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Abstract

Quantum computation in the one-way model requires the preparation of certain
resource states known as cluster states. We describe how the construction of
continuous-variable cluster states for optical quantum computing relate to the
existence of certain families of matrices. The relevant matrices are known as
weighing matrices, with a few additional constraints. We prove some results
regarding the structure of these matrices, and their associated graphs.

PACS numbers: 02.10.Ox, 03.67.Lx, 42.50.Ex

1. Introduction

In the standard model of quantum computing [1], the computation proceeds by coherently
performing unitary dynamics on a simple initial state of a quantum system before being
read out by a sequence of local measurements. By contrast, the one-way model of quantum
computing [2] eliminates the need for coherent quantum evolution, substituting instead a
highly entangled, but easily prepared, initial state as the resource for the computation. The
typical resource state used is the cluster state [3], whose preparation consists of, for example,
coupling a system of qubits with a nearest-neighbor Ising interaction. The computation
proceeds by a sequence of local measurements on the cluster state and the basis chosen at each
step determines the computation. In this way, a cluster state is like a quantum breadboard on
which the quantum circuit is inscribed via measurements.

Although cluster states were originally defined using qubits, they generalize to d-level
quantum systems [4] and continuous variables [5, 6]. Recently, Menicucci et al [7] proposed
a method for efficiently generating continuous-variable cluster states (CVCS). The method
relies on pumping an optical cavity containing a special nonlinear medium at certain carefully
chosen frequencies. The resulting CVCS is encoded in the quadratures of the photons that
emerge from the cavity.
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The method of CVCS generation proposed in [7] required, on grounds of experimental and
theoretical tractability, the existence of certain families of matrices. The required matrices are
weighing matrices, defined as matrices W whose entries are in {0,±1} and satisfy WWT = kI ,
where k is called the weight. The weighing matrices were obliged to have a Hankel form,
meaning that the skew-diagonals of the matrix were all constant, and any skew-diagonal with
support on the main diagonal must be identically 0. A matrix with vanishing main diagonal is
said to be hollow. As we show later, when viewing the matrices as adjacency matrices for an
associated graph, this is implied when the graph is connected and bipartite.

In this paper, we investigate the mathematical structure behind the construction in [7] and
begin to classify the associated matrices. The discussion is organized as follows. In section 2,
we give a brief glimpse of the physics which motivates the restrictions given in the previous
paragraph. We begin the mathematical discussion in section 3, where we discuss anticirculant
graphs, and section 4, where we discuss anticirculant weighing matrices, a special case of the
Hankel weighing matrices. In section 5, we complete the rather trivial classification of the
case of weight 2, while section 6 provides several examples about the case of weight 4. We
discuss a number of open problems in section 7, and conclude in section 8.

2. Quantum computing in the frequency comb

In this section, we outline the physics that naturally leads us to consider Hankel hollow
weighing matrices. For a more detailed discussion of the physics, see [7–10].

The resonant frequencies of an optical cavity are defined classically as the modes which
constructively interfere inside the cavity. Because they are evenly spaced, they form a so-
called a frequency comb. By placing a nonlinear medium inside the cavity, pump photons
with frequency ωp can downconvert into an entangled pair of photons, so long as the new
photons’ frequencies satisfy an energy conservation constraint,

ωp = ωm + ωn, (1)

where ωm and ωn are the mth and nth resonant frequencies of the cavity. The range over which
the downconversion can occur is limited by the phasematching bandwidth of the cavity.

More generally, multiple frequencies can be simultaneously phasematched inside the
cavity, and upconversion is allowed as well as downconversion. The total Hamiltonian is then
idealized by the following:

H = ih̄κ
∑
p∈P

∑
m+n=p

Mmn

(
â†

mâ†
n − âmân

)
, (2)

where P is the (discrete) spectrum of the polychromatic pump, κ is a global coupling strength,
â
†
n is the creation operator for the nth mode, and Mmn are matrix elements of a symmetric

matrix. In units of the fundamental frequency of the cavity, the restriction of the inner sum
to terms with m + n = p enforces photon energy conservation, and the magnitude of Mmn

determines the strength of the coupling in units of h̄κ , while the sign determines whether the
photons are upconverted or downconverted. If all of the coupling strengths are equal, then M
is a Hankel matrix whose elements are either 0 or ±c, where c is a constant. Experimental
simplicity further demands that there is no single-mode squeezing and hence we require that
the elements along the main diagonal of M are all zero, i.e. M must be a hollow matrix.

