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Quantum graphity is a background-independent model for emergent macroscopic locality, spatial

geometry and matter. The states of the system correspond to dynamical graphs on N vertices. At high

energy, the graph describing the system is highly connected and the physics is invariant under the full

symmetric group acting on the vertices. We present evidence that the model also has a low-energy phase in

which the graph describing the system breaks permutation symmetry and appears to be ordered, low

dimensional and local. Consideration of the free energy associated with the dominant terms in the

dynamics shows that this low-energy state is thermodynamically stable under local perturbations. The

model can also give rise to an emergent U(1) gauge theory in the ground state by the string-net

condensation mechanism of Levin and Wen. We also reformulate the model in graph-theoretic terms

and compare its dynamics to some common graph processes.

DOI: 10.1103/PhysRevD.77.104029 PACS numbers: 04.60.Pp

I. INTRODUCTION

It is possible that the successful quantum theory of
gravity will require a modification of general relativity or
quantum theory and that at least one of the two is not
fundamental but rather only an effective, emergent theory.
Almost all approaches to quantum gravity leave quantum
theory intact and the suspicion is largely on general rela-
tivity being the effective theory. Establishing this is, how-
ever, a major challenge. General relativity describes
gravitation as the curvature of spacetime by energy and
matter, which means that, if it is only an effective theory,
then spacetime must be just an effective description of
something more fundamental. The trouble with this is
that most known physics is formulated in terms of a space-
time geometry.

In approaches where general relativity is considered
fundamental enough to hope to obtain a quantum theory
of gravity by its quantization (such as causal dynamical
triangulations [1], loop quantum gravity [2], spin foam
models [3] and group field theory [4]), one needs a mecha-
nism to generate a nearly flat, classical geometry in the
low-energy limit, complete with local observables, to com-
pare theory with experiment. While progress has been
made in such approaches, there are still open questions.
In approaches with extra dimensions, one would like an
explanation for why some dimensions are large and others
small [5]. In the realm of emergent gravity approaches, we
encounter theories that are formulated in terms of quantum
fields on a given geometry (this includes condensed-matter
and analog approaches [6–9], matrix models [10,11] and
certain formulations of string theory [12,13]). The evi-
dence for emergent gravity is, for example, in the form
of a spin-2 field, an effective metric, or the anti–de Sitter/
conformal field theory (AdS/CFT) duality [12]. Inspecting

these approaches, however, we find that it is unclear to
what extent the geometry used in the initial formulation
and its symmetries enter the results. Is the initial fixed
geometry an auxiliary structure or does it have a physical
meaning?
A related issue is the notion of locality in a quantum

theory of gravity. Locality is a universal property of known
physics so it is natural that we have also been looking for a
local quantum theory of gravity. However, there are a
number of indications that this may not be correct (a
thorough investigation of this question can be found in
[14]). In addition, some of the main obstacles we encounter
in approaches to quantum gravity can be traced to the
problem of constructing local observables that quantum
gravity inherits from general relativity: there are no local
diffeomorphism-invariant observables for pure gravity
[14]. This problem has become more prominent in recent
years because its resolution is necessary to compare theory
to experiment. We believe the question of locality should
be addressed by emergent gravity approaches. One may be
justified to expect that, if gravity and geometry are emer-
gent, so must be locality.
A condensed-matter approach to the problem of emer-

gent geometry has recently been proposed through a model
called quantum graphity [15]. In that model, states of the
system are supported on the complete graph KN on N � 1
vertices in which every two vertices are connected by an
edge. Quantum degrees of freedom are associated with
edges of the graph: there is a state for each edge which
signifies that the edge is turned off and other states which
indicate that the edge is on. Thus, the states of the complete
system include every possible graph on N vertices. The
model describes a dynamical graph as the answer to the
question of whether two vertices in the graph are adjacent
or not can vary in time.
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At high energy, there is no notion of geometry, dimen-
sion or topology in the system. At low energy, however, the
system is expected to become ordered in such a way that
the subgraph of KN consisting of the ‘‘on’’ edges can be
described in terms of a low-dimensional spacetime mani-
fold. Near this ground state, the model is closely related to
the string-net model of Levin and Wen [16] which has
emergent Uð1Þ gauge degrees of freedom coupled to mas-
sive charge particles. The transition process from high to
low temperature, called geometrogenesis, establishes an
emergent notion of locality in the low-energy regime. It
is worth emphasizing that the model is not ‘‘nonlocal’’ in
the sense of adding nonlocal corrections to a local theory.

In this paper we present a slightly modified and simpli-
fied version of the quantum graphity model. Compared to
the original model, the version in this paper has a reduced
state space associated with each edge. This allows us to
better concentrate on the structural properties of the graph
at low energies. The dynamics of the model is also some-
what different from the original so that there is more
natural accommodation of features of the graph such as
counting of closed paths. For a certain set of parameters,
we present evidence that a graph with hexagonal symmetry
is at least a local free-energy minimum for the model. The
very interesting question of whether the system can gen-
erate a three-dimensional lattice in some region of its
parameter space is left for future work.

It is useful to relate quantum graphity to existing ap-
proaches to quantum gravity. It is certainly the case that
several of the so-called background-independent ap-
proaches to quantum gravity are graph based: loop quan-
tum gravity [2], causal sets [17], algebraic loop quantum
gravity [18], and quantum causal histories [19], among
others. This is not surprising, since network-based states
have a strong relational character, a feature considered
desirable in a background-independent context. Quantum
graphity also shares with these theories a common central
question, the search for the semiclassical, or low-energy,
states in the theory. However, there are also basic differ-
ences. The dynamics of quantum graphity with matter is
essentially an extension of the string-net Hamiltonian of
Levin and Wen and not a quantization of the Einstein
equations (string nets are tensor product categories, just
like spin networks, making the introduction of Levin-Wen–
type dynamics technically straightforward). Additionally,
the data on the network do not correspond to SU(2) labels
found on spin network states in loop quantum gravity. In
quantum graphity, geometry is identified at the low-energy
phase from properties of the network itself.

The outline of the article is as follows. In Sec. II, we
define the model by putting states j0i, j1i on the edges of
the complete graphKN . A j0i state means the edge is ‘‘off,’’
or missing, and a j1i state means the edge is on. In
Sec. II C, we give the Hamiltonian of our model. In
Sec. III, we study the model when the number of vertices

N is large and find that the hexagonal lattice is a good
candidate for the ground state for an appropriate choice of
parameters. We consider perturbations over the ground
state and find that the hexagonal lattice is thermodynami-
cally stable under local perturbations. In Sec. IV, we in-
troduce a degeneracy of the on edges: the j1i state is split
into j1; 0i, j1;�1i, j1;þ1i. This allows us to introduce the
string-net condensation mechanism of Levin and Wen [16]
into our dynamics, bringing the model closer to the original
quantum graphity system [15]. In Sec. V, we initiate a
reformulation of our model in graph-theoretic terms, and
provide some first observations on the transition from the
high- to the low-energy phase. In particular, we compare
the transition with processes generating random graphs.
Our model introduces a novel mechanism for emergent

space and locality and this comes with a new set of ques-
tions that need to be investigated in future work. These
include the role of time, temperature, the actual transition
between the two phases, and its remnants. We discuss these
in the concluding Sec. VI.

