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Abstract Normally ordered forms of functions of boson operators are important in many
contexts in particular concerning Quantum Field Theory and Quantum Optics. Beginning
with the seminal work of Katriel (Lett. Nuovo Cimento 10(13):565–567, 1974), in the last
few years, normally ordered forms have been shown to have a rich combinatorial structure,
mainly in virtue of a link with the theory of partitions. In this paper, we attempt to enrich this
link. By considering linear representations of noncrossing partitions, we define the notion of
noncrossing normal ordering. Given the growing interest in noncrossing partitions, because
of their many unexpected connections (like, for example, with free probability), noncross-
ing normal ordering appears to be an intriguing notion. We explicitly give the noncrossing
normally ordered form of the functions (ar(a†)s)n) and (ar + (a†)s)n, plus various special
cases. We are able to establish for the first time bijections between noncrossing contractions
of these functions, k-ary trees and sets of lattice paths.

Keywords Normal ordering · Noncrossing partitions · Lattice paths

1 Introduction

Let a and a† be boson annihilation and creation operators, satisfying the commutation rela-
tion aa† −a†a = 1. The normal ordering of an operator function F(a, a†) consists in moving
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all creation operators to the left by applying the commutation relation. The resulting expres-
sion is called the normally ordered form of F(a, a†) and it is denoted by N [F(a, a†)].
The expressions F(a, a†) and N [F(a, a†)], although generally different, represent the same
function. The normally ordered form is particularly useful in quantum optics [20] and Quan-
tum Field Theory [3]. On the basis of Wick’s theorem [29], one can obtain N [F(a, a†)]
from F(a, a†) by means of two operations: summing over all contractions, each followed
by a double-dot operation. A contraction consists of substituting a = 1 and a† = 1 in an
expression whenever a precedes a†. An application of the double dot operation consists
of deleting each occurrence of 1 and then arranging the expression so that a† always pre-
cedes a. For example, :ak(a†)n: = (a†)nak . Among all possible contractions, we also include
the null contraction, that is the contraction leaving the expression invariant. Specifically,

F(a, a†) ≡ N [F(a, a†)] =
∑

:
1
{all possible contractions}:. (1)

For example, if F(a, a†) = aa†aaa†aa then N [F(a, a†)] = (a†)2a5 + 4a†a4 + 2a3.
The combinatorics of normally ordered forms has been studied in a number of papers

([4] is a survey). For example, several authors established connections between Stirling,
Bell numbers and normally ordered forms (see [19, 28] and references therein). In fact, it
is nowadays well-known that N [(a†a)n] = ∑n

k=1 S(n, k)(a†)kak , where the integers S(n, k)

are the so called Stirling numbers of second kind (see, e.g., [26], Seq. A008277), satisfy-
ing the recurrence relation S(n + 1, k) = kS(n, k) + S(n, k − 1), with S(n,0) = δn,0 and
S(n, k) = 0 for k > n. Generally, it can be difficult to obtain N [F(a, a†)] when F(a, a†) is
a polynomial of high order or an infinite series [11]. A considerable amount of recent work
has been produced in this direction [5, 6, 8, 9]. Among the results, are explicit formulas for
many examples of operators depending on (a†)kan, characterized by integer powers k and n,
or depending on q(a†)a + v(a†), with arbitrary functions q and v.

The picture of this scenario has two faces: techniques from combinatorics are fruitfully
applied to obtain normally ordered forms with immediate use in physics (e.g. the construc-
tion of generalized coherent states [7]); the physical machinery behind this context helps to
unveil and describe combinatorial properties (e.g. a theory of the Stirling and Bell polyno-
mials can be formulated in terms of the algebraic and Fock space properties of the boson
operators [19]).

The purpose of the present paper is to introduce and study the notion of noncrossing
normally ordered form, an extremal structure with a well-defined combinatorial interpreta-
tion. Before entering this subject, it is useful to describe two ways to represent contractions:
a graphical representation of contractions, which we call linear representation; a represen-
tation as words which is called canonical sequential form (see [21]). Let πn . . . π2π1 be a
word whose letters are boson operators. Since our discussion is focused on the combina-
torial properties of boson functions, we consider a and a† as letters, disregarding these as
operators. Note the order of the letters: we read the word from the right to the left and we
also say that π starts with π1.

