction is a common
tool in statistics. In this work, the ultimate goal was not the
prediction itself but the discovery of the relationship among
the variables, which assists in gaining a deeper understanding
of the underlying mechanisms. However, this approach was
limited in two major ways: Firstly, indirect connections are
not modeled and, secondly, PCA is not designed to select
relevant variables.

Strong functional connectivity is also observed between
unconnected areas suggesting that indirect structural connec-
tions also influence functional connectivity. Here we demon-
strate that the prediction’s performance of structural brain
connectivity from functional connectivity is improved when
indirect connections are incorporated. We estimate func-
tional and structural networks based on ROIs derived from a
combined atlas-tissue segmentation approach. Subsequently,
we model indirect connectivity and we use Least Absolute
Shrinkage and Selection Operator (Lasso) regression [6] to
infer functional from both direct and indirect connections.
This allows us to formulate a generic framework that offers
simultaneous statistical prediction and selection of a subset
of structural connections that predict each functional connec-
tion. We show both qualitative and quantitative results based
on leave-one-out cross validation that demonstrate that the in-
corporation of indirect connections improve the prediction’s
performance consistently across subjects.



2. METHODS

In this section, we present a detailed description of our
methodology. We start with how to obtain an intuitive
network description of brain connectivity across imaging
modalities. Subsequently, we describe how to model indi-
rect connections from direct structural connections. Finally,
we use statistical inference based on Lasso to explore the
relationship between structural and functional connectivity.

2.1. Brain Network Construction

BOLD fluctuations are stronger in gray matter, while DTI is
reliable in delineating white matter fibers. This is the reason,
we are interested in defining cortical ROIs that are located
in gray matter and they are anatomically consistent with a
widely used brain atlas [7]. This methodology has been pre-
viously described in details [5, 8]. Briefly, this is based on the
fusion of atlas-based [7] and tissue based segmentation [9].

Whole-brain structural connectivity matrices are obtained
based on a probabilistic framework described previously in
Robinson et al. [8, 5]. In this framework, the weights of the
connections between each pair of ROIs are estimated based
on the local diffusion anisotropy. This reflects differences in
myelination, fiber density and packing and, thus, it allows
comparisons across subjects. To construct corresponding
functional networks the fMRI signal was averaged across
voxels within each ROI. Partial correlation was used to com-
pute functional connectivity accounting for the whole brain
mean signal. Fishers transform was used to obtain the corre-
sponding z-scores. This produces normal random variables
with variance one and allows inter-subjects comparisons.

2.2. Modeling of Indirect Brain Connections

Each connection between brain regions is treated as variable
with a number of observations equal to the number of subjects
for both functional and structural data. The weights of indi-
rect connections of 1st order are estimated with the following
algorithm:

1. Find pair of regions (A,B) with no direct structural link.

2. Find all possible paths that connect area A to B via one
other area.

3. Find the minimum weight of connections between A to
B for each of the paths, assuming that indirect connec-
tivity is constrained by the weakest connection.

4. Indirect connectivity strength between A and B is the
maximum value over all paths.

This procedure can be repeated up to kth order by finding
paths via k areas. In Fig. 1 (a-c) you see an example of aug-
mented connectivity matrices with up to 2nd order connec-
tions.

2.3. Statistical Prediction

The Least Absolute Shrinkage and Selective Operator (Lasso)
utilises a multiple linear regression model to perform both
variable selection and prediction [6]. For each functional con-
nection Yk a linear regression model is formulated as:

Yk = b0 +

N∑
j=1

bjXj (1)

Here b0 is the intercept, XT = (X1, X2, ..., XN ) is the input
variables (structural connections), bj are the regression coef-
ficients and Yk is the kth functional connection (response).
Over classical least square regression Lasso offers two major
advantages that are very useful in modeling brain connectiv-
ity: Firstly, it improves prediction by setting some coefficients
to zero. This results in removing noisy and irrelevant vari-
ables and thus reducing the total variance. Secondly, it allows
the selection of the most relevant variables and thus it links
each functional connection with a subset of structural con-
nection in a data driven way. In other words, it highlights
structural connections that are highly likely to affect func-
tional connectivity between a pair of regions. It has been also
shown that it identifies the correct predictors with high proba-
bility when the number of variables is higher than the number
of observation under the assumption that the true model is
sparse [10]. The Lasso estimate is defined as:

bL = argmin
b

M∑
i=1

(
yki − b0 −

N∑
j

bjxi,j

)2
(2)

WhereM is the number of observations/subjects and the min-
imization is subject to the L1 lasso penalty:

N∑
j=1

|bj | ≤ t (3)

Note that t controls the number of coefficients that shrunk
toward zero. Subsequently, the above equation can take the
equivalent Lagrangian form:

bL = argmin
b

{
M∑
i=i

(yki −b0−
N∑
j

bjxi,j)
2+λ

N∑
j=1

|bj |

}
(4)

Where λ is the parameter that controls the shrinkage of the
coefficients bj . Because of the L1 lasso penalty, making λ
sufficiently small results in some of the coefficients to be zero.
This is called soft thresholding and it allows Lasso to perform
continuous coefficient selection, which is a clear advantage
over other approaches, such as forward-stagewise regression.
We used the LARS implementation of the Lasso, available
in R statistics, which computes the complete Lasso solution
simultaneously for all values of the shrinkage parameter λ
[11].