II. GRAPH MODELS

Graph-based, instead of metric-based, theories are at-
tractive implementations of the relational content of diffeo-
morphism invariance. The interpretation is that it is the
structure of the graph, i.e. the relations between the con-
stituents, that is important to describe physics. As such,
graphs are probably the most common objects that appear
in background-independent theories of quantum gravity
[1–3,17,20]. Furthermore, it has been previously argued
in the literature that at the discrete level, spacetime diffeo-
morphisms should appear as permutation invariance of
these fundamental constituents [21]. We shall implement
this by starting with the complete graph KN on N vertices,
an object that is permutation invariant. The dynamics on
the complete graph will be chosen so that it respects the
permutation invariance of KN and depends on natural
graph features: vertices, closed paths and open paths.
We first review some useful graph-theoretic properties

and techniques. Next, we introduce the necessary quantum
mechanical notation and then finally define the Hamil-
tonian models on graphs that we will consider in this paper.

A. Graph theory preliminaries

The complete undirected graph on N vertices is denoted
by KN . It is a graph in which every two vertices are
connected by an edge. If the vertices are labeled by
1; 2; . . . ; N, then KN has an edge eab connecting any two
a and b.
Any graph G on N vertices can be regarded as a sub-

graph of the complete graph KN; specifically, it can be
obtained by deleting edges from KN . A convenient way to
represent G is via its set of edges EðGÞ or via its N � N
adjacency matrix
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AabðGÞ ¼
�
1 if eab 2 EðGÞ
0 otherwise:

(1)

By definition, the adjacency matrix is symmetric and it has
zero diagonal.

Information about a graph can be obtained from its
adjacency matrix with the use of linear algebra. In particu-
lar, powers of the adjacency matrix, defined as follows:

Að2Þ
ab ¼ X

c

AacAcb; Að3Þ
ab ¼ X

c

X
d

AacAcdAdb; etc:;

(2)

contain information about open and closed paths in the
graph. As an example, the ab component of the nth power
of A denotes the number of ways one can move from vertex
a to vertex b by jumping only along the edges of the graph
in a fixed, n, number of steps. When a ¼ b and the element

considered is on the diagonal, then AðnÞ
aa denotes the number

of paths in the graph of length n that start and end on the
same vertex a.

When using the powers of the adjacency matrix to
enumerate closed and open paths, it is essential to under-
stand that the numbers computed include paths which
traverse certain edges more than once. For example, in a
graph with vertices labeled by 1; 2; . . . ; N and edges
labeled by pairs ff1; 2g; f1; 3g; f2; 3g; . . .g, a sequence such
as ff1; 2g; f2; 1g; f1; 2g; f2; 3gg would be counted as a path of
length four from vertex 1 to vertex 3, irrespective of the
fact that the edge f1; 2g is used 3 times in the sequence or
that there exist a shorter sequence of edges, namely
ff1; 2g; f2; 3gg, that connects the same two vertices.

For future use, it is also useful to define the notion of
nonretracing paths. We define a nonretracing path to be an
alternating sequence of vertices and edges, in which any
particular edge appears exactly once. It is useful to specify
that nonretracing paths can be open or closed and that a
nonretracing path is not necessarily a geodesic between
two vertices. A closed nonretracing path is also said to be a
cycle. The number of cycles can be computed algorithmi-
cally but not with the straightforward use of powers of the
adjacency matrix. Some questions regarding counting the
number of cycles of a given length can be very difficult
(see, e.g., [22]).

B. Quantum mechanics preliminaries

We would now like to set up a framework which would
allow us to encode the complete graph KN and its sub-
graphs as states in a quantum mechanical Hilbert space. To
do this, we define a large Hilbert space H total made up of
smaller spaces associated with components of the complete
graph KN. In general, it is possible to associate a Hilbert
space H edge to each edge eab and a Hilbert space H vertex

to each vertex. The total Hilbert space of the system would
then be the tensor product

H total ¼ �NðN�1Þ=2H edge �N H vertex: (3)

In the following, we specialize to models in which all the
degrees of freedom are on the edges of the graph as
opposed to both the edges and vertices.
The basic Hilbert space associated with an edge is

chosen to be that of a fermionic oscillator. That is,
H edge will be

H edge ¼ spanfj0i; j1ig; (4)

the state j0i is called the empty state and the state j1i is said
to contain one particle. (One can alternatively think of j0i
and j1i as being states in the computational basis of a
qubit.) A general state in the total space of edges

H �NðN�1Þ=2
edge is

j i ¼ X
fng
cfngjn12i � jn13i � jn23i � � � � ; (5)

i.e., a superposition of all possible states which are them-
selves tensor products of states jnabi associated with single
edges; nab ¼ 0, 1 are occupation numbers and cfng are

complex coefficients.
In the graph model, a given edge of the graph is inter-

preted as being on or off depending on whether the corre-
sponding state has a particle or not. The collection of on
states define a subgraph of the complete graph KN . Thus,
the total Hilbert space of edges can be decomposed as
(recall that we ignore degrees of freedom on the vertices)

H total ¼ �GH G (6)

with the tensor sum being over all subgraphs G of KN.
Each term in (5) corresponds to a state in one of the blocks
H G. Since we treat the vertices as distinguishable, there
may be many blocks in the sum that correspond to iso-
morphic graphs.
Acting on the Hilbert space of each edge are the usual

creation and annihilation operators ay and a. They act in
the usual way,

aj0i ¼ 0; aj1i ¼ j0i; (7)

and obey the anticommutation relation

fa; ayg ¼ aay þ aya ¼ 1: (8)

The other anticommutators are zero, fa; ag ¼ fay; ayg ¼ 0.
There is a Hermitian operator aya, whose action on a state
jni with n ¼ 0, 1 is

ayajni ¼ njni: (9)

This operator is commonly called the number operator
because it reveals the number of particles present in a state.
It is now possible to define operators (9) that act on each

of the copies ofH edge. These will be denoted by subscripts

and defined in the intuitive way, e.g.
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N13ðjn12i � jn13i � � � �Þ
¼ ð1 � aya � � � �Þðjn12i � jn13i � � � �Þ
¼ n13ðjn12i � jn13i � � � �Þ: (10)

From the definition of the operators on the middle line, one
can see that number operators acting on different edges
commute. Also, since the graphs we are considering are
undirected (that is, the edges are unordered pairs of verti-
ces), we identify Nab ¼ Nba.

Note that the set of operators Nab can be understood as
analogous to elements of an adjacency matrix Aab. That is,
the operatorNab gives zero when the state of edge eab is off
and gives 1 when that edge is in an on state. In the previous
section it was shown that it is very useful to define powers
of the adjacency matrix as in (2). It is also reasonable to
introduce powers of these number operators. For example,
we define

Nð2Þ
ab ¼ X

c

NacNcb; Nð3Þ
ab ¼ X

c

X
d

NacNcdNdb; etc:

(11)

When the elements of these matrices NðLÞ
ab act on a state,

they return a nonzero answer if the state contained a path
between two vertices of a certain length L passing through
edges whose n values is different from zero. Thus these

operators are quantum mechanical analogs of AðLÞ
ab that

count the number of closed and open paths that pass
through a vertex; here these operators count closed and
open paths in the on graph only.