• Linear representation: We draw n vertices, say 1,2, . . . , n, on a horizontal line, such that
the point i corresponds to the letter πi . We represent each a by a white vertex and each
a† by a black vertex; edges (i, j) are drawn to connect the white vertex i to the black ver-
tex j if the corresponding letters are contracted. Importantly, the edges are drawn above
the points. Note that due to the above definition of contraction there can only be edges be-
tween a black vertex and a white vertex when the white vertex lies to the left of the black
vertex. We call this graphical representation the linear representation of the contraction
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Fig. 1 The linear representation
of the contractions of the word
aaa†a†

or, with an abuse of the terminology, just contraction. The linear representations of all
contractions of the word aaa†a† are illustrated in Fig. 1.

• Canonical sequential form: A contraction π is represented by a sequence a1a2 . . . an on
the set {1,2, . . . , n,1′,2′, . . . , n′}. In order to construct the sequence a1a2 . . . an, we need
to read the contraction π from right to left.
– If πj is a white (resp. black) vertex of degree 0 (that is, incident with no edges) we then

replace it with i ′ (resp. i); i is the smallest number not appearing in the sequence.
– If πj is a black vertex of degree 1 we then replace it with i, where i is the smallest

number not appearing in the sequence.
– If πj is a white vertex of degree 1 we then replace it with i, where i is associated to the

black vertex connected to πj .
For example, the contractions in Fig. 1 can be represented by 123′4′, 123′2, 123′1,

1223′, 1213′, 1221, and 1212. Such a representation is called the canonical sequential
form [21].

We denote contractions also by enumerating the edges. For example, the contractions in
Fig. 1 are given by {∅, (42), (41), (32), (31), (41)(32), (42)(31)}. Let e = (i, j) and e′ =
(p, q) be two edges of a contraction π . We say that e crosses e′ if they intersect with each
other, or, in other words, if i < p < j < q or p < i < q < j . If this is the case, e and e′ are
said to be a crossing of the contraction; otherwise, e and e′ are said to be a noncrossing. For
example, from the contractions in Fig. 1 only (42)(31) is a crossing.

Using the linear representation form of contractions, the normally ordered form of an
expression F(a, a†) can be defined as follows. Given a contraction π associated with its
linear representation form, let freeb(π) (resp. freew(π)) to be number black (resp. white)
vertices of degree zero in π . The normally ordered form of F(a, a†) is given by

∑

π is a contraction of F(a,a†)

(a†)freeb(π)afreew(π).

A “p-analogue” of the normally ordered form can be defined as follows. Let us introduce
an operator Pp acting on each contraction π of an expression F = F(a, a†):

Pp(π) := pcross(π)(a†)freeb(π)afreew(π),

where cross(π) counts the number of crossing edges in π . We extend Pp to a linear operator
by

Pp(F ) :=
∑

π

Pp(π),

where the sum is taken over all contractions of the expression F . Note that the operator Pp

is a p-analogue of the standard double dot operation. Namely, for a given expression F ,
P1(F ) is exactly the normally ordered form of F .

The number-states | m〉 are the states that satisfy a†a | m〉 = m | m〉, where 〈m | m〉 = 1.
The coherent states | γ 〉 are the states that satisfy a | γ 〉 = γ | γ 〉, where 〈γ | γ 〉 = 1.
Number-states and coherent states are important within the boson Fock space (see [3]).
These are related by the well-known expression | γ 〉 = e−|γ |2/2

∑
m≥0

γ m√
m! | m〉. Many
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authors (see [5–9, 16–19]) dealt with explicit formulas for the expectation values 〈γ |
F(a, a†) | γ 〉. For example, Katriel [19] showed that 〈γ | (a†a)n | γ 〉 = ∑n

j=0 S(n, j)|γ |2j ,
where S(n, j) are the Stirling numbers of the second kind. This was done by proving that
the normally ordered form of (a†a)n is given by

∑n

j=0 S(n, j)(a†)j aj . By applying our
operator Pp to the expression (a†a)n, one can write

Pp((a†a)n) =
n∑

j=0

fn,j (p)(a†)j aj ,

where fn,j (p) is a polynomial in p (note that fn,j (1) = S(n, j)). In this paper, we study the
combinatorial structure of P0(F ). In particular, with Theorem 3, we show that

P0((aa†)n) =
n∑

j=0

1

n + 1

(
n + 1

j + 1

)(
n + 1

j

)
(a†)n−j an−j .