The Hamiltonian (2) can be used to create continuous-variable cluster states, defined as
Gaussian states satisfying the relation

p − Aq → 0, (3)
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where p and q are vectors of amplitude and phase quadratures for the kth cavity mode,
qk = â

†
k + âk and pk = i

(
â
†
k − âk

)
, A is the symmetric weighted adjacency matrix of the

graph of the CVCS, and the arrow denotes the limit of large squeezing. Reference [8] first
proved a nonunique relationship between the adjacency matrix A, which describes the cluster
state, and the adjacency matrix M, which describes the coupling between the modes inside the
cavity. The general relationship is somewhat complicated, so references [7, 9, 10] introduced
the simplifying ansatz that

AAT = A2 = 1, (4)

from which it follows [9, 10] that (up to a trivial relabeling)

M = A. (5)

In short, assuming A is an orthogonal matrix implies the graph describing the couplings
between photons in the cavity (M) is identical to the graph describing the cluster state (A),
which is a vast simplification over the general relationship. The derivation requires that M
be the adjacency matrix of a bipartite graph, but as we will see, one can derive this from the
Hankel and hollow constraints.

We now see how the twin demands of experimental and theoretical simplicity for creating
CVCS in an optical cavity naturally lead us to consider Hankel hollow orthogonal matrices,
all of whose nonzero elements are either ±c, for some constant c. We can of course consider
renormalized matrices instead by dividing out c, so that all entries are ±1; after finding these
renormalized matrices, we can then reintroduce the constant afterward so that (4) holds. Thus,
we see that finding and classifying Hankel hollow weighing matrices is our primary interest.

For completeness, we mention one further elaboration that is possible for this scheme.
If the photons’ polarization, transverse, or spatial degrees of freedom are taken into account,
then the Hamiltonian (2) can be modified by adding additional indices for these modes.
If these additional modes are all frequency degenerate, then an additional sum over these
degenerate modes appears in (2), which allows for the symmetric intercoupling between the
degenerate degrees of freedom. If such an interaction could be simultaneously phasematched
by the nonlinear medium inside the cavity, then one is naturally lead to consider block-Hankel
matrices, where the size of the blocks is equal to the number of degenerate degrees of freedom.
We leave the consideration of block-Hankel hollow weighing matrices to future work.

3. Anticirculant graphs

In this section, we introduce the definition of anticirculant graphs and study some of their
first properties. For the sake of self-containedness, we will define here all the graph–theoretic
concepts we require. For further background on theory of graphs the interested reader is
referred to the book by Diestel [11]. Our reference about permutations and finite groups is
Cameron [12].

We will work with simple graphs. A (simple) graph G = (V ,E) is an ordered pair of sets
defined as follows: V (G) is a non-empty set, whose elements are called vertices; E(G) is a
non-empty set of unordered pairs of vertices, whose elements are called edges. An edge of the
form {i, i} is called a loop. Two vertices i and j are said to be adjacent if {i, j} ∈ E(G). Often,
this is simply denoted by writing ij . A graph is loopless if it has no loops. The adjacency
matrix of a graph G is denoted by A(G) and defined by

[A(G)]i,j :=
{

1, if ij ∈ E(G);
0, if ij /∈ E(G).
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An adjacency matrix of a loopless graph is said to be hollow. The degree of a vertex i in a
graph G is the number of edges incident with the vertex, that is, #{j : ij ∈ E(G)}. A graph
is regular if each of its vertices has the same degree. We say d-regular to specify that each
vertex has degree d. A square matrix is Hankel if it has constant skew-diagonals. These are
diagonals that traverse the matrix from North-East to South-West. (For this reason, these are
also called antidiagonals). Note that an n × n matrix has 2n − 1 skew-diagonals. An n × n

Hankel matrix is said to be anticirculant (or, equivalently, skew-circulant or backcirculant)
if the ith and (i + n) th skew diagonals are equal. A permutation of length n is a bijection
π : [n] −→ [n], where [n] = {1, 2, . . . , n}. A permutation matrix of dimension n is an n × n

matrix P with the following two properties: [P ]i,j ∈ {0, 1} for every i, j ; P has a unique 1 in
each row and in each column. A permutation π is said to induce a permutation matrix P if
[P ]i,π(i) = 1 for every i.

Two graphs G and H are isomorphic if there is a permutation matrix P such that
A(G) = PA(H)P −1. We write G ∼= H to denote that graphs G and H are isomorphic.
A graph G is bipartite if there is a permutation matrix P such that

PA(G)P −1 =
(

0 M

MT 0

)
, (6)

for some matrix M. If M = Jn, where Jn is the all-ones matrix of size n, then G ∼= Kn,n,
the complete bipartite graph. A graph is said to be anticirculant if it is isomorphic to a
graph whose adjacency matrix is anticirculant. Let us denote by Ln,d and by Ln the set of all
d-regular anticirculant graphs on n vertices and the set of anticirculant graphs on n vertices,
respectively. Note that #Ln,d = (

n

d

)
. Therefore,

#Ln =
n−1∑
d=1

#Ln,d =
n−1∑
d=1

(
n

d

)
= 2n − 2.