There are some differences, however, due to the fact that

the creation and annihilation operators aab and a
y
ab acting

on the same edge do not commute. Terms which contain at
least two creation operators and two annihilation operators
can in principle be ordered in several inequivalent ways. In
setups involving the harmonic oscillators, there is a stan-
dard convention for ordering operators called normal or-
dering denoted by putting colons around an operator. In
this convention, all annihilation operators aab are set to the

right of the creation operators ayab. For example, the terms

in the normal-ordered number operator squared are of the
form

:NbcNcd: ¼ :aybcabca
y
cdacd: ¼ aybca

y
cdabcacd: (12)

When b ¼ d, the same two annihilation operators appear
on the right. Since (for n ¼ 0, 1)

aajni ¼ 0; (13)

which follows from the anticommutation relations, one
finds that

:NbcNcb: ¼ 0: (14)

Consequently, whenever a term of :NðLÞ
ab : with L � 2 acts

on the same edge more than once, that term does not

contribute. Therefore, the eigenvalues of operators :NðLÞ
ab :

for each a, b return the number of nonoverlapping paths
between vertices a and b. We will make use of the normal-
ordering convention and this property, in particular, when
defining and analyzing the quantum Hamiltonian for the
graph model.

C. Hamiltonian

We would now like to define a condensed matterlike
model in which the configuration space is the space of all
possible graphs on a fixed number of vertices.
For this purpose we consider Hamiltonian function (op-

erator) H acting on states in the Hilbert space H total

defined in (3). A Hamiltonian operator is usually used to
associate an energy EðGÞwith a state j Gi. We do this here
using the normal-ordering prescription described above,

EðGÞ ¼ h Gj:H:j Gi: (15)

This notation for the energy should not be confused with
the set of edges of a graph; the meaning of the symbolEðGÞ
should be clear from the context.
We would like the Hamiltonian to preserve the permu-

tation invariance symmetry of KN . In a general manner,
therefore, we can ask what Hamiltonian can be written
down for a graph model using the adjacency matrix opera-
tors defined in the previous section. It turns out that there
are many terms that can be written down that fit the
requirement of permutation symmetry. The trace

P
aNaa

or the sum of the off-diagonal elements
P
a;b�aNab are

simple examples. Tracing or summing over all elements
can also be done using powers ofNab, which can be defined
as in (14). Other possibilities include first defining an
object Na ¼ P

bNab, taking powers of this object as in

NðpÞ
a ¼ ðNaÞðpÞ for some p, and then summing

P
aN

ðpÞ
a . In

the following we choose terms that appear natural from the
graph-theoretic perspective.

1. Valence term

A basic property of a graph is its distribution of vertex
degrees—the number of edges adjoining each vertex.
Indeed, in graph theory one often studies the class of
d-regular graphs in which all vertices have a specified
and fixed degree (also called valence). We would like to
introduce a term in the Hamiltonian that will set a preferred
vertex valence and thus effectively restrict the configura-
tion space of the graph model from the space of all possible
graphs to the space of d-regular graphs.
The general form of this valence Hamiltonian should

depend only on the number of on edges attached to a given
vertex,

HV ¼ gV
X
a

fa

�X
b

Nab; v0

�
: (16)

Here gV is a positive coupling constant and v0 is a free real
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parameter. The function fa should be chosen such that its
minimum occurs when vertex a has exactly v0 on-links
attached to it. The outer sum over vertices a indicates that
all vertices in the graph should have the same valence v0 to
minimize the total energy.

A specific choice of HV is

HV ¼ gV
X
a

epðv0�
P

b
NabÞ2 ; (17)

where p is another real constant. The exponential is de-
fined by its series expansion in p: for example, for the a ¼
1 term,

epðv0�
P

b
N1bÞ2 ¼ 1þ pðv0 � N12 � N13 � � � �Þ2

þ p2

2
ðv0 � N12 � N13 � � � �Þ4 þOðp3Þ:

(18)

The ellipses within the parentheses stand instead of the
summation over the other N1b.

Qualitatively, the effect of the valence Hamiltonian HV

is to set the preferred valence for a graph to v0 and assign
an energy penalty for each vertex whose valence is v � v0.
It will be important later that this penalty, for each vertex,
scales roughly with the exponential of the valence differ-
ence squared,

�EV � epðv�v0Þ2 : (19)

The details of this scaling are unfortunately somewhat
complicated due to the normal-ordering convention.
Since the energy of a state is calculated using the
normal-ordering convention (15) and this convention im-
plies relations such as (14), one has to be careful when
considering contributions from terms in which number
operators are raised to various powers: contributions such
as N12N12 in the expansion (18) give zero regardless of
whether the edge N12 is on or off, and other terms also
disappear in this way. Despite these issues, it is possible to
check explicitly that once the energy is computed up to
sufficient order in p, the minimum of (18) is indeed at v0
and that the exponential scaling relation (19) holds. The
remaining parts of this paper only rely on the qualitative
behavior of the valence term.

2. Closed paths

The next terms that we consider involve powers of the
matrix Nab and depend on the number of closed paths
present in a graph.

At this stage we do not wish to introduce a bias for any
particular power, say L ¼ 3 or 4 or 6, corresponding to a
cycle length. Therefore, we would like to write a term for
every L in the range 1<L<1. However, since we do
want to keep the dynamics of the model quasilocal, we
would like to be able to arrange, by adjusting some pa-

rameters or couplings, for very high powers of Nab to be
relatively unimportant.
There is more than one way to achieve this but we chose

a particular form which can be written down compactly as

HB ¼ X
a

HBa ; (20)

where HBa is rooted at a vertex a and is given by

HBa ¼ �gB
X
b

�abe
rNab : (21)

Here gB is a positive coupling and r is a real parameter. The
exponential is defined in terms of a series expansion,

erNab ¼ X1
L¼0

rL

L!
NðLÞ
ab : (22)

Recall from (11) that the operators of NðLÞ
ab return the

number of paths of length L in the on graph that connect
vertices a and b. When these powers of the number opera-
tor are normal ordered, paths that overlap become unim-
portant and only nonoverlapping paths contribute. The sum
over b and the delta function �ab in (21) together ensure
that only closed paths are counted.
By (15) then, this Hamiltonian assigns to the graph an

energy

EBðGÞ ¼ �X
a

X1
L¼0

gBðLÞPða; LÞ (23)

that depends on the number of closed paths Pða; LÞ at each
vertex a of length L. The ‘‘effective’’ coupling for each
cycle length is given by

gBðLÞ ¼ rL

L!
gB: (24)

In practice, terms with L ¼ 0 are uninteresting constants,
terms with L ¼ 1 vanish because there are no closed paths
of that length, and all terms with L ¼ 2 vanish because
those closed paths are necessarily overlapping. Hence the
Hamiltonian HB starts contributing at L ¼ 3.
A number of comments about this Hamiltonian are in

order. First, (21) and (23) both have an overall negative
sign. This indicates that a graph has lower energy the more
cycles it has. Since the system is finite, the Hamiltonian is
bounded from below and this negative sign does not create
any problems. Also, the energy associated per node is finite
and constant for a regular graph even when the number of
vertices goes to infinity; this is related to the second com-
ment below.
Second, it is important to understand which of the

various terms contributing to EBðGÞ are most important.
In graphs with a large number of vertices, the number of
long cycles at a vertex a is often larger than the number of
short cycles, Pða; L� 1Þ> Pða; L� 1Þ. For certain
classes of graphs, it is possible to estimate the growth of
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Pða; LÞ with L: for example, all v-regular graphs have
Pða; LÞ bounded from above by a polynomial of order
vL�1. However, the effective coupling gBðLÞ multiplying
Pða; LÞ in (23) falls faster than any power for large L.
Hence it is guaranteed that extremely long cycles do not
contribute significantly to the energy of a graph. In this
sense HBa is a quasilocal operator that contributes only a

finite amount to the energy of a vertex.
For intermediate values of L, the situation is more

subtle. The effective coupling is maximized at a length
L� for which

gBðL�Þ> gBðLÞ; 8 L � L�: (25)

This scale depends solely on the parameter r. Another
characteristic length is L��

a defined for each vertex by

gBðL��
a ÞPða; L��

a Þ> gBðLÞPða; LÞ; 8 L � L��
a : (26)

This second length is graph dependent. The lengths that are
relevant for determining the total energy assigned to a
vertex or a graph range from zero to some multiple of L��.