If the commutation relations hold for the operators then one has aa† = a†a + 1 and, there-
fore, a close relation between (aa†)n and (a†a)n.

A noncrossing contraction is a contraction whose edges are all noncrossing. Figure 1
gives all contractions of the word aaa†a†: these consist of 1 crossing and 6 noncrossing
contractions (one of those is the null contraction). With this terminology, we are now ready
to give the definition of noncrossing normal ordering.

Definition Let F(a, a†) = ∑
w∈A w be any expression composed by elements of A, where

A is any finite set of finite words on the alphabet {a, a†}. The noncrossing normally ordered
form of a monomial w is denoted and defined by

NC(w) =
∑

:{all possible noncrossing contractions of w}: (2)

and is extended to arbitrary expressions F(a, a†) = ∑
w∈A w by linearity. We briefly write

NC(F (a, a†)) =
∑

:{all possible noncrossing contractions}:. (3)

It is important to note that P0(F (a, a†)) = NC(F (a, a†)). The central concept of the
paper is then a “noncrossing combinatorial structure”. A number of aspects of noncross-
ing combinatorial structures have been studied in recent years. In particular, noncrossing
partitions have recently turned out to be a flourishing subject, given the links with other
concepts like free probability, parking functions, and braid groups (see [23, 25]). Specifi-
cally, in enumerative combinatorics, Klazar linked noncrossing partitions to the well-known
Catalan numbers (or the lattice Dyck paths) [21, 22], while other authors have related non-
crossing partitions to RNA secondary structure and Motzkin paths (e.g., see [12] and refer-
ences therein). Here, we apply the notion of linear representation of noncrossing partitions
to contractions of normally ordered forms. In this way, the obtained noncrossing normally
ordered forms can be related to a number of different combinatorial objects. Namely, we
study NC((ar(a†)s)n) (in Sect. 3), NC((ar + (a†)s)n) (in Sect. 4) and some special cases.
In Sect. 5, we establish bijections between sets of noncrossing contractions of special cases
of these functions (for example, (a + (a†)2)n, (ara†)n and (a(a†)r )n) sets of trees and sets
of lattice paths (for example, k-ary trees and 2-Motzkin paths). Section 6, the last section of
the paper, is devoted to draw some directions for further analysis. Physical interpretations
of the noncrossing normal ordering remain as desiderata.
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2 Some Preliminary Observations

Let us denote for arbitrary p the corresponding normal ordering by

Np(F (a, a†)) ≡ Pp(F (a, a†))

such that N1 ≡ N (the conventional normal ordering) and N0 ≡ NC (the noncrossing nor-
mal ordering). If we denote the associated coefficients by CF ;k,l (p), i.e.,

Np(F (a, a†)) =
∑

k,l

CF ;k,l(p)(a†)kal,

then it is clear that one has for any F and all k, l the following inequality

0 ≤ CF ;k,l(0) ≤ CF ;k,l(1).

For example, if F(a, a†) = (a†a)n then one has C(a†a)n;k,l(1) = S(n, k)δkl .

Example 1 Let F(a, a†) = aaa†a† be the example of Fig. 1. Using the commutation re-
lations or (1) one may show that N1(aaa†a†) = (a†)2a2 + 4a†a + 2. Since there is ex-
actly one crossing contraction of degree two, namely (42)(31), one has N0(aaa†a†) =
(a†)2a2 + 4a†a + 1.

Generalizing the observation of the preceding example, it is clear that N0(F (a, a†)) �=
N1(F (a, a†)) implies that F(a, a†) is a polynomial of degree at least two in a and a†

where at least two creation operators a† exist to the right of two annihilation opera-
tors a (otherwise no crossing can exist); conversely, if F(a, a†) is such a polynomial, then
N0(F (a, a†)) �= N1(F (a, a†)). In particular, for lower degrees the two expressions coincide.
This has the consequence that N0(aa†) = a†a + 1. Recall that in the conventional case one
also has N1(aa†) = a†a + 1 directly from (1). On the other hand, one can use the com-
mutation relation to find the same result, i.e., N1(aa†) = N1(a

