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In this paper we explore how a spectral technique suggested by coined quantum walks can be used
to distinguish between graphs that are cospectral with respect to standard matrix representations. The
algorithm runs in polynomial time and, moreover, can distinguish many graphs for which there is no
subexponential time algorithm that is proven to be able to distinguish between them. In the paper, we
give a description of the coined quantum walk from the field of quantum computing. The evolution of
the walk is governed by a unitary matrix. We show how the spectrum of this matrix is related to the
spectrum of the transition matrix of the classical random walk. However, despite this relationship the
behaviour of the quantum walk is vastly different from the classical walk. This leads us to define a new
matrix based on the amplitudes of paths of the walk whose spectrum we use to characterise graphs.
We carry out three sets of experiments using this matrix representation. Firstly, we test the ability of
the spectrum to distinguish between sets of graphs that are cospectral with respect to standard matrix
representation. These include strongly regular graphs, and incidence graphs of balanced incomplete block
designs (BIBDs). Secondly, we test our method on ALL regular graphs on up to 14 vertices and ALL trees
on up to 24 vertices. This demonstrates that the problem of cospectrality is often encountered with
conventional algorithms and tests the ability of our method to resolve this problem. Thirdly, we use
distances obtained from the spectra of S+(U3) to cluster graphs derived from real-world image data and
these are qualitatively better than those obtained with the spectra of the adjacency matrix. Thus, we
provide a spectral representation of graphs that can be used in place of standard spectral representations,
far less prone to the problems of cospectrality.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Quantum algorithms have recently attracted considerable at-
tention in the theoretical computer science community. This is
primarily because they offer a considerable speed-up over classical
algorithms. For instance, Grover's [1] search method is polynomially
faster than its classical counterpart, and Shor's factorisation method
[2] is exponentially faster than known classical methods. However,
quantum algorithms also have a richer structure than their classical
counterparts, since they use qubits rather than bits as the basic
representational unit [3]. For instance, this structure is exploited
in Shor's algorithm where the Fourier transform is used to locate
prime factors. The interference and entanglement of qubits may also
be exploited to develop interesting protocols, and one fascinating
example is Braunstein's quantum teleportation idea [4]. It is this
issue of richer representations that is the subject of this paper.
We are interested in the problem of random walks on graphs
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and how they can be used to distinguish graphs which cannot be
distinguished efficiently by conventional methods. Random walks
are useful tools in the analysis of the structure of graphs [5]. The
steady state random walk on a graph is given by the leading eigen-
vector of the transition probability matrix, and this in turn is related
to the eigenstructure of the graph Laplacian [6]. Hence, the study of
random walks has been the focus of sustained research activity in
spectral graph theory. For instance, Lovász has written a useful re-
view of the subject [6], and spectral bounds have been placed on the
properties of random walks, including the mixing times and hitting
times [7].

From a practical perspective, there have been a number of useful
applications of random walks. One of the most important of these is
the analysis of routing problems in network and circuit theory [8]. Of
more recent interest is the use of ideas from random walks to define
the page-rank index for Internet search engines such as Googlebot
[9]. In the pattern recognition community there have been several
attempts to use random walks for graph matching. These include
the work of Robles-Kelly and Hancock [5,10] which has used both a
standard spectral method [10] and a more sophisticated one based
on ideas from graph seriation [5] to convert graphs to strings, so that
string matching methods may be used to compare graphs. Sarti et al.
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[11], on the other hand, have used ideas borrowed from page-rank
to associate a spectral index with graph nodes and have then used
standard subgraph isomorphism methods for matching the resulting
attributed graphs.

One of the problems that limits the use of random walks, and
indeed any spectral method, is that of cospectrality. This is the situ-
ation in which structurally distinct graphs present the same pattern
of eigenvalues. Classic examples are strongly regular graphs (SRGs)
[12] and almost all trees [13,14]. The cospectrality of coparametric
SRGs is due to the high level of symmetry that they share. The pa-
rameters describe the regularity of the graph and the number of ver-
tices that any pair of vertices will both be adjacent to. In addition,
almost all trees have a cospectral partner. In these cases conven-
tional methods will fail to distinguish between such non-isomorphic
graphs.

Recently, quantumwalks have been introduced as quantum coun-
terparts of random walks [15,16]. Their behaviour is governed by
unitary rather than stochastic matrices. The stochastic matrix of a
classical random walk is such that its columns sum to unity. A uni-
tary matrix, on the other hand, has complex entries. For a unitary
matrix the squares of the entries in the columns sum to unity. Quan-
tum walks possess a number of interesting properties not exhibited
by classical random walks. For instance, because the evolution of the
quantumwalk is unitary and therefore reversible, the walks are non-
ergodic, and what is more, they do not have a limiting distribution.
Practical applications of quantumwalks are fast quantum algorithms
for database searching [17], graph traversal [18,19], and the prob-
lem of element distinctness [20]. Although the analysis of quantum
walks may seem detached from the practical problems listed above,
they may offer a way of countering the problem of cospectrality as
we will show later in this paper.

The main contribution of this paper is to use the unitary matrix,
U, governing the coined quantum walk to construct a new represen-
tation for graphs that is able to overcome the problem of cospec-
trality in many instances where it is encountered. To construct U we
make use of `Grover coins' to determine the quantum amplitudes for
the transitions between adjacent states. The (i, j)th entry of U3 rep-
resents the sum of the quantum amplitudes of the paths of length 3
from the state j to the state i of the walk. Since the amplitudes can
be positive as well as negative, this sum depends crucially on the
destructive and constructive interference of the various paths. The
positive support of the matrix U3 is the 0–1 matrix with an (i, j)th
entry of 1 if and only if the (i, j)th entry of U3 is positive. We use
the ordered eigenvalues of the positive support of U3 as a graph
invariant to represent the graph. We show that this representation
overcomes the problem of cospectrality in many instances in which
it normally occurs. We also show that the representation is robust
enough to replace the use of the adjacency matrix in the case where
spectral methods are used for inexact graph matching. In addition,
the work demonstrates how classical algorithms can utilise the of-
ten richer quantum representations in order to provide new ways of
approaching common problems.

The remainder of the paper is organised as follows. In Section 2.2
we provide a brief overview of quantum computing. In Section 2.3
we describe the classical random walk, the quantum random walk
and contrast the two. In Section 3 we examine the spectrum of the
matrix governing the quantum random walk and show that it is
not a solution to the problem of cospectrality. This leads us to con-
sider interference effects and thus to propose and develop a method
based on the positive support of the cubed unitary matrix. In Section
3.2 we examine the effectiveness of this approach using SRGs and
thereby define our matrix representation. In Section 4 we detail the
experiments we have carried out using this matrix representation
and in Section 5 we present the conclusions that we draw from our
work.

2. Background material

In this section we present some necessary background material
for the work presented. We begin by introducing some basic graph
theory. We then provide an introduction to quantum computing.
Finally, we introduce the classical random walk and discrete-time
quantum walk.

2.1. Graphs

A graph is a pair, G = (V,E), where V is the set of vertices and
E a set of unordered pairs, {u,v}, such that u,v ∈ V. An element of
E is called an edge and if {u,v} ∈ E we say that u and v are adjacent
and write this as u ∼ v. Let n = |V| be the number of vertices in
the graph. The neighbourhood, N(u) = {v|u ∼ v}, of a vertex u is the
set of vertices that are adjacent to it. A weighted graph is a graph
together with a weight function, W : V × V → R+, such that
W(u,v) = W(v,u), and W(u,v)�0 if and only if u is adjacent to v.
Of the two, a weighted graph is more general since any unweighted
graph can be a weighted graph by defining the weight function to
be such that W(u,v)=1 if u ∼ v and W(u,v)=0 otherwise. Thus, the
definitions that we give below will be for weighted graphs.

The structure of a graph is often represented using its adjacency
matrix, A, whose entries are given by

Auv =
{
W(u,v) if {u,v} ∈ E,

0 otherwise.

The degree of a vertex u ∈ V, denoted d(u), is given by

d(u) =
∑
v:v∼u

W(u,v).