Given G ∈ Ln, the ordered set S(G) = (s : [A(G)]1,s = 1) is said to be the symbol of G, in
analogy with the terminology used for circulant graphs. Indeed, S(G) specifies G completely.
In cycle notation, each element s ∈ S(G) is associated with a permutation of the form

πs = (1, s)(2, s − 1) · · · (s + 1, n)(s + 2, n − 1) · · · , (7)

where the subtraction is modulo n. In line notation, πs = (s)(s − 1)(s − 2) · · · (n)(n −
1) · · · (s + 1). On the basis of the definitions, we can collect the facts below:

Proposition 1. Let G ∈ Ln be a graph. The following statements hold true:

(i) The graph G is d-regular with d = #S(G).
(ii) If G is loopless then n is even.

(iii) If G is loopless then each s ∈ S(G) is even.
(iv) The graph G is bipartite.

Proof. In order:

(i) Let πs be the permutation associated with the element s ∈ S(G). Then πs induces a
symmetric permutation matrix Ps . Since each Ps is defined by s, we have [Ps]i,j = 1
if and only if [Pt ]i,j = 0 for all t �= s. Consequently, A(G) = ∑

s∈S(G) Ps , and G is a
regular graph with degree d = #S.

(ii) If the size of Ps is odd, then [Ps]i,i = 1 for some i. This is because πs is necessarily an
involution of odd length, and for this reason it has at least one fixed point. (Recall that an
involution is a permutation that is its own inverse.)
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(iii) Suppose on the contrary that s = 2k + 1, for some k � 1. Then, [A(G)]1,s =
[A(G)]1,2k+1 = [A(G)]k+1,k+1 = 1, contradicting the hypothesis of G being loopless.

(iv) By the form of each πs (see equation (7)), it is sufficient to observe that vertices labeled
by odd numbers are adjacent only to vertices labeled by even numbers and viz. �

At this stage, we are ready to prove that the members of Ln are Cayley graphs. The Cayley
graph G = G(�, T ) of a group � w.r.t. the set T ⊆ � is the graph in which V (G) = {�} and
{g, h} ∈ E(G), if there is s ∈ T such that gs = h. The dihedral group D2k of order 2k is the
group of symmetries of a regular k-gon. The dihedral group D2k is non-Abelian and presented
as

D2k = 〈s, t : t k = e, s2 = e, sts = t−1〉,
where t is a rotation and s is a reflection. The elements of D2k are k rotations t0, t, t2, . . . , tk−1

and k reflections s, st, st2, . . . , stk−1. A graph G is said to be connected if there is no
permutation matrix P such that PA(G)P −1 = ⊕

i Mi , for some matrices Mi . If a Cayley
graph of a group � is not connected then it is the disjoint union of isomorphic Cayley graphs of
a subgroup of �, with each isomorphic component corresponding to a coset of the subgroup.

Proposition 2. Let G be a loopless anticirculant graph. Then G is a Cayley graph of the
dihedral group with respect to a set of reflections.

Proof. The adjacency matrix of a Cayley graph G = G(�, T ) can be written as
A(G) = ∑

t∈T ρreg(t), where ρreg is the regular permutation representation of �. When
the order of � is n, this is an homomorphism of the form ρreg : � −→ �n, where �n is the
set of all n × n permutation matrices. Each ρreg(t) describes the action of the group element t
on the set {1, 2, . . . , n}. Let G ∈ Ln be a loopless graph. By proposition 1, we need to take
n = 2k. Let us label the lines (rows and columns) of A(G) with the group elements of Dn, of
order n = 2k, in the following order:

t0 = e s t st t2 st2 · · · t k−1 stk−1,

where e is the identity element of the group. Consider ρreg(st
l), where 1 � l � k. By

applying the generating relations of Dn, it is straightforward to verify that ρreg(s) = P2, and
ρreg(st

l) = P2+2l , when 1 � l � k − 1. The elements of S(G) are then associated with
reflections in D2k ,

2 −→ s 4 −→ st 6 −→ st2 · · · 2k −→ stk−1.

