

INTRODUCTION

We study the relationship between the rank-1 quantum chromatic number and other graph parameters: the orthogonal rank, the chromatic number and the zero-error entanglement-assisted channel capacity.

THE COLORING GAME

Let G be a graph. Alice gets a vertex u and Bob gets a vertex v from V(G). They output colors c(u)and c(v) respectively, from a set of k allowed colors. They win the game if the following holds:

- $u = v \Rightarrow c(u) = c(v)$
- $(u, v) \in E(G) \Rightarrow \alpha \neq \beta$

Classically, the minimum k such that the players win the coloring game with certainty is the chromatic number $\chi(G)$. If the players share entanglement, the minimum k is called *quantum chromatic* number $\chi_q(G)$.

The rank-1 quantum chromatic number, $\chi_q^{(1)}(G)$, is an upper bound $\chi_q(G)$, obtained by restricting player's measurements to be rank-1 projectors. It turns out that $\chi_q^{(1)}(G)$ is the minimum k such that there exist orthonormal bases $\{|a_{vi}\rangle\}_{i\in[k]}$ for all $v \in V(G)$, satisfying:

- $\langle a_{vi}, a_{vj} \rangle = 0, \, \forall i \neq j, \forall v \in V(G)$
- $\langle a_{ui}, a_{vi} \rangle = 0, \, \forall i, \forall (u, v) \in E(G).$

OTHER DEFINITIONS

Orthogonal rank $\xi(G)$: the minimum d such that there exists a orthogonal representation of Gin d dimensions (i.e. a function mapping adjacent vertices to orthogonal vectors in \mathbb{C}^d).

Kochen-Specker (KS) set: a set $S \subseteq \mathbb{C}^n$ s.t. there is no marking function $f: \mathbb{C}^n \to \{0, 1\}$ satisfying that for all orthonormal bases $b \subseteq S$, $\sum_{u \in b} f(u) = 1$ (exactly one element is marked).

Weak KS set: a set $S \subseteq \mathbb{C}^n$ s.t. for all marking *functions* defined as above, there exist orthogonal vectors $u, v \in S$ for which f(u) = f(v) = 1.

MAIN RESULTS

For all graphs G, we have the relation

$$\xi(G) \le \chi_q^{(1)}(G) \le \chi(G).$$

Using Kochen-Specker sets, we show that the first inequality is strict and we give a necessary and sufficient condition for the second inequality to be strict.

Theorem 1. There are graphs s.t. $\xi(G) < \chi_q^{(1)}(G)$.

Proof sketch. Let G_S be an orthogonality graph of a KS set $S \subseteq \mathbb{C}^3$. We have $\xi(G_S) = 3$, and we claim that $\chi(G_S) > 3$. Suppose we are able to 3-color G_S , then we can build the marking function

$$f(v) = 1 \Leftrightarrow c(v) = i.$$

Every orthonormal basis $b \subseteq S$ is a clique in G_S , so we have $\sum_{u \in b} f(u) = 1$, contradicting the assumption that S is a KS set.

In [1] it is proven that $\chi_q^{(1)} = 3$ if and only if $\chi = 3$, so we conclude that $\chi_a^{(1)}(G_S) > 3$.

is a weak Kochen-Specker set.

Theorem 2. For all graphs, $\chi_q^{(1)}(G) < \chi(G)$ if and only if for all optimal rank-1 quantum colorings

$$S = \{ |a_{vi}\rangle : v \in V, i \in [k] \}$$

Proof sketch. \Rightarrow Let $k = \chi_q^{(1)}(G) < \chi(G)$. If S is not a weak KS set, there is a marking function fthat: marks one basis vector $|a_{vi}\rangle$ per vertex and for edges $(u, v), f(|a_{ui}\rangle) \neq f(|a_{vi}\rangle)$. Therefore there is the following classical k-coloring:

 $c(v) = i \Leftrightarrow f(|a_{vi}\rangle) = 1.$

 \leftarrow Let $\chi_q^{(1)}(G) = k$ and assume that for all optimal rank-1 colorings, S is a weak KS set. Now suppose that also $\chi(G) = k$. Then for each $v \in V$ with color j, define the rank-1 quantum coloring

 $|a_{vi}\rangle = |i+j\rangle.$

The set S is just the standard basis of \mathbb{C}^k , therefore not a weak KS set, contradicting the assumption. \Box

CHANNEL CAPACITY

We propose a new family of channels with oneshot zero-error entanglement-assisted capacity, c_0^* , larger than the one-shot zero-error capacity, c_0 . Let G be a graph on n vertices with $\chi_q^{(1)}(G) = k$, we define a channel \mathcal{N}_G as follows:

• Confusability graph $G \square K_k$ (Cartesian product of G and the complete graph on k vertices)

• Unique output symbol $y_{u,v}$ for every pair of confusable inputs (u, v).

Theorem 3. Let G be a graph with n vertices and $\chi(G) > \chi_q^{(1)}(G) = k$. Then $c_0(\mathcal{N}_G) < n \le c_0^*(\mathcal{N}_G)$. Moreover, $c_0(\mathcal{N}_G) \leq \alpha(G) \cdot k$.

Where $\alpha(G)$ is the independence number of G. We prove the theorem by combining together the properties of weak KS sets, a protocol by Cubitt etal. [3] and a classic theorem by Vizing. Also, using this theorem and a known bound by Frankl and Rödl, we have the following corollary.

Corollary 1. For all Hadamard graphs Ω_n , there is an exponential gap between $c_0^*(\mathcal{N}_{\Omega_n})$ and $c_0(\mathcal{N}_{\Omega_n})$.

CONCLUSIONS

We have shown the connection between Kochen-Specker sets and the graph coloring games. An open question is to find a "converse" for Theorem 2. Is there a way, starting from a weak Kochen-Specker set, to exhibit a graph with a separation between χ and $\chi_q^{(1)}$?

Acknowledgements. G. Scarpa is with CWI Amsterdam, supported by a Vidi grant from NWO. S. Severini is with University College London, supported by the Royal Society.

MAIN REFERENCES

[1] Cameron, Montanaro, Newman, Severini and Winter. "On the Quantum Chromatic Number of a Graph". Electronic Journal of Combinatorics, 14(1), 2007.

[2] Scarpa and Severini. "Kochen-Specker sets and the Rank-1 Quantum Chromatic Number". To appear in IEEE Transactions on Information Theory. arXiv:1106.0712.

[3] Cubitt, Leung, Mattews, Winter. "Improving Zero-Error classical communication with entanglement". Phys. Rev. Lett. 104(23), 2010.