For an unweighted graphs, the degree of a vertex is simply the num-
ber of vertices adjacent to it. The matrix D=diag(d(1), d(2), . . . , d(n)),
with the vertex degrees on the diagonal and zeros elsewhere, is re-
ferred to as the degree matrix. We say that an unweighted graph is
regular if the degree of every vertex is the same. The Laplacian matrix
of a graph, L=A−D, can be calculated from the degree and adjacency
matrices and has entries

Luv =

⎧⎪⎨
⎪⎩
W(u,v) if {u,v} ∈ E,

−d(u) if u = v,

0 otherwise.

To write down any of these matrices for a graph requires an
implicit numbering of the vertices. However, there is no method for
uniquely numbering the vertices of a graph; a particular labelling
of the vertices is not a property of a graph. Thus, an isomorphism
between two graphs, G= (VG,EG) and H= (VH ,EH), is a one-to-one
mapping between the vertex sets, � : VG → VH , such that g1 ∼ g2
if and only if �(g1) ∼ �(g2).

2.2. Quantum computing

The field of quantum computing is concerned with the manipu-
lation of quantum states in order to carry out computation. Whereas
a classical computer manipulates classical states, a quantum com-
puter would manipulate quantum states, such as the polarisation of
photons [21] or the excitation states of trapped ions [22].

2.2.1. Mathematical description of quantum computing
A state of a quantum mechanical system is described by a vector

of unit length in a complex-valued Hilbert space, H. If the Hilbert
space is n-dimensional then H�Cn. We use Dirac's notation and
write the basis for such a space as {|j〉|1� j�n}, where the |j〉 are
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orthonormal unit vectors in H. A general state of the system is
a unit-length, complex-linear sum of basis states. Such a state is
referred to as a superposition of the basis states. That is, a general
state, |�〉 ∈ H, is of the form

|�〉 =
n∑

j=1

aj|j〉,

where aj ∈ C is referred to as the quantum amplitude of the state |j〉.
The inner product is given by the standard inner product on Cn.

That is, given a state

|�a〉 =
n∑

j=1

aj|j〉

in H, we write as 〈�a| the linear functional that maps any vector,

|�b〉 =
n∑

j=1

bj|j〉

to the standard inner product. Thus, the inner product, written as
〈�a|�b〉, is given by

〈�a|�b〉 = (|�a〉, |�b〉) =
n∑

j=1

a∗
j bj,

where a∗
j is the complex conjugate of aj.

The probability of the state |�〉 being in a particular basis state |j〉
(i.e. the probability that |j〉 is the outcome of a measurement of the
state) is given by

Pr(j) = |〈j|�〉|2. (1)

Thus the requirement that states are represented by vectors of unit
length corresponds to the requirement that the sum of the probabil-
ities of all possible outcomes is one. Note that two states are equiva-
lent if they differ only by a phase factor. That is |�〉 and ei�|�〉, � ∈ R,
represent indistinguishable states, since they give rise to the same
probabilities for all possible outcomes.

Since probability must be conserved and since the evolution of
closed quantum systems is linear (in the absence of any measure-
ments), the time evolution of a quantum system is described by uni-
tary operators. That is, if the system is in the state |�t1 〉 at time t1
and |�t2 〉 at time t2, then |�t2 〉 = U|�t1 〉 for some unitary operator
U. Thus a quantum computation would consist of the application of
some finite sequence of elementary unitary operators. The analogue
of the bit in the field of quantum computation is the qubit. A qubit is
a two-dimensional quantum state whose basis we write as {|0〉, |1〉}
and a general state is of the form

|�〉 = a|0〉 + b|1〉,

where a, b ∈ C and aa∗ + bb∗ = 1.

2.2.2. Some differences between quantum and classical computation
A state of an n bit classical computer at any given point in time is

one of the 2n possible strings of length n of zeros and ones. The state
of an n qubit quantum computer is, on the other hand, a superposi-
tion of such basis states. That is, it is a complex linear combination
of all the 2n possible basis states (where up to 2n − 1 of the states
can have zero amplitude). Thus, a quantum computation, or equiva-
lently an operation on a quantum state with a unitary operator, can
be used to calculate the result of the computation on all of the 2n

basis states simultaneously. However, not all of the information con-
tained in the quantum state is accessible. When a measurement is

made only one of the possible basis states is observed. The probabil-
ities for observing each of the possible states are given by Eq. (1). If
the state |j〉 is observed then the post-measurement state is |�〉= |j〉.
That is, all further information previously contained in the state is
lost and further measurements will not be able to extract any more
information about the pre-measurement state.

Algorithms have been designed that take advantage of the me-
chanics of quantum systems to solve problems quadratically [1] or
even exponentially quicker [2] than the best classical algorithms.
However, designing algorithms that effectively utilise the often
counter-intuitive properties of quantum mechanics has proven dif-
ficult. In order to facilitate their design, the quantum walk (the
quantum analogue of the random walk) has been developed. In
what follows we give an overview of both the classical random walk
and the discrete-time quantum walk.

2.3. Random walks

A random walk consists of two components: a state space on
which at any point in time there is a probability distribution giving
the location of the walk and a transition function which gives the
probabilities for transitions between one state and another. As such,
random walks are most naturally defined on graphs since the con-
nectivity structure of a graph defines which transitions are allowed.
Additionally, weighted graphs can be used if the walk is to be bi-
ased in some way. In what follows we present the classical random
walk and the discrete-time quantum walk, and then elucidate some
of the differences between the two.

2.3.1. Classical random walks
Random walks are a model of diffusion which are important

in, amongst other areas, statistical physics, applied probability
and randomised algorithms [6,7,23]. A good survey is provided by
Lovász [6].

The state space for the (discrete-time) classical random walk on
a graph, G = (V,E), is the set of vertices, V. The walk at vertex u
at time t moves to an adjacent vertex, v, at time t + 1 with proba-
bility W(u,v)/d(u) and to any non-adjacent vertex with zero prob-
ability. The sequence of vertices visited is a finite Markov chain.
The state space for the walk is thus Rn, and the basis state eu =
(0, . . . , 0, 1, 0, . . . , 0)T, i.e. the vector with a one as its uth entry and ze-
ros elsewhere, corresponds to the walk being at vertex u with prob-
ability one. A general state for the walk at time t is described by a
probability distribution vector, pt ∈ Rn, whose uth entry gives the
probability that the walk is at vertex u at time t. The transition ma-
trix for the walk is a stochastic matrix, that is, its entries are from
the interval [0, 1] and its columns sum to one. It is given by T=AD−1

and has entries

Tuv =
⎧⎨
⎩

W(u,v)
d(v)

if {u,v} ∈ E,

0 otherwise.

The evolution of the probability distribution vector is given by
pt+1=Tpt , and thus we have that pt=Ttp0. Therefore, the probability
that the random walk currently at vertex u will be at vertex v after t
steps is given by (Tt)vu. As pt is a probability distribution we require
that

∑
u∈V pt(u)= 1 for all times t ∈ R+. Note that T is defined such

that if this is true at t = 0 then it will be true for all t ∈ Z.
The state vector j, whose uth entry is given by

j(u) = d(u)
2|E|

is a stationary state of the walk. That is to say that, j= Tj. Provided
that the graph is connected and is not bipartite, then regardless of
the starting state, pt → j as t → ∞. If G is a regular graph then the
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random walk is symmetric in the sense that Tij =Tji. Basic properties
of the random walk such as the mean hitting time (the mean time
for the walk to first hit a particular vertex) and the mixing rate
(the rate at which the walk tends towards the limiting distribution)
are determined by the spectrum of T. A review of these spectral
properties is given in Ref. [6].