Third and last, note that the parameter r is raised to
various powers in (24). If this parameter is positive, so is
the effective coupling gBðLÞ. If this parameter is negative,
however, the effective coupling gBðLÞ has a different sign
for cycles of even and odd lengths. In the latter case, even
cycles can lower the energy of a graph while odd cycles
incur a positive energy penalty.

3. Interaction terms

The previous terms HV and HB can be thought of as
being terms in a ‘‘free’’ graph model—they are eigenop-
erators of graph states and do not change the linking
structure between vertices. A general graph model
Hamiltonian might also have some ‘‘interaction terms’’
which change the graph diagram of a graph state. As a
matter of principle, in fact, interaction terms are necessary
in a graph model because they define how a graph state can
evolve from one configuration to another.

One might think of many possible interactions for
graphs. However, we would like to impose a restriction
of locality on the interactions so that they affect only small
local neighborhoods of vertices. Some examples of such
possible interactions are shown in Fig. 1.

In terms of operators, the exchange interaction of Fig. 1
(a) can be formulated as

HðexchÞ ¼ gðexchÞ
X0

abcd

NabðayadaybcabdaacÞ: (27)

The prime on the summation indicates that the vertices
abcd are assumed to be all different. The presence of the
number operator Nab in the interaction term ensures that
the exchange operation between vertices abcd takes place
if and only if the link between vertices a and b is on. Moves
of type I and type II distinguished in Fig. 1(a) are subcases
of this formula.

The addition and subtraction move of Fig. 1(b) can be
written as

HðaddÞ ¼ gðaddÞ
X0

abc

NabNacðabc þ aybcÞ: (28)

Again, the sum over abc is assumed to be such that the
considered vertices are all different. The creation and
annihilation operators in the parentheses add or subtract
an edge at bc if and only if there are already edges con-
necting ab and ac.
It is possible to generalize these terms such that they

exchange or add links between vertices that are more
separated from each other.
The couplings gexch and gadd determine how likely the

interactions are to happen. In the next section, we mainly
study static or equilibrium configurations of links and
therefore ignore the interactions. The exchange moves
will only play a role in the discussion of perturbations.

III. LARGE GRAPH EXAMPLE

Consider a system in which the number of vertices is
very large, for example, N � 10100 or N � 101000. The
number N, however large, is always thought to be finite.
Technicalities and physical interpretation of the limit N !
1 are not considered.
We begin by noting that regular lattices can be thought

of as special regular graphs in which some of the cycles
correspond to plaquettes. For example, the two-
dimensional honeycomb lattice has the same number of
cycles supported by each pair of edges at each vertex. In
this section we thus study a graph model as defined in
Sec. II A and ask whether a lattice with hexagonal pla-
quettes can correspond to the graph state that minimizes
the energy assignment EðGÞ.
Since the hexagonal lattice is 3-regular, a reasonable

guess for a Hamiltonian that might produce it is

H ¼ HV þHB (29)

with the preferred valence set to

v0 ¼ 3 (30)

FIG. 1. Interaction moves on graphs. (a) Exchange moves
preserve the valence of each vertex. For convenience the move
between the center and the left is called type I and the move
between the center and the right is called type II. (b) Other
moves can add or subtract edges, changing the valence of some
nodes. This move is called type III.
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and the couplings set to

gV � gB; gB ¼ 1: (31)

The coupling gV has to be large to enforce the 3-regularity
condition, while the normalization of gB is arbitrary. Since
the honeycomb has plaquettes of length 6, we consider
values of r so that L� and L�� are close to 6.

A. Finding the ground state

The ground state in this section is defined as the graph
G0 for which EðG0Þ is smaller thanEðGÞ for any otherG. A
discussion of when G0 can be expected to be the optimal
configuration also from the point of view of statistical
mechanics is postponed until Sec. III C.

Using the condition (31) and the fact that the energy
penalty for a vertex to have valence different from v0
grows very rapidly, we focus attention on the class of 3-
regular graphs and study primarily the effect of the cycle
term HB. Since the honeycomb lattice has plaquettes of
length 6, a first attempt at choosing the parameter r could
be such to make L�� ¼ 6, i.e. so that terms proportional to
paths with L ¼ 6 contribute the most to EðGÞ. This can be
quickly realized to be unsuccessful as there are several 3-
regular graphs that have more closed paths of length 6 than
the hexagonal arrangement; some of these are shown in
Fig. 2.

In the graphs of Figs. 2(b) and 2(c), many of the 6-cycles
have more than one edge in common. This property causes
these graphs to be effectively lower dimensional than the
hexagonal lattice: Fig. 2(b), for example, can be seen as
one dimensional on the large scale. A related consequence
of this property is that the numbers of long cycles in graphs
in Figs. 2(b) and 2(c) are lower than in the case of Fig. 2(a).

It is impractical to count cycles of all possible lengths
for each of the candidate graphs. We know from the
behavior of the loop term, however, that this is not neces-
sary as very long cycles do not contribute much to the
energy EBðGÞ. Thus it is reasonable to cut off the sum over
length in the definition of EBðGÞ at some finite value of L.

Figure 3 shows the energy per vertex in each of the
candidate graphs, plus a regular lattice made up of hepta-
gons, as a function of the cutoff length L.
The figure illustrates a number of interesting features.

When the cutoff length is taken to be small, the energy per
vertex for the braided graphs is lower than that of the
hexagonal lattice. It is only when cycles of lengths up to
around 20 are considered that the hexagonal lattice be-
comes the preferred configurations out of the four candi-
dates. The fact that all four lines tend to level off at high
cutoff lengths demonstrates that longer cycles become
increasingly less important.
Other interesting facts that can be seen from the figure

relate how much cycles of each length contribute to the
whole loop energy for each graph. For the case of the
hexagonal lattice with jrj � 6, 7 such that L� � 6, 7, one
finds that the cycles of length 10 contribute the most (the
jump in height between L < 10 and L ¼ 10 is greatest than
the other ones) but also that cycles of length 14 are more
important than cycles of length 6, 12, or other lengths L >
14. For the same values of r, the most important cycles in
the braided line [Fig. 2(b)] have lengths 10, 6, 14—the
relative importance of cycles of length 6 and 14 are
switched compared to the hexagonal lattice. In the overall
picture, these nuances do not seem very important but they
do indicate that the dependence of EðGÞ on the graph
structure is nontrivial.
Figure 3 shows that the hexagonal lattice is preferred

over the other graphs once cycles of all lengths are con-
sidered, when the parameter r is r ¼ þ7:3. In fact, the
same empirical conclusion, when comparing the four lines
in the plot, can be reached for other values of r,

jrj * 7:1: (32)

For r close to the lower bound (37), lengths up to L ¼ 20
allow one to compute EðGÞ up to 1% for the hexagonal and
better for the other lattices, and the energy differences

(a) (b) (c)

FIG. 2. Sample 3-regular graphs: (a) hexagonal lattice,
(b) braided line, and (c) braided tree.