This concludes the proof of the proposition. �

An example is useful to clarify this result. Let Zn be the additive group of integers modulo
n. The Cayley graph X(Zn, {1, n− 1}) is also called the n-cycle. This is the unique connected
2-regular graph up to isomorphism. Let G ∈ L6,2 be the graph with adjacency matrix

A(G) = ρreg(s) + ρreg(st) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 0
1 0 1 0 0 0
0 1 0 0 0 1
1 0 0 0 1 0
0 0 0 1 0 1
0 0 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where s = (1, 2)(3, 6)(4, 5) and t = (1, 4)(2, 3)(5, 6). Then s2 = st2 = e and 〈s, st〉 = D6.
Additionally, it is immediate to see that G ∼= X(Z6, {1, 5}).
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Figure 1. The Cayley graph X(Z6, {1, 2, 4, 5}).

4. Anticirculant weighing matrices

In this section, we will highlight the interplay between weighing matrices and anticirculant
graphs supporting orthogonal matrices.

A weighing matrix W of order n and weight k, denoted by W(n, k), is a square n × n

matrix with entries [W ]i,j ∈ {−1, 0, 1}, satisfying WWT = kI , where I is the identity matrix.
When k = n, then W(n, k) is said to be a Hadamard matrix. It is generally recognized that
weighing matrices were first discussed by Frank Yates in 1935 [13], while Hadamard matrices
were introduced by James Sylvester and Jacques Hadamard during the second half of the
nineteenth century (see [14]). Geramita and Seberry [15] and Koukouvinos and Seberry [16]
are general surveys on this topic, as well as applications.

We are specifically interested in circulant weighing matrices. A circulant weighing matrix
of order n and weight k is a W(n, k) which is also a circulant matrix. In analogy with the
previous section, we define the ordered set T (W(n, k)) = {s : [A(CW(n, k))]i,s = 1} to be
the symbol of CW(n, k). Arasu and Seberry overview the subject in [17].

We shall give particular importance to graphs associated with weighing matrices. The
graph of a (real symmetric) matrix M, denoted by G(M), is the graph defined by

[A(G(M))]i,j :=
{

1, if [M]i,j �= 0;
0, if [M]i,j = 0.

The graph G(CW(n, k)) is a Cayley graph of the cyclic group Zn with respect to the set
T (W(n, k)). For instance, let us look at the matrix

CW(6, 4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 1 −1
−1 0 1 1 0 1

1 −1 0 1 1 0
0 1 −1 0 1 1
1 0 1 −1 0 1
1 1 0 1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (8)

The graph G(CW(6, 4)) is the Cayley graph of Z6 with respect to the set {1, 2, 4, 5}. This is
illustrated in figure 1.

The following statement is one of the main tools in our discussion. For the purposes of
this paper, it is sufficient to focus on matrices of even order.

Proposition 3. For each circulant weighing matrix M = CW(n, k) of order n = 2l, with
l � 1, there is a weighing matrix U such that G(U) ∈ Ln,k . The graph G(U) is loopless if
each element of T (W(n, k)) is odd.

6
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Proof. Consider the permutation

π = (1, n) , (2, n − 1), . . . , (l, l + 1) (9)

on a set [n]. Let Pπ be the permutation matrix induced by π . Labeling the rows and the
columns of Pπ with the elements of [n] in the lexicographic order, we can write

Pπ =

⎛
⎜⎜⎜⎜⎝

0 · · · 0 1
... 0 1 0

0
. . .

...

1 0 · · · 0

⎞
⎟⎟⎟⎟⎠ .

Now let U = MPπ . Since Pπ and M are orthogonal matrices, U is also orthogonal. By
the action of the permutation π and the fact that M is circulant, the graph G(U) ∈ Ln,k and
S(G(U)) = {s = n − [A(CW(n, k))]i,t + 1}, where t ∈ T (W(n, k)). Note that G(U) can
have self-loops if we do not impose further restrictions. On the other hand, G(U) is loopless
if each s ∈ S(G(U)) is even (proposition 1). Such a property is satisfied only if each element
of T (W(n, k)) is odd. �

It is important to remark that Pπ acts on columns and hence it does not generally preserve
isomorphism of graphs. Proposition 3 prompts us to some definitions. An anticirculant
weighing matrix of order n and weight k, denoted by AW(n, k), is a W(n, k) which is also
anticirculant. A matrix AW(n, k) is a special kind of Hankel weighing matrix. A Hankel
weighing matrix of order n and weight k, denoted by M = HW(n, k), is a W(n, k) such that
G(M) is anticirculant. While it is obvious that there exists an AW(n, k) if and only if there
exists a CW(n, k), we need to take into account the following counterexample:

Proposition 4. Not every HW(n, k) is an AW(n, k).