2.3.2. The discrete-time quantum walk
The discrete-time quantum walk is the quantum counterpart of

the discrete-time classical randomwalk and has been used in the de-
sign of new quantum algorithms [15,16,24,25]. Quantum processes
are reversible, and in order to make the discrete-time quantum walk
reversible a particular state must specify both the current and pre-
vious location of the walk [24]. To this end each edge of the graph,
{u,v} ∈ E, is replaced by a pair of (directed) arcs, (u,v) and (v,u),
and the set of these arcs is denoted by A. The state space for the
discrete-time quantum walk is the set of arcs, A. If the walk is at
vertex v having previously been at vertex u with probability 1, then
the state is written as |�〉 = |uv〉. Transitions are possible from one
arc (w, x) to another arc (u,v) (i.e. from a state |wx〉 to |uv〉) if and
only if x=u and x ∼ v. Note that this corresponds to only permitting
transitions between adjacent vertices. The state vector for the walk
is a quantum superposition of states on single arcs of the graph, and
can be written as

|�〉 =
∑

(u,v)∈A
�uv|uv〉,

where the quantum amplitudes are complex, i.e. �uv ∈ C. Using Eq.
(1), the probability that the walk is in the state |uv〉 is given by
Pr(|uv〉) = �uv�∗

uv.
As with the classical walk, the evolution of the state vector is de-

termined by a matrix, in this case denoted U, according to |�t+1〉 =
U|�t〉. Since the evolution of the walk is linear and conserves proba-
bility the matrix Umust be unitary. That is, the inverse is equal to the
complex conjugate of the matrix transposed, i.e. U−1 = U†. The en-
tries of U determine the probabilities for transitions between states.
Thus, there are constraints on these entries and there are therefore
constraints on the permissible amplitudes for the transitions. The
sum of the squares of the amplitudes for all the transitions from a
particular state must be unity. Consider a state |�〉=|u1v〉 where the
neighbourhood of v, N(v)= {u1,u2, . . . ,ur}. A single step of the walk
should only assign non-zero quantum amplitudes to transitions be-
tween adjacent states, i.e. the states |vui〉 where ui ∈ N. However,
since U must be unitary these amplitudes cannot all be the same.
Recall that the walk does not rely on any labelling of the edges or
vertices. Thus, the most general form of transition will be one that
assigns the same amplitudes to all transitions |u1v〉 → |vui〉, ui ∈
N \u1, and a different amplitude to the transition |u1v〉 → |vu1〉. The
second of these two transitions corresponds to the walk returning
along the same edge to which it came. Thus, the transition will be
of the form

|u1v〉 → a|vu1〉 + b
r∑

i=2

|vui〉, a, b ∈ C.

It is usual to use the Grover diffusion matrices [1] which assign a
quantum amplitudes of a = 2/d(v) − 1 when the walk returns along
the same edge and b= 2/d(v) for all other transitions. Such matrices
are used as they are the matrices furthest from the identity which
are unitary and are not dependent on any labelling of the vertices.

Using the Grover diffusion matrices, the matrix, U, that governs
the evolution of the walk has entries

U(u,v),(w,x) =
⎧⎨
⎩

2
d(x)

− �vw if u = x,

0 otherwise
(2)

Fig. 1. A simple graph that demonstrates one of the effects of quantum interference
on the discrete-time quantum walk.

for all (u,v), (w, x) ∈ A, where �vw is the Kronecker delta. The
(u,v), (w, x) entry of this matrix gives the quantum amplitude for
transition (w, x) → (u,v). That is, the transition from the vertex x
(having previously been at w) to the vertex v (having previously
been at u). Note that although the entries are real, they are nega-
tive as well as positive. Consequently, the quantum amplitude for
a state can be negative. This is of key importance as it allows de-
structive interference to take place. To see how destructive interfer-
ence can affect the discrete-time quantum walk, consider the graph
in Fig. 1. Destructive interference can occur when, say, we have the
state

|�t〉 = a|uv〉 − b|wv〉.

After one step of the walk the state will be

|�t+1〉 =

⎧⎪⎪⎨
⎪⎪⎩

− 1
3 |vu〉 + 2

3 |vw〉 + 2
3 |vx〉 if a = 1 and b = 0,

2
3 |vu〉 − 1

3 |vw〉 + 2
3 |vx〉 if a = 0 and b = 1,

− 1√
2
|vu〉 + 1√

2
|vw〉 + 0|vx〉 if a = b = 1/

√
2.

Considering the amplitude of the state |vx〉 at time t+1. If a=1 and
b = 0 then the walk is in the state |uv〉 with non-zero probability
initially (with probability 1 in fact) and at state |vx〉 with non-zero
probability at time t+1. If a=0 and b=1 then the walk is in the state
|wv〉 with non-zero probability initially and at state |vx〉 with non-
zero probability at time t+1. However, if a=b=1/

√
2 then the walk

is at either |uv〉 or |wv〉 both with non-zero probability but at t+1 the
probability of being at |vx〉 is zero. That is, since the evolution of the
walk is linear in terms of the amplitudes and not the probabilities,
these amplitudes can cancel out. The result is that two paths, which
individually would both lead to a non-zero probability of the walk
being observed at |vx〉, can cancel out, and the walk is not observed
at |vx〉. The classical walk, where the transitions are linear with
respect to the (always positive) probabilities, does not posses this
property.

2.3.3. The classical and quantum walks contrasted
The behaviour of the classical and quantum walks differs signifi-

cantly. This section attempts to highlight some of those differences
by considering the walk on the line. For the quantum walk on the
line [26], the basis states can be written as |nd〉, where n ∈ Z in-
dicates the present position and d = l, r indicates whether the walk
reached that position by approaching it from the left, l, or the right,
r (clearly this is equivalent to specifying the vertex from which the
walk arrived). The particular case of the walk on the line using the
amplitudes given by the Grover diffusion matrices does not produce
an interesting walk. The reason for this is that since the degree of
every vertex is two, the walk will move in just one direction (see
Eq. (2)). To best compare the quantum walk with its classical coun-
terpart we use the symmetric starting state |�0〉 = 1/

√
2(|0l〉 + |0r〉)

and the Hadamard coin. The Hadamard coin is such that applied to
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Fig. 2. The probability distribution for the quantum walk on the line using the
Hadamard coin and a symmetric starting state (top) and the classical walk (bottom).
Only odd positions are plotted since even positions have probability zero.

the states |nr〉 and |nl〉 (n ∈ Z) we have

|nr〉 → 1√
2
(|(n − 1)r〉 + |(n + 1)l〉)

and

|nl〉 → 1√
2
(|(n − 1)r〉 − |(n + 1)l〉).

If the walk is allowed to evolve without being measured then
after 200 steps the probability distribution is as shown in Fig. 2. The
distribution is in stark contrast to that observed for the classical walk
(also shown in Fig. 2), which tends towards a Gaussian distribution
with mean �=0 and variance �2=n, where n is the number of steps.
The quantum walk has mean �=0 and variance �2 ∼ n2. It is almost
uniform in the interval [−n/

√
2,n/

√
2] and heavily peaked, with the

modal positions close to the limits of the distribution.
An observation that can bemade of the walk on the line is that the

quantum walk spreads quadratically faster than the classical walk.
It turns out that this is generally the case for walks on graphs [24].
However, there are cases where there is an exponential speed-up in
the hitting time of a certain vertex in some graphs. This was observed
on the hypercube by Kempe [19], and also for graphs constructed by
joining two n-level binary trees at their leaves by Childs et al. [18].

3. Spectral analysis of U

We wish to concentrate on how the model of the discrete-time
quantum walk can be used classically. Specifically, we are interested
in being able to distinguish between graphs which are cospectral
with respect to standard matrix representations. The spectrum of
the unitary matrix governing the evolution of a discrete-time quan-
tum walk turns out to be related to the spectrum of the transition
matrix for the classical random walk. The unitary matrix governing
the quantum walk, U, can be written in an expanded form, Ũ, with
entries

Ũ(u,v),(w,x) = AwxAuv�vw

(
2

d(x)
− �ux

)

for all u,v,w, x ∈ V (rather than all (u,v), (w, x) ∈ A). The eigen-
values of Ũ will be the same as the eigenvalues of U but with the
addition of |V|2 − 2|E| eigenvalues of value 0 due to the additional
zeros in the matrix Ũ.