4 8 12 16 20
L

E

Hept

Tree

Line

Hex

FIG. 3 (color online). The value of the loop energy per vertex,
in units of gB, for some sample graphs including the flat
hexagonal lattice as a function of cutoff length L. The parameter
r is set to 7.3.
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between the hexagonal and the braided line and braided
tree, are 3% and 16%, respectively. The energy difference
between the hexagonal lattice and the heptagonal lattice is
much larger as seen in the figure.

The data used to plot the ‘‘hex’’ line in Fig. 3 is obtained
by counting cycles in the two-dimensional flat hexagonal
lattice. If an arrangement of hexagons as in Fig. 2 is
wrapped in a tube or torus, then the energy per node can
be set up to be lower than that shown in the plot even by a
factor of 2 if the circumference of the tube is about 8 edges.
This large discrepancy is due to cycles that wind around the
tube and lower the energy relative to the flat configuration.
In any case, it seems that among the various examples
considered, it is a locally hexagonal tube that corresponds
to the lowest energy state of the system. We stress again
that the contribution coming from a wide range of path
lengths must be considered in order to arrive at these
observations.

A general proof of the statement that a locally hexagonal
lattice is the true ground state of the model is at this
moment beyond reach and so we can only phrase it as a
conjecture. Because the number of 3-regular graphs withN
vertices is very large, a brute force search for the ground
state would be a very computationally intensive task. In
general, any approach to finding the true ground state
would be complicated by the necessity to consider very
long paths in the analysis. In the above discussion, we
focused attention on some candidates which have a large
number of cycles of lengths close to 6 as these could have
been considered as possible counterexamples to the con-
jecture, and showed that they actually have higher energy.

Further evidence that the hexagonal lattice is at least a
local minimum in the model’s energy landscape is pre-
sented in the next section.

B. Graphs above the ground state

Based on the evidence above, one can try to proceed by
assuming that the hexagonal lattice is indeed the minimal
energy configuration for a given set of couplings. This
lattice configuration will be hereafter called the reference
lattice. (For simplicity we consider the flat hexagonal
lattice, not the tube, as the reference lattice.) It is interest-
ing to consider graph states that are close to this reference
configuration and to check, in a perturbation theory man-
ner, that the reference lattice is at least a local minimum in
the state space. Given that the local minimum property is
confirmed, this procedure should also provide information
about the spectrum of low-energy graph excitations.

A possible type of perturbation around the reference
state can be done by applying one of the exchange moves
shown in Fig. 1. After one such move at an arbitrary
location in the reference graph, one obtains a new state
as shown in Fig. 4(a). This state is still 3-regular and
therefore its associated energy with respect to the valence
term HV is unchanged. The cycle structure changes since

some of the closed paths of length 6 near the defect get
replaced by closed paths of lengths 5 and 7. The distribu-
tion of longer paths is also affected. These structural
changes alter the energy assignment to many vertices,
also ones that are not immediately close to the defect.
The total change in energy (relative to the reference lattice)
due to the defect can then be defined as the sum of the
energy changes of all the vertices.
With r ¼ 7:1 (a parameter consistent with the earlier

arguments for the reference hexagonal lattice being the
minimal energy state) the total energy difference turns
out slightly positive for this deformation. This is despite
some vertices actually experiencing a local energy de-
crease. For r ¼ �7:1, the total energy difference is deci-
sively positive as can be readily understood by noting that
the defect decreases the cycle count at even lengths and
increases the cycle count at odd lengths, both of which
correspond to inflicting an energy penalty. A plot of the
energy difference at each vertex, using r ¼ 7:1, is shown in
Fig. 4(b). In the plots, half of the points shown on the
square grid correspond to the actual energy differences
computed at the vertices of the hexagonal lattice while
half are evaluated from the former by linear interpolation.
A different perturbation can be obtained by applying an

interaction of type II from Fig. 1 to the reference graph.
This gives a new configuration shown in Fig. 5(a). The
corresponding energy difference plot is shown in Fig. 5(b).
It is again computed using r ¼ �7:1. The shape of the plot
in Fig. 5(b) is slightly different from the previous case, but
still shows unambiguously that the overall energy differ-
ence due to defect is positive. In the case of this defect, the
choice of negative r is necessary because a positive value
of r actually decreases the total energy.
From these perturbations, we learn that the reference

lattice is stable under deformations when the parameter r is
negative. With negative r, therefore, the reference lattice is
a local minimum in the energy landscape and thereby a
sensible candidate for the ground state of the system. The
fact that r must be negative implies that even and odd
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FIG. 4 (color online). (a) The hexagonal lattice with a defect of
type I. (b) The plot shows the energy differences at points in the
hexagonal lattice relative to the reference lattice. The vertical
axis is in units of gB.
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cycles in the model have an effective coupling gBðLÞ of
different sign and thus have quite distinct physical effects.

The two deformed lattices considered have energies that
are on the order of 106gB higher than the reference lattice
and represent two distinct excited states of geometry. They
are probably not the two lowest-lying states, but they are
ones that come about by disturbing the reference lattice
with minimal local moves. Perturbations from the type III
move of Fig. 1 can be studied in a similar manner.

While a full description of the spectrum of excitations is
still missing, it is already possible to say a few things about
the spectrum. At energies much higher than those corre-
sponding to the two lattices with defects but still smaller
than the coupling gV , excited states can be expected to be
graphs in which all vertices have 3 edges but in which the
cycle structure is much different from the reference lattice.
At energies beyond gV , excited states can also appear in
which some vertices have higher (or lower) than the pre-
ferred valence. The physical consequences of such pertur-
bations on Ising systems have already been studied [23]. In
the context of our model, characterizing these states is
again difficult because the new edges corresponding to
higher valence create many new cycles which contribute
through the loop term. In any case, at sufficiently high
energy the states of the system become highly irregular and
cannot be expected to be interpreted as lattices with de-
fects. These states characterize the disordered phase de-
scribed in the Introduction.

C. Statistical mechanics

In this section, we continue discussing the stability of
the reference lattice state. We consider the thermodynamic
definition of the free-energy F ¼ E� TS as the relation
between the energy E and the entropy S at a given tem-
perature T. To check that the reference lattice is a stable
configuration, we consider the variation

�F ¼ �E� T�S (33)

after small and large local perturbations. In this context, we

take locality to refer to the emergent locality of the refer-
ence lattice.
To start, consider a local subgraph of the reference

lattice consisting of 1 	 n	 N vertices. Then, consider
single perturbations of the type shown in Fig. 1(a) and
discussed in Sec. III B. The corresponding energy shifts �E
were computed and displayed in Figs. 4(b) and 5(b). For
the present purpose, it is sufficient to note that these single
perturbations contribute �E� const. Since the perturba-
tion move can be applied to any one of OðnÞ links in the
subgraph, the entropy change associated with a perturba-
tion is �S� lnn. Putting these elements together,

�F� const� T lnn: (34)

At finite temperature, T � 0 and large n, the change in
free-energy �F can be negative. This means that small
defects are likely to be present in the system at nonzero
temperatures. This is not a negative result and may possi-
bly lead to specific signature of the model that can be
compared with experiment. The number density of such
defects depends on the scale of �E and the temperature T.
Next, consider changing the graph by applying several

exchange moves to a region of the graph composed of m
vertices that are close together, with m< n. The change in
entropy �S associated with this change is still proportional
to ln n. The energy shift is more difficult to estimate as a
function of m because it very much depends on what the
perturbation is. However, since it is assumed that the
perturbation affects m vertices, it is reasonable to take
�E to be at least of order m, �E��ðmÞ. Thus the change
in free energy