Proof. Let Pπ be the permutation matrix as in the proof of proposition 3. The matrix

U =
(

Pπ Pπ

Pπ −Pπ

)
(10)

is a HW(n, 2), for every n, since

UUT = U 2 =
(

2P 2
π 0

0 2P 2
π

)
=

(
2I 0
0 2I

)
,

because Pπ = P T
π . �

Proposition 4 seems to indicate that classification theorems for circulant weighing matrices
help only partially when attempting to classify Hankel weighing matrices.

In the following two sections, our classification begins by considering graphs of small
degree. This corresponds physically to the number of pump beams required to build a given
CVCS. If a graph is r-regular, it requires 2r − 1 different pump beams to build the associated
CVCS, since each of the 2r − 1 bands of the adjacency matrix requires a different pump
frequency. Thus, we are primarily interested in graphs that have an interesting topology, but
also have small values of r, since greater values would have greater experimental complexity.

7
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Figure 2. The graph X(D8, {st, st3}) ∼= C4 	 C4.

Cases of small r are also more tractable theoretically, which is another reason to focus on
them.

5. 2-regular graphs

The unique—up to isomorphism—connected 2-regular graph on n vertices is the n-cycle, Cn.
A graph G is said to be the disjoint union of graphs H1, . . . , Hl if there is a permutation
matrix P such that PA(G)P −1 = ⊕l

i=1 A(Hi). In such a case, we write G ∼= ⊎l
i=1 Hi .

Equivalently, let G and H be graph such that V (G)∩V (H) = ∅. The set of vertices of G	H

is V (G) ∪ V (H) and the set of edges, E(G) ∪ E(G). All useful information about graphs of
matrices HW(n, 2) is stated as follows:

Proposition 5. Let Dn be the dihedral group of order n = 2k. Let T = {st i , stj } ⊂ Dn, where
1 � i, j � k, be a set of reflections. There is a unitary matrix U such that X(Dn, T ) ∼= G(U)

if and only if (i − j) mod k = (j − i) mod k. Moreover, if this is the case then k is even and
therefore n is a multiple of 4. It follows that the graph G ∈ Ln,2 and G is the disjoint union of
k/2 copies of C4.

Proof. It is known that given a group � and a set T = {g, h} ⊂ �, there is a unitary
matrix U such that A(X(�, T )) = A(G(U)) if and only if gh−1 = g−1h (see, e.g.,
[18, 19]). From this, st i(stj )−1 = (st i)−1stj . Since st l is a reflection, for every 1 � l � k,
we can write (st l)−1 = st l . Thus st istj = stj st i , that is, st i and stj commute. Since
st ls = t k−l , for every 1 � l � k, it follows that t (k−i+j) mod k = t (k−j+i) mod k . This proves
that (i − j) mod k = (j − i) mod k, for st i and stj . Now, without loss of generality, assume
that j > i. Note that (i − j) mod k = k − j + i. So, we need that j − i = k − j + i,

which implies j − i = k/2. It follows that U has the form described in equation (10), up to
isomorphism. �

Figure 2 illustrates the graph X(D8, {st, st3}) associated with the matrix HW(8, 2). Since
in general only a disjoint union of squares can be achieved with 2-regular graphs, and these
graphs have only limited interest from a quantum computing perspective, we need to consider
larger graphs. A proposal for creating such graphs was given in [9].

6. 4-regular graphs

In this section, we consider several constructions of 4-regular graphs of anticirculant weighing
matrices. Unfortunately, we are unable to prove that this set of examples is exhaustive, so a
complete characterization of the degree 4 case remains open.

The CVCS graphs in this section can all be implemented with an experimental setup
requiring no more than seven pump beams.

8
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6.1. Graphs from AW(4, 4)

The matrix

M4,4 = AW(4, 4) =

⎛
⎜⎜⎝

1 1 1 −1
1 1 −1 1
1 −1 1 1

−1 1 1 1

⎞
⎟⎟⎠

is a Hadamard matrix of order 4. Since the entries of a Hadamard matrix are all nonzero,
G(M4,4) ∼= K+

4 , where K+
n denotes the complete graph on n vertices with a self-loop at each

vertex. We can construct other anticirculant weighing matrices of higher order from M4,4.
Given that we are interested in anticirculant matrices whose graph is without self-loops, the
first row of these matrices must have nonzero entries only at even positions. Let M4,4 be a
family of matrices obtained from M4,4 be adding new lines (i.e., rows and columns) between
the rows and the columns of M4,4. If we add the same number of lines between each column
(resp. row), we obtain matrices of order 4k, for k � 1. For small orders, the first rows of these
matrices are

0, 1, 0, 1, 0, 1, 0,−1

0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,−1

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,−1

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,−1.