Let y be an eigenvector of T with eigenvalue s, then Ũ has a pair
of eigenvalues t± = s ± i

√
1 − s2 with corresponding eigenvector z,

with entries

z(u,v) = Auv

(
yw
d(w)

− t∗
yx
d(x)

)
. (3)

A proof for this can be found in [27] our accompanying technical
report [27]. This accounts for 2|V| eigenvalues. The remaining 2|E|−
2|V| non-zero eigenvalues are ±1 each with multiplicity |E| − |V|.
This completes the spectrum of Ũ and thus U. That is, the spectrum
of U is completely determined by the spectrum of the transition
matrix, T. The random walk induced by U has advantages over its
classical analogue. In the next section we consider how to make use
of the differences between the quantum walks on different graphs
in order to distinguish between them.

3.1. Interference on the discrete-time quantum walk

The states of both the classical and the quantum walks are rep-
resented by state vectors. However, the paths of the classical walk
can always be considered separately from each other. This is be-
cause the total probability is simply the sum of the probabilities for
all the possible paths. This is not the case for the quantum walk. If
there is a path between a pair of states with an associated non-zero
quantum amplitude, it does not necessarily mean that there will be
a non-zero probability of observing the walk at the terminal vertex
of this path. An example of this was seen in the previous section.
Examining the entries of the unitary matrix we see that negative
amplitudes arise when a walk in the state |uv〉 moves to the state
|vu〉 (provided that d(v)>2). These negative amplitudes give rise to
quantum interference which allows paths to interfere both construc-
tively and destructively, and it is possible for two or more paths to
exactly cancel each other out. The result is that even though there
might exist a path of length t between a pair of states, in some cases
there will be zero probability of such a transition since other paths
may cancel it out. Therefore, the probability distribution on states of
the walk after a given number of steps will depend not only on the
number of paths between those states, but also on the interference
between these paths. This allows the walk to probe and distinguish
between graphs more effectively than is the case classically as we
will demonstrate later in this section.

So far we have referred to the rows and columns of U by ordered
pairs of vertices (u,v) ∈ A. However, we can equally well refer to
themwith a single label, j=1, 2, . . . , |A|, by numbering the arcs of the
graph. The state of the quantum walk after t steps is given by Ut|�0〉.
The (j, k)th entry of Ut gives the quantum amplitude associated with
moving from the state (arc) k to the state (arc) j in t steps, where
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Fig. 3. The diagram shows two states on the quantum walk, the state j which
represents the walk at vertex v, having previously been at u, and the state k for
the walk at vertex w, having previously been at v. A transition is possible from the
state j to the state k but not the other way around.

each of these states is an ordered pair of vertices in the graph. Let
us consider the positive support [28], S+(V) of a matrix V, which is
the matrix with entries

S+(V)jk =
{
1 if Vjk >0,

0 otherwise.

We begin by considering the positive support of powers of T, the
transition matrix for the classical random walk. A non-zero (u,v)th
entry indicates that there is a non-zero probability of the walk mov-
ing from vertex v to vertex u in t steps. For the classical walk this is
the case if there is a path of length t between the vertices in the orig-
inal graph. We can view S+(Tt) as an adjacency matrix of a graph,
related to the original graph, with vertices representing the states of
the walk (in this case simply vertices of the original graph). Thus, a
pair of vertices is connected in this new graph if there is a path of
length t between them.

The quantum walk, however, is different. The matrix S+(Ut) can
be pictured as an adjacency matrix but in this case the adjacency
matrix of a digraph and with vertex set A. The graph is directed
since, as shown in Fig. 3, a path of length t may be possible from a
state j to a state k, but not necessarily from k to j. However, it is not
sufficient for there simply to be a path of length t between state k and
state j for there to be a non-zero (j, k)th entry in S+(Ut). The matrix
has a non-zero (j, k)th entry if and only if there is a positive quantum
amplitude for the walk starting at the state k being observed in the
state j after t steps. A path of length t between the states is necessary,
but it is not sufficient for this to occur. If there is a positive quantum
amplitude then, in this digraph picture, there will be an arc from
state j to state k.

The probability of a transition between two states is given by
the square of the associated quantum amplitude. Thus, if there is a
negative quantum amplitude associated with a particular transition
then there is a non-zero probability that such a transition is possible.
What is more, certain transitions which are possible for the classical
randomwalk can in some cases have zero probability in the quantum
walk due to destructive interference causing different paths between
the two states to cancel out exactly. The regularity of some sets of
graphs is such that, when we examine the eigenvalues of the matrix
representing possible paths in the quantum walk, S+(Tt), they will
be the same for all the graphs. Using S+(Ut) on the other hand, we
chose to concentrate on a particular set of transitions, those that
have a positive quantum amplitude. By focusing on this particular
subset of the possible transitions, we draw more strongly on the
connectivity structure of the graph in question. By doing so, despite
the regularity of some graphs, we are able to distinguish between
them in cases where conventional spectral methods fail to do so.

3.2. Strongly regular graphs

As mentioned earlier, SRGs can cause problems when we at-
tempt to characterise graphs using their adjacency spectra due to
their cospectrality. An SRG with parameters (n, k,�,�) is a k-regular

graph on n vertices such that every pair of adjacent vertices share �
common neighbours and every pair of non-adjacent vertices share
� common neighbours [12]. The spectra of the adjacency and Lapla-
cian matrices of an SRG are completely determined by the SRGs
parameters. However, large sets of coparametric non-isomorphic
SRGs exist. In fact, the problem of deciding whether a pair of SRGs is
isomorphic is a hard problem and the best known algorithm for test-
ing whether SRGs are isomorphic runs in time nO(n

1/3). This makes
SRGs an ideal testing ground for any matrix representation that at-
tempts to lift the cospectrality exhibited by some graphs. What is
more, any method that is able to distinguish non-isomorphic SRGs
in polynomial time would be important in its own right. Below we
consider the spectra of S+(Ut) for small values of t and how this re-
lates to the cospectrality problem.

3.2.1. Spectra of S+(Ut) for SRG
Let G be an SRG with parameters (n, k,�,�), adjacency matrix

A and transition matrix for the discrete-time quantum walk U. Let
	1, 	2, . . . , 	n be the eigenvalues of A. Then, the first 2n eigenvalues of
S+(U) are

�±
a = 	a

2
± i

√
k − 1 − 	2a/4, a = 1, 2, . . . ,n. (4)

(See Ref. [27] for a proof.) We also observe (although we have not
been able to prove) that the remaining n(k−2) eigenvalues of S+(U)
are ±1. Furthermore, we observe that the first 2n eigenvalues of
S+(U2) are

�±
a = 	2a

2
+ 2 − k ± i	a

√
k − 1 − 	2a/4, a = 1, 2, . . . ,n. (5)

(See Ref. [27] for a proof.) We also observe (although we have not
been able to prove) that the remaining n(k−2) eigenvalues of S+(U2)
take the value 2. However, the spectrum of S+(U3) is not determined
by the parameters of the SRG. As an example, consider the pair of
SRGs with parameters (16, 6, 2, 2) shown in Fig. 4. The spectra of their
adjacency matrices is given by

sp(AG) = sp(AH) = {[−2]9, [2]6, [6]},

and that of their Laplacian matrices by

sp(LG) = sp(LH) = {[0]1, [4]6, [8]9},

where [a]b indicates that the eigenvalue a has multiplicity b in the
spectrum. However,

sp(S+(U3
G)) = {[−7 − 2i]15, [−7 + 2i]15, [−5]9, [−1]18, [1]27, [3]5,

[5]6, [45]1}

and

sp(S+(U3
H)) = {[−7 − 2i]15, [−7 + 2i]15, [−5]6, [−1]24, [1]21, [3]2,

[5]9, [45]1}.

This means that we are able to distinguish the pair of SRGs using the
spectrum of S+(U3).