�F��ðmÞ � T ln n (35)

is positive for sufficiently large m. This indicates that the
reference lattice is stable against large local perturbations
even at finite temperature: the reference lattice describes a
stable thermodynamic phase.
Finally, consider a similar setup to the one just dis-

cussed, but instead of applying several exchange moves,
consider changing the valence of a region of m< n verti-
ces in the reference lattice from 3 to v. Vertices with
valence v � 3 will incur an energy penalty due to the
valence term HV . However, since the subgraph with higher
valence contains a larger number of cycles than the refer-
ence lattice, the loop term HB will decrease the energy
somewhat. For a v-regular graph, the number of cycles of
each length is bounded by

Pða; LÞ< cvL�1 (36)

where c is some constant. This can be used to pose a bound
on the effect of the loop term as

X
L

gBðLÞPða; LÞ< gB
X
L

rL

L!
cvL�1 � gB

erv

v
: (37)

The overall energy difference, for each affected vertex,
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FIG. 5 (color online). (a) The hexagonal lattice with a defect of
type II. (b) The corresponding energy difference plot. The
vertical axis is in units of gB.
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scales thus as

�Ea ¼ gVe
pðv�v0Þ2 � gB

erv

v
: (38)

As long as this quantity is positive, the higher valence
droplet has higher energy per vertex than the reference
lattice. From here, using similar reasoning as in the case of
the other type of perturbation, we can conclude that

�F��ðmÞ � T ln n (39)

just like in (35). The reference lattice is thus also stable
against changes in the valence.

This analysis can be compared to similar heuristic argu-
ments that are used to show how dimensionality, range of
interactions, and type of interactions determine whether a
system of spins on a fixed lattice can exhibit order-disorder
phase transitions [24]. For the simple spin systems on a
lattice, such arguments can be made precise [25]. Whether
a similar level of rigor can be achieved for the graph model
system is still unknown.

IV. EXTENSIONS WITH MORE DEGREES
OF FREEDOM

Whereas the model of Sec. II had a minimal Hilbert
space on each of the edges, one may also be interested in
models that contain more degrees of freedom. In this
section we describe how this could be done and explain
how such more complex models can connect to quantum
field theories, including quantum gravity.

Again, the goal in this section is to define more complex
models by altering the Hilbert space H edge associated to

each edge in the complete graph. We still require that the
newH edge contain a state j0i that can be interpreted as the
physical link between two vertices being off. But now,
instead of creating an on state by acting with a creation

operator ay, we introduce a set of such operators ays
labeled by an index s chosen from a set of integers. We
also introduce corresponding annihilation operators as. As
before, these operators are set to obey fermionic anticom-
mutation relations

fas; ays0 g ¼ �ss0 : (40)

All other anticommutators at each edge vanish.
For concreteness, we here focus on s ¼ f1; 2; 3g. The

Hilbert space of the new edge is the span of all possible

states that can be constructed by acting with the ays . It is

H edge ¼ spanfj0i; j11i; j12i; j13ig; (41)

and the states

j1si ¼ ays j0i (42)

are all interpreted as on states. It follows from the anti-

commutating nature of the ays that states with multiple
particles cannot exist.

The difference between the edge Hilbert space (41) and
the old one (4) is that there are now multiple on states that
can be distinguished by an internal label s. The total
Hilbert space for this extended model is defined as in (3)
and can still be decomposed according to (6). However, the
spaces H G in the tensor sum decomposition are here no
longer zero dimensional but reflect the internal degrees of
freedom of the on links. Thus, the spaces H G have now
room for interesting physics. In what follows, operators
that rotate between these internal states are used in a
Hamiltonian to describe matter degrees of freedom prop-
agating on a dynamically selected background graph.
In order to connect with the original quantum graphity

model [15], consider relabeling the states of (41) so that

H edge ¼ spanfj0; 0i; j1;�1i; j1; 0i; j1;þ1ig
¼ spanfjj;mig (43)

so that the off state has j ¼ 0 and m ¼ 0, and the on states
have j ¼ 1 and m ¼ 0, 
1. There is a clear analogy
between this space and the Hilbert space of a spin-1
particle and hence it is natural to introduce an operator
M which has the states jj;mi as eigenstates,

Mjj; mi ¼ mjj; mi; (44)

and operators M
 that change the internal m labels,

Mþjj; mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj�mÞðjþmþ 1Þ

q
jj; mþ 1i;

M�jj; mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþmÞðj�mþ 1Þ

q
jj; m� 1i:

(45)

These are the familiar operators of angular momentum
(although the M and M
 operators are sometimes called
Jz and J


 instead ). These three operators form a closed
algebra among themselves

½Mþ;M�� ¼ M; ½M;M
� ¼ 
M
 (46)

and annihilate the j0; 0i state,
Mj0; 0i ¼ M
j0; 0i ¼ 0: (47)

The formulation ofM andM
 in terms of the creation and

annihilation operators ays and as is not needed in what
follows. Similarly as operators Nab of the original model,
the operators Mab and M



ab that act on each edge can also

be organized and understood as being attached to an ad-
jacency matrix. Their powers also contain information
about the closed and open paths of a graph state.
A Hamiltonian for a model with this edge structure can

be written, for example, as (graph interaction terms are not
shown)

H ¼ HV þHB þHC þHD þH
 (48)

where HV and HB are the same as in Sec. II and the other
terms are
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HC ¼ gC
X
a

�X
b

Mab

�
2
; (49)

HD ¼ gD
X
ab

M2
ab; (50)

H
 ¼ � X
cycles

g
ðLÞ
YL
i¼1

M

i : (51)

Here gC, gD, and g
 are additional positive couplings. In
theH
 term, referred to as the loop term below, the product
is taken around a cycle of length L (i.e., consisting of L
edges) and with alternating raising and lowering operators:

YL
i¼1

M

i ¼ Mþ

abM
�
bc � � �Mþ

yzM
�
za: (52)

Since this product contains an equal number of raising and
lowering operators, the loop operator is naturally restricted
to act on cycles of even length. The coupling g
ðLÞ is

g
ðLÞ ¼ rL

L!
g
: (53)

Note the similarity of this coupling function to that of (24)
in the loop term HB. Actually, the original quantum graph-
ity was written only with the H
 term, without the HB

term. Both are included here because this makes it easier to
separate the graph-forming role of HB from the matter
propagation role of H
.

By the arguments of Sec. II, we assume that the ground
state of the system at very low temperatures is a 3-regular
graph with hexagonal symmetry. Since the new terms of
the Hamiltonian contain onlyM andM
 operators and not

as and a
y
s operators by themselves, they do not change the

linking configuration. At low temperatures, therefore, we
can consider the base graph to be frozen in a hexagonal
configuration and discuss the action ofHCD andH
 on this
background. Then, the terms of (49)–(51) reduce to a
model of string nets [16]. We briefly describe the expected
physics.

Since the loop Hamiltonian H
 does not commute with
HC or HD, the eigenstates of the full Hamiltonian will
generally be superpositions of states involving different
m configurations. Nonetheless, an intuition for the model
can be developed by first describing the eigenstates of the
HC þHD terms alone, and then considering the effect of
the loop term. The ground state of HC þHD consists of all
links having m ¼ 0. When gC � gD, low-energy excited
states appear as closed chains of links on which the m
variables have alternating values m ¼ þ1 and m ¼ �1.
These excitations are called strings and their energy above
the ground state is proportional to the coupling gD times
their length (number of edges.) Thus gD can be thought of
as a string tension. The coupling gC can instead be related
to the mass of pointlike particles [16].