(a) Direct Structural Connections (b) Direct plus indirect 1st order (c) Direct plus indirect 1st&2nd order

(d) Original fMRI (e) EV=51.35% (f) EV=56.89% (g) EV=61.16%

Fig. 1: Top row shows: a) Direct structural connections, b) Direct plus indirect connections of 1st order and c) Direct plus
indirect connections of 1st and 2nd order, respectively. Bottom row shows a qualitative view of the results for one subject: d)
the original functional connectivity data, e-g) The results of the prediction algorithm based on Lasso for each of the inputs in
top row. The explained variance (EV) increases from 51.35% up to 61.16% with the incorporation of indirect connectivity.

3. RESULTS

Brain connectivity analysis was performed in 22 normal
adults. rs-fMRI: T2*-weighted gradient EPI sequence,
TR/TE=2000/30, 31 ascending slices with thickness 3.25mm,
gap 0.75mm, voxel size 2.5x2.5x4 mm, flip angle 90, FOV
280x220x123mm, matrix 112x87. DWI: 64 non-collinear
directions, in 72 slices, slice thickness 2mm, FOV 224mm,
matrix 128x128, voxel size 1.75x1.75x2mm3, b value 1000
s/mm2.

A leave-one-out cross-validation approach was adapted to
test the robustness of the suggested methodology. Fig. 1
shows the results for one left-out subject. Fig.1a shows direct
structural connections, then in Fig. 1b for each absent con-
nection indirect connection of 1st order are added and finally
in Fig. 1c indirect connections of 2nd order are added. ROIs
are plotted by cerebral hemispheres, with right-hemispheric
ROIs in the lower left quadrant, left-hemispheric ROIs in the
top right quadrant, and inter-hemispheric connections in the
upper left and lower right quadrants. Fig. 1d depicts the
actual functional connectivity data. Fig. 1(e-g) shows the
prediction results for each of the structural connectivity ma-
trices in Fig. 1 (a-c). Indirect connectivity improves subtle
details of functional connectivity in a progressive manner. In

fact, the explained variance (EV) increases from 51.35% up to
61.16% with the incorporation of indirect connectivity. EV is
measured as the correlation coefficient between the prediction
and the original fMRI connectivity matrix.

Fig 2 shows quantitative results over all subjects. Fig. 2a
shows the EV for each subjects functional connectivity matrix
when their structural connectivity matrix is used as a predic-
tor. The mean EV is improved from 54%±6.38 to 57%±5.11
for 1st order and finally to 58%±4.92 when 2nd order indirect
connections are added. Fig. 2b shows a summary of the re-
sults over all subjects for all three scenarios. The Lasso shows
consistent improvement when indirect connections are taken
into consideration. The enhanced performance is statistically
significant p < 0.05.

4. DISCUSSION AND CONCLUSIONS

So far, there has been a lot of speculation in the literature that
indirect structural connectivity affects functional connectivity
[4, 2]. Here we developed an intuitive framework that quan-
tifies this relationship. We used a cohort of 22 subjects and
qualitative as well as detailed quantitative evaluation based on
leave-one-out cross validation. Statistical inference based on
Lasso regression showed that indirect connections add sub-
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Fig. 2: Prediction performance of Lasso regression with leave-one-out cross validation. a) The explained variance for each
subjects functional connectivity matrix is shown when their structural connectivity matrix is used as a predictor. b) Box-and-
Whisker diagram over all subjects of Fig. 2a). The mean EV is improved from 54% ± 6.38 to 57% ± 5.11 for 1st order and
finally to 58% ± 4.92 when 2nd order indirect connections are added. The enhanced performance is statistically significant
(p < 0.05).

tle information that improves predictions performance consis-
tently across subjects. There are several advantages we could
explore with the suggested methodology. Variable selection
allows the association of a subset of structural connections
with each functional connection. Detecting changes in the re-
lationship between functional connections and structural con-
nections in disease is a promising approach in highlighting
affected areas and understanding how disease alters the rela-
tionship between fMRI and DTI data.
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