Consequently, we propose the use of the spectrum of the matrix
representation S+(U3

G) for a graph G for distinguishing it from other
graphs that are cospectral with respect to standard matrix represen-
tations. The spectrum of S+(U3

G) can be calculated in time O(|EG|3),
thus a pair of graphs can be compared in time polynomial in the size
of the graphs.
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Fig. 4. Two non-isomorphic SRGs (G left, H right) with the parameter set (16, 6, 2, 2) (The graphs were drawn using Bill Kocay's `Graphs and Groups' program available at
http://bkocay.cs.umanitoba.ca/G&G/G&G.html.).

Fig. 5. The paths of length 3 between a pair of states (u,v) and (w, x) which are as-
signed a positive amplitude (above) and a negative amplitude (below) (u,v,w and w
are all distinct). The top path is possible if there exists a vertex y such that y ∼ v
and y ∼ w, one of the bottom paths is possible if u ∼ w or v ∼ x. Note that there
will not be paths of both positive and negative amplitudes of length t between (u,v)
and (w, x) if t <3.

The third power is important because it is the lowest power for
which destructive interference can take place between a general pair
of states in the graph. That is, the Grover coins which are used to give
the amplitudes for the entries of U, assign a positive quantum ampli-
tude to transitions of the form (u,v) → (v,w), and negative quantum
amplitudes to transitions of the form (u,v) → (v,u) (provided that
d(v)>2). The third power of U gives the sums of the amplitudes for
the paths of length three between each pair of states. Consider a pair
of states of the walk, (u,v) and (w, x), where u,v,w and x are distinct
vertices. The third power is the lowest power for which destructive
interference takes place between the paths between a pair of states
in general position in the graph (i.e. where all the vertices are dis-
tinct) as shown in Fig. 5. It is thus the lowest power for which the
interference effects become important for all entries in Ut .

3.2.2. Constructing S+(U3) for SRGs
For an SRG, G, with parameters (n, k,�,�) and adjacency ma-

trix A, we can make use of the regularity of its structure to con-
struct S+(U3) directly using the conditions below. The development
of this construction is given in [27]. The matrix S+(U3

G) is such that
S+(U3

G)(u,v)(w,x) = 1 if and only if one of the following conditions

holds:

1. u = x, v�w and

� + (� − �)Avw − k + k2

4
>0

(which always holds if u = x,v�w and �,�>0);
2. u = w, x�v and Avx <2�/k;
3. u = w and x = v;
4. u�w, x = v and Auw <2�/k;
5. u�w, u� x, v�w, v� x and

2
k
(� + (� − �)Avw)>Auw + Avx.

Thus the matrix S+(U3
G) for an SRG, G, can be constructed directly,

without the need to first construct U and carry out matrix multipli-
cation. The spectrum of S+(U3

G) can then be used to represent the
graph G, and this can be calculated in time O(n3k3). Note that a sim-
ilar construction is not possible for trees (which we carry out exper-
iments with later) since there are not parameters determining their
regularity.

4. Experiments

As noted earlier, traditional spectral methods for graph analysis
tasks, such as computing graph edit distance, clustering, and iden-
tifying vertex correspondences rely on the use of the spectrum of
either the adjacency matrix or the Laplacian matrix. However, these
methods fail when confronted with a pair of non-isomorphic but
cospectral graphs. We wish to investigate whether the use of the
spectrum of S+(U3) will help us resolve the ambiguities that result
from cospectrality. Firstly, we investigate how effective the spectrum
of S+(U3) is at distinguishing non-isomorphic graphs. Secondly, we
investigate how well the distances between graphs calculated using
the spectrum of S+(U3) can be used to identify similar graphs de-
rived from real-world data. We perform three sets of experiments.

Our first set of experiments uses sets of SRGs, bipartite incidence
graphs of BIBDs, and 3-level regular graphs. Each of these sets of
graphs have the property that every graph with the same set of
parameters has the same adjacency matrix and Laplacian matrix
spectra. What is more, distinguishing these graphs is, for each co-
parametric set, a hard case of the graph isomorphism problem [29].
That is, there is no polynomial time algorithm proven to be able to
distinguish between the graphs belonging to these sets.
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Our second set of experiments investigates how often problems
of cospectrality are likely to occur in real-world data represented
by graphs. Regular graphs and trees are two types of graph that are
commonly used to represent real-world data in pattern recognition
contexts [30]. We therefore generate all 3,957,097 regular graphs
on up to 14 vertices and all 63,242,255 trees on up to 24 vertices.
Using these data, we investigate how many regular graphs and trees
are cospectral with respect to the Laplacian matrix, the adjacency
matrix, and the matrix S+(U3).

Our third set of experiments uses graphs generated from two-
dimensional images of three-dimensional objects. The images of the
objects are from the COIL-100 database of 100 commonplace objects.
The images were captured with a CCD camera with a 25mm lens.
The objects were placed on a turntable with a black background and
ambient lighting. The objects were viewed with a camera depression
angle of 25◦. For each object 72 images were captured with camera
fixed and the turntable rotating in angular increments of 5◦ [31]. The
image resolution is 128×128pixels. From each image in the sequence
corner features are extracted using the Harris corner detector [32].
The extracted corner features are used as the seeds of the Voronoi
tessellation of the image plane. The region adjacency graph of the
Voronoi polygons, or Delaunay triangulation, is the graph structure
used in our experiments. We calculate pairwise distances between
these graphs using the Euclidean distances between their S+(U3)
spectra and performmultidimensional scaling (MDS) to visualise the
distribution of graphs. We study the embedding of the graph in a
two-dimensional plane produced by MDS to investigate how well
the distances cluster the graphs.

4.1. Graph isomorphism testing for sets of cospectral graphs

To provide examples of graphs that can be considered `hard' to
distinguish, Mathon [29] proposes a hierarchy of sets of graphs that
provide problems for testing graph isomorphism algorithms. These
sets of graphs are SRGs (also known as non-transitive 2-level regular
graphs), the balanced incidence graphs of non-symmetric BIBDs, and
non-transitive 3-level regular graphs. In what follows, we describe
the structure of these sets of graphs and investigate the performance
of our algorithm at distinguishing non-isomorphic graphs belonging
to them.

4.1.1. Strongly regular graphs
SRGs fall into a larger class of graphs referred to as t-level regular

graphs. SRGs are those graphs that are exactly 2-level regular. Let
G=(V,E) be a t-level regular graph and S1 and S2 be subsets ofV of
at most t vertices. That G is t-level regular implies that if the induced
subgraphs on S1 and S2 are isomorphic then the number of vertices
adjacent to every vertex in S1 is equal to the number of vertices that
are adjacent to every vertex in S2 [12]. Consider, for example, 1-level
regular graphs. In this case the subsets are just single vertices and
so the induced subgraphs are again just single vertices. Moreover,
all 1-regular graphs are isomorphic. Therefore, to be 1-level regular,
the condition is that every vertex is adjacent to the same number
of vertices. Such graph are more commonly simply referred to as
regular graphs.

As mentioned earlier, the 2-level regular graphs are SRGs. This is
because there are two non-isomorphic subgraphs on two vertices.
One of these is where the two vertices are adjacent and the other
where they are not adjacent. Recall, from the definition of SRGs given
in Section 3.2, that every pair of adjacent vertices share � common
neighbours and every pair of non-adjacent vertices share � common
neighbours. Thus we see that SRGs are indeed 2-level regular.

We have tested the effectiveness of the spectrum of S+(U3) for
distinguishing coparametric, but non-isomorphic SRGs. The parame-
ters of the graphs we used, together with the number of graphs with

Table 1
The SRGs used to test the algorithm

(n, k,�,�) Number of coparametric SRG

(16, 6, 2, 2) 2
(16, 9, 4, 6) 2
(25, 12, 5, 6) 15
(26, 10, 3, 4) 10
(28, 12, 6, 4) 4
(29, 14, 6, 7) 41
(35, 18, 9, 9) 227
(36, 14, 4, 6) 180
(36, 15, 6, 6) 32,548
(40, 12, 2, 4) 28
(45, 12, 3, 3) 78
(64, 18, 2, 6) 167

These SRGs were obtained from Ref. [33].

these parameters, are given in Table 1. For every SRG we found that
the spectrum of S+(U3) was distinct from those of all the other SRGs
with the same parameters. Also, the differences between the spectra
of two non-isomorphic graphs were always in excess of 10 orders
of magnitude greater than the numerical accuracy used and so this
never presented any problemswhen distinguishing them. Since SRGs
with distinct parameters can be easily distinguished, and since the
spectrum of S+(U3) is invariant under permutations of the vertices,
the algorithm was, therefore, able to solve the graph isomorphism
problem for all the SRGs that we tested it on.