†a + 1) = a†a + 1. Let us
try to reproduce the noncrossing statistics according to (3) by modifying the commutation
relations and using the usual normal ordering process. Thus, we consider operators b, b†

satisfying

bb† − κb†b = λ1b
† + λ2b + λ3 (4)

where κ and λi are some parameters (here we have assumed that the right-hand side has
lower degree than the left-hand side). Using this commutator, it follows that

N0(bb†)
(4)= N0(κb†b + λ1b

† + λ2b + λ3) = κb†b + λ1b
† + λ2b + λ3

where we have used in the second equation the fact that N0 is linear and that all sum-
mands are already normally ordered. However, if this has to be the result obtained from
the definition (3) then one has necessarily κ = 1 = λ3 as well as λ1 = λ2 = 0, reproducing
for b, b† the conventional commutation relations. However, the explicit examples show that
the operators b, b† cannot satisfy the conventional commutation relations and the noncross-
ing normal ordering (3) simultaneously! Thus, it is not clear whether one should speak of
the operators a, a†—whose words F(a, a†) are brought into noncrossing normally ordered
form using (3)—as “bosonic” operators anymore. It would be very interesting to find the
algebraic relations which the operators have to satisfy such that normal ordering using these
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algebraic relations is equivalent to the definition (3). A discussion of a general approach to
generalizations of normal orderings using nearly arbitrary weights can be found in [24].

Let us mention that very closely related situations have been considered in the con-
text of q-Fock spaces and q-Gaussian processes when the limit q → 0 is considered, see,
e.g., [1, 10, 15] and the references given therein. Here the corresponding annihilation and
creation operators satisfy the q-deformed commutation relations. In the limit q → 0 one
considers full Fock space and there exists an intimate link between normal ordered repre-
sentations and noncrossing partitions.

3 Noncrossing Normal Ordering of (ar(a†)s)n

Let us denote by Vrs(n) the set of all the linear representations of the noncrossing contrac-
tions of (ar(a†)s)n. For each linear representation π ∈ Vrs(n), define e(π) to be the number
of edges in π . Let Br,s(x, y) be the generating function for the number of linear representa-
tions π ∈ Vrs(n) with exactly m edges, that is,

Br,s(x, y) =
∑

n≥0

∑

π∈Vrs (n)

xnye(π).

The noncrossing normally ordered form of (ar(a†)s)n is given by

NC((ar(a†)s)n) =
∑

j≥0

(the coefficient of xnyj in Br,s(x, y))(a†)sn−j arn−j .

So, to find the noncrossing normally ordered form of (ar(a†)s)n, it is enough to find an
explicit formula for the generating function Br,s(x, y). In this section, we present a nonlinear
system of equations whose solution gives an explicit formula for Br,s(x, y). We begin by
writing

Br,s(x, y) = 1 + Br,s(x, y; s), (5)

where Br,s(x, y; t) is the generating function for all the linear representations π =
πn(r+s) . . . π1 ∈ Vrs(n), such that the canonical sequential form of π starts with 12 . . . t .
To see (5), one has to realize that Br,s(x, y; s) is the generating function for the number of
linear representations π ∈ Vrs(n) where exactly s black vertices stand on the right. However,
this is the case for every contraction of (ar(a†)s)n as long as n ≥ 1. Thus, the case n = 0
leads to the small difference between Br,s(x, y) and Br,s(x, y; s), explaining (5). With the
following lemma, we give a recurrence relation for the sequence Br,s(x, y; t).

Lemma 2 Let z′ = x
1

r+s . For all t = 1,2, . . . , s,

Br,s(x, y; t) = z′Br,s(x, y; t − 1) + Br,s(x, y)

r∑

j=1

z′r−j
Br,s(x, y; j, t),

with the initial condition Br,s(x, y;0) = z′rBr,s(x, y), where Br,s(x, y;a, b) is the generat-
ing function for the number of linear representations π ∈ Vrs(n) such that π starts with b

black vertices and ends with a white vertices and there is an edge between the first black
vertex and last white vertex.
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Proof Let π be any linear representations in Vrs(n) such that π starts with t black ver-
tices, i.e., π = πn(r+s) . . . πtπt−1 . . . π1 where πi with 1 ≤ i ≤ t corresponds to a black vertex
(i.e., creation operator a†). Let us write an equation for Br,s(x, y; t). The first black vertex
corresponding to π1 has degree either zero or one. The contribution of the first case is

z′Br,s(x, y; t − 1).