Given a graph with all on edges labeled bym ¼ 0, a loop
operator (52) acts as to create a closed string of alternating
m ¼ þ1 andm ¼ �1 edges (a loop operator cannot create
open strings.) These closed strings acquire tension through
the gD term. However, since the sign of the g
 term is
negative, the overall energy of the state may either increase
or decrease as a result of string creation and so there is the
possibility of two distinct scenarios. In one scenario, the
tension in a string is greater than the contribution from the
loop term, so the overall effect of creating a string is to
increase the energy of the system. If this is the case, then
the string represents an excited state over the vacuum in
which all m values are set to zero. The second scenario is
the one that we will be mostly interested in. If the tension is
small compared to the contribution from H
 so that creat-
ing a string decreases the energy, then the creation of the
string actually lowers the energy and indicates that the
original configuration cannot be the ground state. Instead,
the true ground state consists of a superposition of a large
number of strings—a string condensate. We should note
that because the graph has a finite number of vertices and
the m values on each edge only take three possible values,
the Hamiltonian is bounded from below. The characteriza-
tion of the string-condensed ground state is difficult but its
excitations are expected to be that of a U(1) gauge theory
[16] since the Hamiltonian is close in form to the Kogut-
Susskind formulation of lattice gauge theory [26]. The two
main differences between this model and the original
string-net condensation model proposed by Levin and
Wen [16] are that in the present case the background lattice
is dynamical and has hexagonal rather than square
plaquettes.
Another possibility for incorporating matter and indeed

gravitational degrees of freedom in the graph-based model
that is worth mentioning is via the approach of algebraic
quantum gravity [18].

V. COMPARISON TO OTHER GRAPH DYNAMICS

In this section we describe the quantum graphity model
of Sec. II in graph-theoretic terms and compare its dynam-
ics under the HV þHB Hamiltonian to some common
graph processes discussed in the literature. In particular
we are interested in modeling the high-temperature to low-
temperature transition with a mechanism acting on the
graph associated to the system. A graph process can be
defined by taking into account two ingredients: an initial
graph and a set of graph operations. The process consists
of applying in sequence the graph operations from the set.
In this way, the initial graph is gradually transformed into
other graphs, according to the operations used.
In our scenario, the initial graph can be any graph with a

very high density of edges, because this is what we expect
to be the likeliest state of the system when the temperature
is very high. For simplicity, however, we can take this
initial state to be KN . It is intuitive, and somehow simplest,
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to consider a unique operation, which, in our case, is the
deletion of edges.

We denote by G ¼ ðV; EÞ a graph with set of vertices
VðGÞ and set of edges EðGÞ. A graph G ¼ ðV; EÞ is
d-regular if dðiÞ ¼ d for all i 2 VðGÞ, where dði :¼Þ ¼
jfj: fi; jg 2 EðGÞgj is the degree of the vertex i. In what
follows we will mainly focus on regular graphs with small
degree, and more specifically, 3-regular (also called cubic)
graphs. By H � G, we mean that H is a graph with
VðHÞ 
 VðGÞ and EðHÞ � EðGÞ. One may interpret H as
obtained from G by deleting edges of G but keeping all of
its vertices. We consider a family of graphs fGig, such that
G0 ¼ KN andGk � � � � � G1 � G0 ¼ KN . The dynamics
induced by the Hamiltonian HVB requires the graph Gk to
satisfy the following two conditions: that Gk is v0-regular
and that EBðGkÞ<EBðGiÞ, for all i ¼ 0; . . . ; k� 1, ac-
cording to Eq. (28). Note that these conditions are local
at the level of the vertices, that is both conditions can be
verified by looking at the single vertices of the graph. The
fact that Gk needs to be v0-regular can be easily verified
and enforced. The fact that EBðGkÞ is small depends on the
cycle structure of Gk. Devising a graph process to control
the number of cycles having different lengths for each
vertex does not appear to be an easy task.

We consider the dynamics towards the ground state of
HV þHB as a process that transforms Gi into Giþ1 by
deleting edges of Gi. It is evident that EBðGiÞ is small,
when Gi has a relatively large number of cycles of length
between zero and some Lmax not much larger than L�.

The first natural idea is to consider random graphs (see,
e.g., [27]). The best known of such models is the Erdös-
Renyi random graph and the uniform random graph. The
Erdös-Renyi random graph GðN;pÞ on a set of N vertices
is obtained by drawing an edge between each pair of
vertices, randomly and independently, with probability p.
The featured randomness in assigning edges does not in-
sure to obtain a v0-regular graph. Therefore, these models
do not satisfy our first requirement.

In a random graph process, one starts with N vertices
and inserts edges one at a time at random. While this
process does not guarantee to generate a d-regular graph
either, this model is more pertinent to our setting since
adding edges starting from N vertices and no edges at all is
conceptually equivalent to deleting edges starting from the
complete graph KN . However, when d is relatively small
the behavior of the latter model is not easy to analyze given
that it needs to run for a large number of steps. These are
not the last words, since there are well-defined models of
random regular graphs [28]. Indeed, the so-called
d-process is similar to the random graph process, but the
degrees of the vertices are bounded above by a constant d.
This process gives a d-regular graph with probability tend-
ing to 1 as the number of vertices tends to infinity. Note that
a d-process does not consider at all the number of cycles
for each vertex, our important second requirement. What

can we say about this point? Let us focus on the case v0 ¼
3. It is known that the probability PrðtÞ that a graph chosen
at random from the set of all cubic graphs on N vertices
contains exactly t cycles of length L (where t is fixed) goes
to

PrðtÞ � e�2L=2L

t!
(54)

as N ! 1. Also, the expected number of cycles of length
L in a random cubic graph on N vertices goes to 2L=2L as
N ! 1. In our model we must take into account the term
HB in the Hamiltonian that depends on the cycles. Because
of this term, the graph associated to the ground state of the
Hamiltonian needs to have a relatively large number of
short cycles. The above observation about the cycle struc-
ture in d-processes does not reflect this behavior. It follows
that d-processes do not seem to be good candidates to
implement the dynamics suggested by our model.
Another reason supporting this statement comes from the
diameter. For a d-regular graph G on N vertices,

diam ðGÞ � 1þ dlogd�1ðð2þ �ÞdN logNÞe; (55)

with probability tending to 1 as N ! 1. Since N is very
large in our context, we can consider the above formula as
a good approximation. Note that the behavior of diamðGÞ
exhibits an interesting cutoff phenomenon: diamðGÞ in-
creases very slowly when d & 10 but rises quickly for d *
10. Conjecturing that the graph associated to the ground
state of our model has a small Hausdorff dimension �, the

diameter should be proportional to N1=�, and this is much
larger than the diameter of a d-regular random graph.
In addition to the above reasoning, we can still observe

that random regular graphs can play a role in our mode. By
taking gB ¼ 0, from a simple statistical mechanics argu-
ment suggests that the probability of a vertex having degree
v is

Prðv � v0Þ / expð��eðv�v0Þ2Þ: (56)

When N is very large, this can be considered as a good
approximation, despite the fact that the probability cannot
be taken independently for each vertex, given that increas-
ing the degree to one vertex implies increasing the degree
of another one. Also, when gB ¼ 0, the cycles structure
does not play a role in determining the ground state. So, in
this extremal case with gB ¼ 0, we can expect that the
graphity model gives rise to a d-regular random graph.
Finally, it is worth commenting on scale-free graphs

which have been widely discussed in the literature, also
in the context of quantum gravity [23,29]. A scale-free
graph is a graph in which the degrees dðvÞ of vertices v
exhibit the Yule-Simon distribution

Pr½dðvÞ ¼ k� � k��: (57)

The exponent � is often in the range � 2 ½1; 3�. This
means that a scale-free graph has a few vertices with
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very high degree and many vertices with very small degree.
Because of the valence term HV in our Hamiltonian which

gives a high-energy penalty eðv�v0Þ2 to vertices with differ-
ent degree from v0, it is implausible to have vertices with
very large degree at low temperature in our model.