To characterise these results we compute a vector, sG, of the or-
dered eigenvalues of S+(U3

G), for each graph G in one of the copara-
metric families. Let N be the number of graphs in the coparametric
family. We define the distance between a graph k and a graph l to
be dk,l = |sk − sl|, for all graphs in the family. We construct the N×N
distance matrix D whose (k, l)th entry is given by dkl. We found that
dkl = 0 if and only if k = l, thus distinguishing all non-isomorphic
graphs. As an example, the matrix for the SRG with parameters
(26, 10, 3, 4) is

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 4.13 42.88 26.64 22.90 26.21 45.13 26.11 23.54 23.36

4.13 0 45.49 25.43 22.30 24.60 51.95 29.34 24.85 23.79

42.88 45.49 0 53.42 55.58 58.84 15.50 96.27 53.68 57.49

26.64 25.43 53.42 0 3.08 3.86 53.24 75.14 3.63 3.06

22.90 22.30 55.58 3.08 0 2.46 53.46 68.05 2.49 1.17

26.21 24.60 58.84 3.860 2.46 0 57.21 71.88 3.38 2.53

45.13 51.95 15.50 53.24 53.46 57.21 0 94.33 51.90 55.51

26.11 29.34 96.27 75.14 68.05 71.88 94.33 0 71.37 68.36

23.54 24.85 53.68 3.63 2.49 3.38 51.90 71.37 0 1.89

23.36 23.79 57.49 3.06 1.17 2.53 55.51 68.36 1.89 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We visualise the distribution of the graphs given by the spectrum
of S+(U3) by performing principal components analysis (PCA) on
the spectra of the graphs. For N graphs, each graph is represented
by a vector si (1�k�N) of fixed length, c. Let s = ∑

k sk/N be the
mean vector for the dataset. We construct the matrix X= [s1 − s|s2 −
s| . . . |sN − s] and then compute the covariance matrix for the set
of vectors by taking the matrix product C = XXT. We extract the
principal component vectors by performing the eigendecomposition
C= (1/N)

∑N
j=1 liujuT

j on the covariance matrix C, where the li are the
eigenvalues and the ui are the eigenvectors. The eigenvectors and
the associated eigenvalues are ordered according to the size of the
eigenvalues, with the largest eigenvalue first.

We use the first r eigenvectors (two or three in practice for vi-
sualisation purposes) to represent the graphs. The coordinate sys-
tem of the eigenspace is spanned by the z orthogonal vectors B =
(b1|b2| . . . |bz). The individual graphs represented by the vectors sk
are projected onto this eigenspace using the formula yk = BT(sk − s).
Hence each graph is represented by a z component vector yk in the
eigenspace.
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Fig. 6. PCA embeddings of SRG with distances calculated using the spectra of
A (top) and the spectra of S+(U3) (bottom). The sets are those with parameters
(25, 12, 5, 6), plotted as a ∗; (26, 10, 3, 4), plotted as a ◦; (29, 14, 6, 7), plotted as a +;
and (40, 12, 2, 4), plotted as a �.

Using PCA we embed the sets of graphs with parameters
(25, 12, 5, 6), (26, 10, 3, 4), (29, 14, 6, 7) and (40, 12, 2, 4) in two-
dimensional space. Since the graphs are of different sizes and hence
have different numbers of eigenvalues, we order the eigenvalues
and create vectors for each graph of length c = 20 by taking the
largest 20 eigenvalues to represent each graph. Cospectral pairs of
graphs, i.e. those of zero distance, will appear as coincident points
under the embedding. If a pair of graphs are not coincident in the
embedding then they are not cospectral. Fig. 6 shows two embed-
dings of the four sets of coparametric SRGs. The first is obtained
using distances calculated from the spectrum of their adjacency
matrix and the second is obtained using distances from the spectra
of S+(U3). Although the embedding using the spectrum of the adja-
cency matrix separates the individual sets, all graphs with the same
set of parameters are mapped to the same point indicating that the
graphs are not distinguished using this method. The embedding
using the spectra of S+(U3), on the other hand, distinguishes all
the graphs within each set and thus no two graphs are coincident
in the embedding. We can also see from the plot that the first
principal component, the x-component, distinguishes the individual
sets and the second principal component, the y-component, distin-
guishes the individual graphs in the sets. The variation represented

Table 2
The parameters (v, k,�) of the sets of balanced incomplete block designs (BIBD)
represented by the graphs and the number of pairs of graphs from each set that
are cospectral when S+(U3) is used

Parameters Number of
graphs

Number
of pairs

Number of cospectral
pairs using S+(U3)

(15, 3, 1)a 80 3160 476
(16, 6, 2)b 3 3 3
(23, 11, 5)b 1106 611,065 524
(25, 9, 3)b 78 3003 28
(31, 10, 3)b 151 11,325 69
(37, 9, 2)a 3 3 3
(56, 11, 2)a 3 3 3
(61, 25, 10)b 18 153 0

Note, it is more appropriate to consider the number of cospectral pairs rather
than number of graphs with cospectral partners since, for each set, every graph is
cospectral with every other graph when using the adjacency or Laplacian matrices.
The graphs marked (a) were obtained from Ref. [33], those marked (b) were obtained
from Ref. [37].

by the first principal component is also significantly greater than
that recorded by the second principal component. This is as we
would expect, since the difference between graphs from different
parameter sets is greater than the difference between graphs with
the same parameters. Thus the PCA embedding is effective at using
the distances to distinguish variations within the coparametric sets
from variations between the sets.

4.1.2. Bipartite incidence graphs of non-symmetric BIBDs
BIBDs are used for, amongst other things, experimental design,

error-correcting codes and cryptography [34,35]. Colbourn and Col-
bourn [36] showed that an arbitrary graph can be encoded uniquely
as a BIBD and thus provides evidence for the conjecture that iso-
morphism testing of block designs is a hard subcase of the graph
isomorphism problem.

A BIBD with parameters (v, k,�) is a set of b = v(v − 1)�/k(k − 1)
blocks, 
, each containing k points from a set, �, where |�| = v. The
design is such that each 2-subset from � occurs in � blocks. A BIBD
is represented graphically as a bipartite incidence graph with vertex
set � ∪ 
 and adjacency matrix

Ajk =
{
1 if j ∈ � and j ∈ k ∈ 
 or k ∈ � and k ∈ j ∈ 
,

0 otherwise.

That is, vertices represent either blocks or points and the vertex for
point j is adjacent to the vertex for block k if j ∈ k.

All BIBDs with the same parameter set are cospectral with respect
to their adjacency matrix and Laplacian matrix representations. We
have tested the effectiveness of the spectrum of S+(U3) for distin-
guishing coparametric BIBDs. The parameters of the BIBDs used, the
number of BIBDs with these parameters, and the number of pairs
that are cospectral using S+(U3) are given in Table 2. In Ref. [27]
we give a set of conditions for the existence of non-zero entries in
S+(U3) for BIBDs as we did for SRGs in Section 3.2.2. However, we
show that such conditions must include terms that are quadratic in
the entries of A rather than just linear terms which were sufficient
for SRGs.