Now, let us consider the second case, that is the first black vertex having degree one.
The contraction π can be written as π = π ′′q ′ . . . (p + 1)′π ′, where π ′ starts with t black
vertices, ends with j white vertices and there is an edge between the first black vertex of π ′

and the last white vertex of π ′. Moreover, π ′ is followed by q − p white vertices such that
q − p + j = r , see the following figure:

Since we are interested in the noncrossing contractions, we may observe there are no
edges from q ′ . . . (p + 1)′π ′ to π ′′. Therefore, the contribution of the second case gives

Br,s(x, y)

r∑

j=1

z′r−j
Br,s(x, y; j, t).

Considering these disjoint cases together we arrive to our recurrence relation. Since there
are no edges from white vertices to other vertices, the generating function is Br,s(x, y;0) =
z′rBr,s(x, y), as required by the statement of the lemma. �

As we have seen in Lemma 2, to find a formula for the generating function Br,s(x, y), we
need to have a recurrence relation for the generating functions Br,s(x, y;p,q). This is done
as follows.

Lemma 3 Let z′ = x
1

r+s , p = 2,3, . . . , r , and q = 2,3, . . . , s. Then the following hold:

(i) Br,s(x, y;1,1) = yz′2 + xyz2Br,s(x, y).

(ii) Br,s(x, y;p,1) = z′Br,s(x, y;p − 1,1)

+ yz′r+2
Br,s(x, y)

s∑

j=1

z′s−j
Br,s(x, y;p − 1, j).

(iii) Br,s(x, y;1, q) = z′Br,s(x, y;1, q − 1)+yz′s+2
Br,s(x, y)

r∑

j=1

z′r−j
Br,s(x, y; j, q − 1).
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(iv) Br,s(x, y;p,q) = z′Br,s(x, y;p − 1, q) + yz′2
q−1∑

j=1

z′q−1−j
Br,s(x, y;p − 1, j)

+ yz′2Br,s(x, y;q − 1)

s∑

j=1

z′s−j
Br,s(x, y;p − 1, j).

Proof Let π be any linear representations in Vrs(n) such that the last p vertices of π are
white, the first q vertices of π are black and there is an edge between the first black vertex
and the last white vertex. The generating function for the number of such linear represen-
tations π is given by Br,s(x, y;p,q). Now, let us write an equation for Br,s(x, y;p,q) for
each of the following four cases:

• If p = q = 1 then there are two possibilities for the linear representation π : π = 11 or
π = 12′3′ . . . r ′π ′(d + 1)(d + 2) . . . (d + s)1. The first contribution gives z′2y and the
second contribution gives yz′r+s+2

Br,s(x, y) = yxz′2Br,s(x, y). Putting together the two
disjoint cases we obtain (i).

• If p ≥ 2 and q = 1 then the degree of the vertex v, the one before the last white ver-
tex (which is also a white vertex), is either zero or one. The first contribution gives
z′Br,s(x, y;p − 1,1). In the second case, there exists a black vertex connected to v. Then
π can be represented as

Thus, this contribution gives yz′r+2
Br,s(x, y)

∑s

j=1 z′s−j
Br,s(x, y;p − 1, j). Putting

together the two disjoint cases above, we obtain (ii), as required.
• If q ≥ 2 and p = 1 then the degree of v, the second vertex (which is black), is either zero

or one. The first contribution gives z′Br,s(x, y;1, q − 1). In the second case, there exists
a white vertex connected to v. Then π can be represented as

Thus, this contribution gives yz′s+2
Br,s(x, y)

∑r

j=1 z′r−j
Br,s(x, y; j, q − 1). Putting

together these two disjoint cases, we get (ii), as requested.
• Let p,q ≥ 2. We consider the following two cases corresponding to the possible degrees

of v, the vertex (which is white) before the last vertex. The contribution of the case in
which the degree of v is zero gives z′Br,s(x, y;p − 1, q). If the degree of v is one, then
there exists a black vertex w connected to v. Then there are two possibilities: w is one of
the first q − 1 black vertices or is not one of those. The contribution of the first case gives
yz′2 ∑q−1

j=1 z′q−1−j
Br,s(x, y;p − 1, j). The contribution of the second case (similar to the

case p ≥ 2 and q = 1) gives yz′2Br,s(x, y;q − 1)
∑s

j=1 z′s−j
Br,s(x, y;p − 1, j). Putting

together the two disjoint cases above, we obtain (iv), as claimed.
�
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Lemmas 2 and 3 together with (5) give a (nonlinear) system of equations in the vari-
ables Br,s(x, y), Br,s(x, y; t) (t = 0,1, . . . , s), and Br,s(x, y;p,q) (p = 1,2, . . . , r and
q = 1,2, . . . , s). We solve this system for several interesting cases.