Clearly, for each matrix M constructed in this way, we have G(M) ∈ Ln. When n = 4k, with k
odd, the graph G(M) has self-loops. For this reason, we consider only the case n = 4k, with k
even. In other words, we consider the case n = 8l, for any l � 1. Let S(M) = {s1, s2, s3, s4}.
By the above construction si+1 − si = d + 1 for i = 1, 2, 3 and n − s4 + 2s1 = s2. This last
condition provides that the number of columns between s4 and s1 is the same as one between
s2 and s1 when looking at the matrix as wrapped on a torus, by gluing together the first and the
last column. In this way, we can define a unitary matrix U such that G(U) ∼= G(M). Let us
denote by U1, . . . , Un the rows of U. The nonzero entries in U1 are exactly U1,s1 , U1,s2 , U1,s3

and U1,s4 . In particular, U1,s1 = U1,s2 = U1,s3 = 1 and U1,s4 = −1. Suppose si+1 − si − 1 = d

for all i = 1, 2, 3 and n − s4 + 2s1 = s2. Thus the inner product between the rows U1 and
Us2−s1 is

〈U1, Us2−s1〉 = U1,s1Ul,s1 + U1,s2Ul,s2 + U1,s3Ul,s3 + U1,s1Ul,s4

= U1,s1U1,s2 + U1,s2U1,s3 + U1,s3U1,s4 + U1,s4U1,s1

= 1 + 1 − 1 − 1

= 0.

The distance d guarantees that each row (resp. column) of U has exactly four nonzero entries
contributing to the zero inner product with other three rows (resp. columns). Orthogonality
is guaranteed since no nonzero entries contribute to the inner product with all remaining rows
(resp. columns). The numbers s1, . . . , s4 must be even and d = (n − 4)/4 must be odd, since
n = 8l = (4d + 4). The matrices of order 8l constructed in with this method will be denoted
by M4,4,l . Essentially, orthogonality arises since we interlace M4,4 with itself d + 1 times.

9
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Figure 3. The graph G(M4,4,1) ∼= K4,4.

This can be seen directly in the matrix

M4,4,1 = AW(8, 4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 1 0 −1

1 0 1 0 1 0 −1 0
0 1 0 1 0 −1 0 1

1 0 1 0 −1 0 1 0
0 1 0 −1 0 1 0 1

1 0 −1 0 1 0 1 0
0 −1 0 1 0 1 0 1

−1 0 1 0 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

which is constructed by interlacing two copies of M4,4. The boxed numbers are the nonzero
entries in one of the two copies. At this stage, we can ask information about the graphs of
matrices in M4,4. It is sufficient to observe that M4,4,l = M4,4 ⊗ Fl+1, where the matrix

Fn =

⎛
⎜⎜⎜⎜⎝

0 · · · 0 1
... 1 0

0
...

1 0 · · · 0

⎞
⎟⎟⎟⎟⎠

is n× n. Note that this is just the matrix Pπ from proposition 3, but we have changed notation
to make the dependence on the size of the matrix explicit. The matrix Fn is the adjacency
matrix of the disjoint union of n/2 graphs K2, if n is even and the disjoin union of (n − 1)/2
graphs K2 and a single vertex with a self-loop, if n is odd. The tensor product G ⊗ H of
graphs G and H is the graph such that A(G ⊗ H) = A(G) ⊗ A(H). The set of vertices of
G⊗H is the Cartesian product V (G)×V (H) and two vertices {u, u′} and {v, v′} are adjacent
in G ⊗ H if and only if {u, v} ∈ E(G) and {u′, v′} ∈ E(H). The graph G ⊗ H is connected
if and only if both factors are connected and at least one factor is nonbipartite. Here, K2 and
K4 are both connected and K2 is bipartite. When l > 1, one of the factors is not connected.
Therefore G(M4,4,l) is connected only if l = 1. In fact G(M4,4,l) ∼= ⊎

#l K4,4, where Kn,n

denotes the complete bipartite graph on 2n vertices. In figure 3 is illustrated G(M4,4,1); in
figure 4, G(M4,4,4).

The graph G(M4,4,l) is made of l connected components. Can we find two permutation
matrices P and Q such that G(PM4,4,lQ) � G(M4,4,l) and it is connected? In particular, for
the moment, we consider only permutation matrices that preserves the distance d between the

10
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Figure 4. The graph G(M4,4,4) ∼= K4,4 	 K4,4.

elements of S(M). From M4,4,l , we can construct exactly l−1 further matrices, by permutation
the lines under this constraint. For example, when n = 24 = 8 × 3, the possible first rows are

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, −1
0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, −1, 0, 0
0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0

.