Unlike the SRGs, some of the BIBDs cannot be distinguished us-
ing the spectrum of S+(U3). For the sets with parameters (16, 6, 2),
(37, 9, 2) and (56, 11, 2) the spectrum of S+(U3) was unable to distin-
guish any of the three graphs from the other two graphs with the
same parameters. For the BIBDs with parameters (15, 3, 1), (23, 11, 5),
(25, 9, 3) and (31, 10, 3) on the other hand, we were able to distin-
guish between 85% and 99.91% of all the pairs in each set. Meanwhile,
for the set with parameters (61, 25, 10) we were able to distinguish
between every BIBD in the set.
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Fig. 7. PCA embeddings of the sets of bipartite incidence graphs of the BIBD with parameters (15, 3, 1), (23, 11, 5), (25, 9, 3), (31, 10, 3) and (61, 25, 10). Note that all these
graphs are cospectral with respect to their adjacency and Laplacian matrices.

The sets of graphs with parameters (15, 3, 1), (23, 11, 5), (25, 9, 3),
(31, 10, 3) and (61, 25, 10) have been embedded using the procedure
described for SRGs and these embeddings are shown in Fig. 7. The
sets with parameters (16, 6, 2), (37, 9, 2) and (56, 11, 2) have been em-
bedded together in Fig. 8. These sets cannot be embedded separately
since the covariance matrix for the graphs in a particular set is the
all-zero matrix on which it is not possible to perform eigendecom-
position. In Fig. 7 the graphs have been distributed across the plane,
and this indicates that the majority of the graphs are distinguished

from one another. The apparent clustering of the graphs from the sets
with parameters (23, 11, 5) and (31, 10, 3) is due to the large num-
ber of graphs in these sets, 1106 and 151, respectively. All but 0.6%
of the pairs in the set with parameters (31, 10, 3) and 0.09% of the
pairs in the set with parameters (23, 11, 5) are distinguished using
the spectrum of S+(U3). The sets with parameters (16, 6, 2), (37, 9, 2)
and (56, 11, 2) in Fig. 8 have all been distinguished from one another.
However, the graphs in a particular set are all coincident. This indi-
cates that the spectral distance between these graphs is zero when
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Fig. 8. PCA embedding of the sets of bipartite incidence graphs of the BIBD with
parameters (16, 6, 2) embedded as a ∗, (37, 9, 2) embedded as a ◦ and (56, 11, 2)
embedded as a +.

S+(U3) is used, as is also the case with the adjacency spectrum and
Laplacian spectrum.

4.1.3. 3-Level regular graphs
As mentioned earlier, a regular graph is classed as 1-level regular

and an SRG as 2-level regular. Next in this hierarchy are the 3-level
regular graphs. Due to their high level of symmetry these graphs
are very difficult to distinguish [38]. We use the method given by
Mathon [29] for constructing a 3-level regular graph given an SRG
with parameters (n, 2�,�,�). For the SRGs listed in Table 1, we con-
struct all the possible 3-level regular graphs. Thus, using the sets
with parameters (25, 12, 5, 6), (29, 14, 6, 7) and (35, 18, 9, 9) we con-
struct 3-level regular graphs on 52, 60 and 72 vertices, respectively.
Using the spectra of S+(U3) we were able to distinguish between all
these graphs.

The PCA embeddings of the graphs using the distances calculated
from their spectra are shown in Fig. 9. The 3-level regular graphs
on 72 vertices appear to be clustered uniformly other than a few
outliers. For the sets on 52 and 60 vertices, however, the embed-
ding clusters the graphs into a number of distinct sets. In the em-
beddings, the first principal component distinguishes between the
clusters and the second principal component records the variation
within the clusters. It would be interesting to investigate whether
this is a salient property of these sets of graphs.

Thus, in the hierarchy of graphs which pose problems for graph
isomorphism testing, the spectra of S+(U3) is able to distinguish
between all SRGs (2-level regular graphs) that we have tested, all 3-
level regular graphs, and the overwhelming majority of the bipartite
incidence graphs of BIBDs. This demonstrates that for graphs that
have high levels of symmetry and which provide some of the hardest
classes for graph isomorphism testing the spectrum of S+(U3) is
able to correctly distinguish between non-isomorphic graphs. In the
next section we consider smaller regular graphs and trees so as to
investigate how common the problem of cospectrality is, and how
successfully it is dealt with in these cases by using the spectrum of
S+(U3).

4.2. Cospectrality of regular graphs and trees

The cospectrality of graphs with respect to standard matrix rep-
resentations is not confined to those with specific symmetries such

as SRGs. Trees are used frequently to represent structures to be com-
pared [30] and often this is done using their spectra [39]. Regular
graphs also occur if, for example, the structure encodes the k-nearest
neighbours of a set of points. In this section we investigate how
common the problem of cospectrality is for such graphs and how
successfully the spectrum of S+(U3) overcomes this problem. We in-
vestigate how often cospectrality arises using both the standard ma-
trix representations and S+(U3) for all regular graphs with up to 14
vertices and on all trees with up to 24 vertices.

4.2.1. Regular graphs
In Ref. [40], Zhu and Wilson investigate the number of trees with

up to 21 vertices that are cospectral with respect to a number of
standard matrix representations. They found that of these matrix
representations, the spectrum of the Laplacian of the graphs per-
formed best at distinguishing regular graphs. We extend this study
to include the use of the spectrum of S+(U3) for all regular graphs
up to, and including, the 5-regular graphs on 14 vertices. The results
are shown in Table 3. We can see that a large proportion of the reg-
ular graphs have a cospectral partner if the Laplacian matrix is used
and that this proportion rises to as high as 34% for the 6-regular
graphs on 10 vertices. The use of S+(U3), on the other hand, far out-
performs this. For all but the 4-regular graphs on 14 vertices, not
a single graph has a cospectral partner. For these 88,168 4-regular
graphs on 14 vertices just 10 have a cospectral partner when S+(U3)
is used compared with 11,165 when the Laplacian is used. Whilst
cospectrality was a common problem when the Laplacian matrix
was used, only 10 of the 3,957,097 regular graphs we tested where
cospectral with respect to S+(U3).

4.2.2. Trees
Trees are particularly problematic when spectral analysis is at-

tempted. Schwenk [13] showed that almost all trees on sufficiently
many vertices will have a partner that is cospectral with respect to
their adjacency matrices. Merris went further than this by showing
that the same is also true if the Laplacian matrix, adjacency matrix
or any of their generalisations are used [14]. For all trees on up to
24 vertices, we have investigated how many are cospectral with re-
spect to their Laplacian and S+(U3) matrix representations (we found
that the Laplacian spectrum was always better than the adjacency
matrix spectra for distinguishing the trees). The results are shown
in Table 4. The smallest trees for which the problem of cospectral-
ity arises when the Laplacian is used have 11 vertices. Using S+(U3),
on the other hand, no two trees with fewer than 19 vertices share
the same spectrum. For this set, only two of the 317,955 trees are
cospectral when S+(U3) is used, compared with 648 when the Lapla-
cian is used. For the trees with a larger number of vertices, the num-
ber of trees that have a cospectral partner with respect to the Lapla-
cian matrix is, at the least, 10 times greater than the number that
are cospectral with respect to S+(U3). Thus, the spectrum of S+(U3)
performs far better at distinguishing both regular graphs and trees
on small numbers of vertices. We see no reason why this should not
be the case for graphs on more vertices.

4.3. Clustering Delaunay triangulations from images

We have seen that the spectrum of S+(U3) is able to distinguish
between sets of graphs that form comparatively hard subcases of
the graph isomorphism problem. What is more, the spectrum of
S+(U3) distinguishes between a far greater number of the regular
graphs and trees that we tested than the Laplacian spectrum does.
We now consider the use of the spectrum of S+(U3) for clustering
graphs representing images from the COIL-100 database of views of
common-place objects. For each object in the COIL database there
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Fig. 9. PCA embeddings of the sets of 3-level regular graphs on 52, 60 and 72 vertices derived from the SRGs with parameters (25, 12, 5, 6), (29, 14, 6, 7) and (35, 18, 9, 9),
respectively. Note that within each set, all the graphs are cospectral with respect to their adjacency and Laplacian matrices.