It thus appears that many known ways to generate graphs
cannot reproduce the features implemented through the
Hamiltonian of our model. A graph process that would
successfully reproduce the dynamics of the Hamiltonian
would necessarily have to involve a cost function that
would preferentially create d-regular graphs with a large
number of cycles of prescribed lengths. Defining such a
cost function in a plausible way is difficult. The cost
function in principle should take into account a value
associated to each edge. A candidate process could be
one that carries on by greedily deleting edges in agreement
with the function. Each edge has a cost and at each time
step the edge with the smallest cost is deleted. The cost of
each edge depends on the number of cycles of prescribed
lengths that will be in the graph after the deletion of the
edge. The cost function needs to be updated at each time
step, since the deletion of a single edge implies a possibly
large variation on the number of cycles in which other
edges are contained. This observation suggests that imple-
menting the behavior induced by the Hamiltonian, with the
use of a cost function of pure combinatorial nature, is
highly expensive from the computational point of view,
and it is possibly ill defined. For this reason, a mathemati-
cal description of a graph process mimicking our dynamics
is elusive.

VI. DISCUSSION

Quantum graphity is an explicit model for geometro-
genesis, with locality, translation symmetry, etc., being
properties of the ground state. In Table I, we have summa-
rized the properties of quantum graphity at high and low
temperatures.

At high temperature, the graph representing the state of
the system is highly connected and has diameter close to 1.
There is no notion of locality, as most of the Universe is
one edge adjacent to any vertex. Said differently, there is
no notion of a subsystem, in the sense of a local neighbor-
hood, since the neighborhood of any vertex is the entire
KN . The microscopic degrees of freedom are the j and m
labels.

At low temperature, the graph has far fewer edges than
KN . Permutation invariance of the state breaks to trans-
lation invariance. Subsystems can be defined as subgraphs
of the ground state or, better, as the emergent matter
excitations, and the dynamics of the emergent matter is
local by correspondence with lattice field theory [16,26].
Once subsystems are present, internal geometry can be
defined. This is the relational geometry that is the only
physically meaningful notion of geometry, and hence time,
for observers inside a system. The significance of internal

time and its relation to general relativity has been discussed
extensively, for example, in [2,30].
On a more technical level, the model is written in terms

of fermionic operators acting on a large Hilbert space
based on a complete graph. A term in the model
Hamiltonian (HB) that detects the cycle structure of a graph
is crucially defined using powers of a quantum adjacency
matrix and the normal-ordering convention.
While our definition of HB has the properties that we

would like to implement in a graphity model, we find it
interesting to point out, as a side remark, that other choices
could also be made. For example, there is some interest in
the graph theory literature in a relation counting loops (in
our notation) of the form

E� ðGÞ ¼
X1
L¼1

rL

L
~PðLÞ; (58)

where, in contrast to (23) of our model, the denominator on
the right-hand side is L rather L! and the object ~PðLÞ
denotes the number of prime geodesics in a graph G rather
than the number of nonoverlapping closed paths. This
quantity E� ðGÞ is related to the Ihara zeta function of a

graph; we refer to the literature for more details [31] and
finish this side remark by saying that we have not looked at
the behavior of E� ðGÞ in a graphity model.

Besides the definition of the Hamiltonian term HB that
depends on quantum mechanical features, our study of the
model is limited to stationary states and is thus mostly
classical. We find evidence to support our conjecture that,
for the given set of parameters, the hexagonal lattice,

TABLE I. The two phases of quantum graphity. The couplings
are gV � gB, g
 � gC, and gD. The parameters are v0, p,
and r.

High-T Low-T

Permutation symmetry Translation symmetry

No locality Local

Relational Relational

Diameter ’ 1 Large diameter

�N dimensional Low dimensional

No subsystems Subsystems

External time External and internal times

ðj; mÞ Matter þ dynamical geometry
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possibly wrapped into a tube or a torus, is a good candidate
for the ground state of the model: it has lower energy than
other regular graphs with a large number of cycles of
length 6, and it corresponds to at least a local free-energy
minimum as found by heuristic arguments looking at small
and large local perturbations. The last argument relies on
the notion of emergent locality and the restriction of the
possible interactions in the graph to moves that act on small
subgraphs. These arguments could be extended to other
ground state lattices in different regions of the parameter
space.

There are a number of important open questions. It
would be useful to verify, perhaps numerically, that a
locally hexagonal lattice or a similar configuration is the
state with minimal energy as conjectured in sec. III. At the
same time, an extension of the model to produce extended
three-dimensional spatial lattices would also be worth-
while. This could perhaps be done, as suggested in the
original graphity model [15], by setting the preferred va-
lence to v0 ¼ 4.

As the quantum graphity model is based on a
Hamiltonian, it is more akin to condensed-matter physics
than to other algorithmic approaches to building a space or
spacetime from spins on graphs [32,33]. However, the
Hamiltonian approach raises an intriguing question regard-
ing the role of temperature. We model the geometrogenesis
transition as a cooling process that suggests the presence of
a reservoir at a tunable temperature. This could be a prob-
lem if the graph is to be interpreted as the entire Universe.
The question is then whether this external temperature is
indeed a physical temperature or some other renormaliza-
tion parameter. We believe the model needs to be under-
stood further before this and similar questions can be
properly addressed.

Another important next step is to study the transition
from the high-energy to the low-energy phases and look for
possible observable remnants. The transition is a compli-
cated process and at this stage we only understand it in the

limit where gV is the only nonzero coupling. One possi-
bility for progress in this direction is to generalize the
random graph process to the case where the graph cycles
have structure. A necessary part of this project involves
extending string-network condensation to irregular graphs,
a question that is of interest independently of this work.
Finally, an intriguing goal for the model is to understand

the transition from the description of the system in terms of
microscopic ðj;mÞ variables to a more standard represen-
tation in terms of matter and geometry. The way that we
normally understand matter and gravity is as two sets of
degrees of freedom coupled by a nonlinear relation given
by the Einstein equations. Normally, we can study each
part separately: in the no-gravity limit we have quantum
field theory on a fixed background and with no matter we
have pure gravity. In our model, the dynamics of the ðj; mÞ
variables serves both to organize the graph into a local
regular structure with symmetries and to give rise to the
effective U(1) matter. There is no fundamental split into
gravity and matter. Since the effective matter and the
geometry are different low-energy aspects of the same
microscopic degrees of freedom, matter and the geometry
can only be decoupled in a certain limit. It has been
conjectured elsewhere that such a relation can give rise
to the Einstein equations [20,30]. It will be interesting to
investigate this possibility in the context of our model.
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