The position of the entry −1 does not matter, because we are interested in the graph G(M4,4,l).
Given s1, . . . , s4, in matrices of the form M4,4,l , when l > 1,

gcd({si − sj : for all i, j such that j > i} ∪ 8l) > 2.

This implies that G(PM4,4,lQ) ∼= ⊎
#l K4,4, for any two permutations P and Q preserving the

distance d.

6.2. Graphs from AW(6, 4)

It is natural to analyze the construction in the previous section, but replacing the matrix
AW(4, 4) with some other anticirculant weighing matrix. Recalling that there is no AW(5, 4),
the smallest available matrix of order n > 4 is AW(6, 4),

M6,4 = AW(6, 4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 1 1 0
1 0 1 1 0 −1
0 1 1 0 −1 1
1 1 0 −1 1 0
1 0 −1 1 0 1
0 −1 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

This is obtained from the CW(6, 4) in (8). The graph G(M6,4), illustrated in figure 5, has four
self-loops.

The graph G(M6,4,l), if loopless, is on 12l vertices, with l � 1. The graph G(M6,4,1) ∼=
G(M6,4)⊗K2 is connected since K2 and G(M6,4) are connected and G(M6,4) is nonbipartite.
(The chromatic number of G(M6,4) is 3.) A drawing of G(M6,4,1) is in figure 6.

In general, M6,4,l = M6,4 ⊗ Fl+1. If we avoid self-loops,

G(M6,4,l) =
⊎

l

G(M6,4,1).

11
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Figure 5. The graph G(M6,4).

Figure 6. The graph G(M6,4,1) ∼= G(M6,4) ⊗ K2.

By permuting the lines of M6,4 (shifting to the right the columns), we have the matrix

M1
6,4 = AW(4, 4)1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 1 0 1 1
−1 1 0 1 1 0
1 0 1 1 0 −1
0 1 1 0 −1 1
1 1 0 −1 1 0
1 0 −1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Apply our construction to M1
6,4, we obtain graphs on 6k vertices, with k odd. However, since

G(M6,4,1) ∼= G
(
M1

6,4,1

)
, these graphs will be a disjoint union of copies of G(M6,4,1). So the

permutation is of no use if our intention is to get different graphs from M6,4. On the other side,
the structure of M1

6,4 suggests a different construction, which will allow us to obtain matrices
of the form AW(4m, 4), whose graph is loopless and connected for every m � 3. Note that

M6,4 =
(

A B

B A

)
,

where

A =
⎛
⎝ 0 −1 1

−1 1 0
1 0 1

⎞
⎠ B =

⎛
⎝0 1 1

1 1 0
1 0 −1

⎞
⎠ .

Then 2AB = 0 and A2 + B2 = 4I and indeed

M6,4M6,4 = (M6,4)
2 =

(
A2 + B2 2AB

2AB A2 + B2

)
= 4I.

12
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We can add an even number of extra lines to M6,4 and still preserve its block structure. For
example, the matrices

A′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 1 0 0
−1 0 1 0 0 0

0 1 0 0 0 1
1 0 0 0 1 0
0 0 0 1 0 1
0 0 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, B ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 0
1 0 1 0 0 0
0 1 0 0 0 −1
1 0 0 0 −1 0
0 0 0 −1 0 1
0 0 −1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

satisfy the above conditions. Hence the matrix

M12,4 =
(

A′ B ′

B ′ A′

)
is an AW(12, 4). In general, letM6,4 be the family of matrices obtained with this construction.
If M ∈ M6,4 then s1 = 2, s2 = 4, s3 = n/2+2 and s4 = n/2+4, where S(M) = {s1, s2, s3, s4}.
These are AW(4k, 4) when s3 − s2 = (n − 6) /2 is an odd number. The construction gives
also matrices of order 2l � 6, for any l. Yet the associated graphs will have loops when l
is odd. This is the reason for taking multiples of 4. If M ∈ M6,4 then G(M) is connected,
in virtue of the fact that s2 − s1 = 4 − 2 = 2 and then gcd({si − sj : for all i, j such that
j > i} ∪ 4k} = 2.