Table 3
The number of k-regular graphs on |V| vertices (|V|�10) that have a cospectral
partner with respect to the Laplacian matrix, L, and the number that have a cospectral
partner with respect to S+(U3)

|V| k Number of
graphs

Number
cospectral
w.r.t L

Number
cospectral
w.r.t S+(U3)

10 4 59 4 0
10 5 60 4 0
10 7 5 0 0
11 4 265 28 0
11 6 266 28 0
12 3 85 0 0
12 4 1544 258 0
12 5 7848 2689 0
12 6 7849 2689 0
12 7 1547 258 0
12 8 94 0 0
13 4 10,778 1753 0
13 6 367,860 98,076 0
13 8 10,786 1753 0
14 3 509 6 0
14 4 88,168 11,165 10
14 5 3,459,383 692,993 0

Table 4
The number of trees on |V| vertices that have a cospectral partner with respect to
the Laplacian, L, and S+(U3)

|V| Number of trees Cospectral L Cospectral S+(U3)

�10 200 0 0
11 235 6 0
12 551 6 0
13 1301 18 0
14 3159 30 0
15 7741 48 0
16 19,320 68 0
17 48,629 221 0
18 123,867 230 0
19 317,955 440 2
20 823,065 648 2
21 2,144,505 1056 24
22 5,623,756 1563 32
23 14,828,074 2858 68
24 39,299,897 3623 290

are 72 views with camera viewing angle equally spaced around the
object in 5◦ intervals.

We use nine views of each object, in 10◦ intervals to give a set,
�, of 45 graphs. For a given image of an object we extract corner
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Fig. 10. The objects from the COIL database embedded using MDS on the spectrum
of S+(U3) of the Delaunay graphs. White cup +, earthenware cup ◦, cat toy ∗, wooden
shape � and car �.

features using the Harris corner detector [32]. The corner points
are used to seed a Voronoi tessellation of the image plane. Our
graph representation is based on the region adjacency matrix for the
Voronoi regions, i.e. the Delaunay triangulation of the detected cor-
ner features. The process of constructing the graph from an image is
illustrated in Fig. 12.

For each graph, G, we compute a column vector, sG, of the ordered
eigenvalues of S+(U3

G). As the graphs are of different sizes and thus
their spectra are of different lengths, the vectors are all made to
be the same length by appending zeros to the ends of the shorter
vectors. The distance matrix, D, with (i, j) entry given by dij=‖si−sj‖,
where ‖ · ‖ is the standard Euclidean norm. The graphs are then
embedded in a two-dimensional space by carrying out MDS on this
matrix. MDS is used in preference to PCA since the complexity of
PCA scales with the size of the vector description for the graphs. The
complexity of MDS on the other hand scales with the number of
graphs compared. What is more, PCA and MDS are equivalent when
Euclidean distances are used to calculate the distance matrix used
for MDS [41].

MDS is a procedure which allows data specified in terms of a
matrix of pairwise distances to be embedded in a Euclidean space.
Let N be the number of graphs. The first step of MDS is to calculate
a matrix, F, whose element with row r and column c is given by
Frc = − 1

2 (d
2
rc − d̂2r. − d̂2.c + d̂2.. ), where d̂r. = (1/N)

∑N
c=1 drc is the average

distance over the rth row, d̂.c is the average distance over the cth
column and d̂.. = (1/N2)

∑N
r=1

∑N
c=1 drc is the average distance over all

rows and columns of the distance matrix d.
We subject the matrix F to an eigenvector analysis to ob-

tain a matrix of embedding coordinates Y. If the rank of F is k,
where k<N, then we will have k non-zero eigenvalues. We ar-
range these k non-zero eigenvalues in descending order, l1, l2, . . . , lk,
where l1� l2� · · · � lk�0. The corresponding ordered eigenvectors
are denoted by uj (1� j�k). The embedding coordinate system for
the graphs is Y = [

√
l1u1,

√
l2u2, . . . ,

√
lkuk]. For the graph indexed r,

the vector of embedding coordinates, yr , is a row of matrix Y, given
by yr = (Yr,1,Yr,2, . . . ,Yr,k)

T.
The embedding of the graphs using MDS on the distances be-

tween the spectrum of S+(U3) is shown in Fig. 10. For comparison,
the MDS embedding obtained using the Laplacian spectrum is shown
in Fig. 11. The ability of both approaches to cluster the items is com-
parable. The graphs in both embeddings appear to be restricted to
a one-dimensional curve. However, this is a less noticeable prob-
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Fig. 11. The objects from the COIL database embedded using MDS on the spectrum
of the Laplacian of the Delaunay graphs. White cup +, earthenware cup ◦, cat toy
∗, wooden shape � and car �.

Fig. 12. The original image (left), the extracted features (middle), and the Delaunay
triangulation (right) for a sample object.

lem when using the spectrum of S+(U3) than when using the Lapla-
cian spectrum. We can see from the embeddings that the spectrum
of S+(U3) is also more effective at distinguishing the earthenware
cup (◦) from the wooden shape (�) than the Laplacian spectrum
is. The clusters of these two objects are not as clearly separated in
the Laplacian embedding as in the S+(U3) embedding. By manually
drawing cluster boundaries in the MDS plots, in the case of the spec-
trum of S+(U3) there is one error while for the Laplacian there are
three errors for the 45 COIL graphs. Thus we can see that we have
a matrix representation of graphs, less prone to cospectrality than
the standard adjacency matrix and Laplacian matrix representations.
The spectrum of this matrix can also be used effectively to cluster
graphs representing views of different common-place objects.

5. Conclusions

In this paper we have shown how a matrix representation, which
we refer to as S+(U3), can be used to lift the cospectrality often
encountered when using the adjacency matrix or Laplacian matrix
representations of a graph. Our representation is based on the sum
of the quantum amplitudes of paths of the discrete-time quantum
walk on the graph. Since quantum amplitudes are not restricted
to positive real values, the representation depends crucially on the
interference of different paths between pairs of states. We use the
spectrum of S+(U3) to distinguish between graphs which present
the same adjacency and Laplacian spectra. The spectrum of S+(U3)
can be calculated in time O(|E|3). For inexact graph matching we
represent a graph by the vector of ordered eigenvalues of S+(U3) and
calculate the distance between graphs using the Euclidean distance
between these vectors.
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We have carried out three sets of experiments on the spectrum
of S+(U3). The first tested the ability of the spectrum to distinguish
between graphs from sets of highly regular of graphs. We considered
SRGs (2-level regular graphs), bipartite incidence graphs of BIBDs and
3-level regular graphs. We found that the spectrum of S+(U3) was
able to distinguish between all SRGs and all 3-level regular graphs
that we considered. It was also able to distinguish between the vast
majority of bipartite incidence graphs of BIBDs. For all these classes
of graphs, coparametric sets all present the same adjacency matrix
and Laplacian matrix spectra and thus cannot be distinguished using
the spectra of either of these matrices. What is more, there is no
polynomial time algorithm proven to be able to distinguish between
coparametric graphs from any of these sets.

The second set of experiments investigates how frequently regu-
lar graphs and trees are cospectral when the Laplacian matrix is used
compared to when S+(U3) is used. Such graphs provide examples
of those that may be encountered in real-world data applications.
Whereas cospectrality was common when using the Laplacian spec-
trum, the proportion of graphs which had a cospectral partner when
S+(U3) was used was significantly less. Of the 63,242,255 trees that
we tested, we found that 10,815 of them had a cospectral partner
when the Laplacian matrix was used and that only 418 had a cospec-
tral partner when S+(U3) was used. Similarly, of the 3,957,106 reg-
ular graphs tested, 811,704 had a cospectral partner with respect to
the Laplacian matrix and 10 with respect to S+(U3). Thus the method
is far more robust against the problem of cospectrality than the ad-
jacency or Laplacian spectra, on which many spectral methods are
based. The third set of experiments uses distances calculated from
the spectrum of S+(U3) to cluster graphs derived from images of
everyday objects. We found that the distances could be used to effec-
tively cluster together different views of the same object, and sepa-
rate the different objects. Thus, the spectrum of S+(U3) is able to lift
the cospectrality of many graphs, and distances calculated using its
spectrum are able to reflect the dissimilarity of graphs derived from
real-world data.
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