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Broadband spectra from various external perturbations

Introduction

Artefacts in broadband NIRS spectra

Detection System One: Random Forests (RF)

Detection System Two: Convolutional Neural Networks (CNN) 

Conclusions & Future Work

§ Broadband NIRS uses >100 wavelengths in the NIR range to resolve cerebral 
changes in light-absorbing chromophores

§ Artefact contamination represents a source of noise in NIRS data, yet current 
detection methods isolate artefact signal based on faulty assumptions or by 
relying on external sensors  

§ Multivariate response or ‘spectra’ generated by broadband NIRS presents an 
opportunity for automatic artefact detection

§ Machine learning approaches 

were used on staged artefact data 

to:

1. Identify patterns distinguishing 

artefact spectra

2. Determine if artefact spectra can 

be detected 

3. Compare performance of two ML 

classifiers for artefact prediction

4. Compare performance of ML-

based methods to MARA - the 

standard detection algorithm

§ Motion and light artefacts were staged in 16 healthy volunteers using 
broadband NIRS

§ Spectra were re-labeled into 3 classes: Non-Artefact, Motion-Induced 

Artefact, Light-Induced Artefact

ML-based detection outperformed 
the standard detection method

New labeling scheme in staged artefact data

§ Two classifiers, Random Forests and Convolutional Neural Networks, were 
trained on staged data to perform supervised classification
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§ Input data: 2D Recurrence Plot transformations on 1D standardized broadband spectra

§ Advantages: image representation introduces new feature types, automated feature learning 
incorporated into the training process, weighted loss function to handle class imbalance 

§ Disadvantages: computational complexity, difficult to interpret 

2-stage deep CNN pipeline for artefact detection

§ Input data: feature sets engineered 
directly from standardized broadband 
spectra 

§ Advantages: relatively quick, easy to 
implement, feature ranking transparent 

§ Disadvantages: feature handling separate 
from training process and requires domain 
knowledge, tendency to overfit on 
training data

§ A pipeline based on machine learning approaches is 

proposed for detection of artefacts in broadband NIRS 

staged data

§ ML-based methods superior performance to standard 
methods highlight its potential to improve current noise 
reduction systems applied to NIRS datasets

§ Future work is needed to:
1. Enhance classifier performance
2. Demonstrate clinical application
3. Combine ML and MARA to handle ‘passive’ 

artefacts and incorporate artefact 
correction
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