The graphs of matrices in the set M6,4, with order 4m, are the direct product of C2m with
the graph K+

2 . (Recall that K+
n is the complete graph on n vertices with self-loops; these are the

graphs with adjacency matrix Jn.) The direct product G × H of graphs G and H has a set of
vertices V (G×H) = V (G)×V (H) and two vertices {u, u′} and {v, v′} are adjacent in G×H

when {u, v} ∈ E(G) and {u′, v′} ∈ E(H). By the definition, A(G × H) = A(G) ⊗ A(H).
For this reason G × H is sometimes called the Kronecker product of graphs (see Imrich and
Klavžar [20], chapter 5). If G ∈ M6,4 then G ∼= K+

2 × C2m and M(G) = J2 ⊗ A(C2m).

6.3. Graphs from AW(7, 4)

Let us consider the matrix

M7,4 = AW(7, 4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 1 −1 0
1 0 1 1 −1 0 0
0 1 1 −1 0 0 1
1 1 −1 0 0 1 0
1 −1 0 0 1 0 1

−1 0 0 1 0 1 1
0 0 1 0 1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The graph of M7,4 is in figure 7.
Interlacing M7,4 with itself, by the same method used for M4,4 (see section 6.1,

equation (11)), we obtain the matrix

M7,4,1 = AW(14, 4) = AW(7, 4) ⊗ F2. (12)

The graph of M7,4,1 is in figure 8.
This is on 14 vertices, 4-regular and connected. At a first analysis, G(M7,4,1) does not

seem to be a direct product of graphs. It is nontrivial to extend G(M7,4,1) to an infinite family
of connected regular graphs, as we did by taking M6,4. Examples show that graphs obtained
by M7,4 are not connected, but G(M7,4,1).

13
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Figure 7. The graph G(M7,4).

Figure 8. The graph G(M7,4,1).

7. Open problems

• Study the structure of the graph G(M7,4,1). Determine if it belongs to a family of
connected graphs arising from AW(7, 4), having an infinite number of members, as it is
for the graphs arising from AW(6, 4).

• Since there is no general classification of weighing matrices, characterizing graphs of
Hankel weighing matrices seems to be out of reach. This could be however done for
graphs of degree 4 and 9, on the basis of present knowledge on CW(n, 4) and CW(n, 9)

(see [17]).
• We have seen that there are examples of Hankel weighing matrices which are not

anticirculant. A way to study the relation between these matrices and anticirculant ones,
would be to prove that the graphs of Hankel weighing matrices are always isomorphic to
graphs of AW(n, d), except for some special cases which will include the examples in
proposition 4.

• A Hamiltonian cycle in a graph is an ordered set of sequentially adjacent vertices, in which
every vertex of the graph appears exactly once. Graphs with Hamiltonian cycles are said
to be Hamiltonian. Alspach and Zhang [21] conjectured that a connected Cayley graph
G(Dn, T ) is Hamiltonian whenever T is a set of reflections. According to this conjecture,
any connected anticirculant graph is Hamiltonian whenever it is loopless. Additionally,
Gutin et al [22] conjectured that graphs of unitary matrices are Hamiltonian if connected.
According to these conjectures the graphs of Hankel weighing matrices are Hamiltonian
if connected. This is the case for the graphs considered here. In figure 9 the graphs
K+

2 × C8 and G(M7,4,1) are drawn. The highlighted edges represent Hamiltonian cycles.

14
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Figure 9. Hamiltonian cycles in graphs of matrices AW(12, 4) and AW(14, 4).

Perhaps the physical picture that motivates our study could provide some insight toward
proving these conjectures.

• We have seen that graphs of the form K+
2 × C2m are graphs of unitary matrices. The

quantum dynamics induced by these matrices is trivial because of symmetry. However,
symmetry can be broken with the action of a diagonal matrix without altering the zero
pattern of the unitary. This suggests the possibility of constructing unitaries with a
nontrivial dynamics whose graph is a undirected Cayley graph of the dihedral group.

• Sections 5 and 6 make extensive use of the following trick. Begin with a circulant
weighing matrix, then reverse the columns. If the resulting graph has loops, one can
create a loopless graph by the ‘interlacing’ trick. In fact the interlaced graph will again
be connected if the original graph was connected but not bipartite. Can one classify the
Hankel and anticirculant weighing matrices which cannot be obtained by this trick?

8. Conclusion

We have demonstrated connections between an approach to quantum computation with optical
modes and the existence of certain weighing matrices with Hankel structure. Because the
degree of the graph associated with a matrix corresponds to the experimental resources
required to implement the graph as a CVCS, it is important to characterize which graphs
with small degree have adjacency matrices with Hankel structure. We proved some general
theorems about such matrices, classified completely the case of degree 2, and provided some
examples with degree 4. We also raised some interesting open problems that might help shed
some light on which graphs can be implemented in a single OPO using the scheme in [7, 10].
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