Theorem 4 Let r ≥ 1. Then

Br,1(x, y) = B1,r (x, y) = (1 + xB1,r (x, y))(1 + xyB1,r (x, y))r .

Moreover, for all n ≥ 0,

NC((ara†)n) =
n∑

j=0

1

n + 1

(
n + 1

j + 1

)(
rn + r

j

)
(a†)n−j arn−j ,

NC((a(a†)r )n) =
n∑

j=0

1

n + 1

(
n + 1

j + 1

)(
rn + r

j

)
(a†)rn−j an−j .

The above theorem can be proved combinatorially as described in Sect. 5. Another ap-
plication of Lemmas 2 and 3 is the next observation.

Theorem 5 The generating function B2,2(x, y) satisfies

B2,2(x, y) = 1 + x(1 + y)2B2,2(x, y) + 2xy(1 + x(1 + y) + xy2)B2
2,2(x, y)

+ x2y2(x(1 + y)2 − 1)B3
2,2(x, y) + x4y4B4

2,2(x, y).

4 Noncrossing Normal Ordering Form of (ar + (a†)s)n

Let us denote by Wrs(n) the set of all the linear representations of the noncrossing contrac-
tions of (ar + (a†)s)n. For each linear representation π ∈ Wrs(n), define w(π) (resp. e(π))
to be the number of white vertices (resp. edges) in π and. Let Ar,s(x, y, z) be the generating
function for the number of linear representations π ∈ Wrs(n) with exactly m edges and d

white vertices, that is,

Ar,s(x, y, z) =
∑

n≥0

∑

π∈Wrs (n)

xnye(π)zw(π).

Hence, the noncrossing normally ordered form of (ar + (a†)s)n is given by

NC((ar + (a†)s)n) =
∑

i≥0

i∑

j=0

(the coefficient of xnyj zi in Ar,s(x, y, z))(a†)n−ri−j ai−j .

In order to find the noncrossing normally ordered form of (ar + (a†)s)n, it is enough to find
an explicit formula for the generating function Ar,s(x, y, z). In this section, we present a
nonlinear system of equations whose solution gives an explicit formula for Ar,s(x, y, z). We
write

Ar,s(x, y, z) = 1 + xzrAr,s(x, y, z) + Ar,s(x, y, z; s), (6)

where Ar,s(x, y, z; t) is the generating function for all the linear representations π ∈ Wrs(n)

such that the canonical sequential form of π starts with 12 . . . t . Applying a similar argument
as in the proof of Lemma 2, we have a recurrence relation for the sequence Ar,s(x, y, z; t).
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Lemma 6 Let z′ = x
1
s and z′′ = x

1
r . For all t = 1,2, . . . , s,

Ar,s(x, y, z; t) = z′Ar,s(x, y, z; t − 1) + Ar,s(x, y, z)

r∑

j=1

(z′′z)r−jAr,s(x, y, z; j, t)

with the initial condition Ar,s(x, y, z;0) = Ar,s(x, y, z), where Ar,s(x, y;a, b) is the gener-
ating function for the number of linear representations π ∈ Wrs(n), such that π starts with b

black vertices, ends with a white vertices and there is an edge between the first black vertex
and last white vertex.

Proof Let π be any linear representation in Wrs(n) such that π starts with t black vertices.
Let us write an equation for Br,s(x, y; t). The first black vertex has degree either zero or one.
The contribution of the first case is z′Ar,s(x, y, z; t −1). Now let us consider the second case,
that is, the first black vertex has degree one.

Thus our contraction π can be written as π = π ′′q ′ . . . (p + 1)′π ′, see the above figure,
where π ′ starts with t black vertices and ends with j white vertices and there is an edge
between the first black vertex of π ′ and the last white vertex of π ′; π ′ is followed by q − p

white vertices such that q − p + j = r . Since we are interested in the noncrossing contrac-
tions, there are no edges from q ′ . . . (p + 1)′π ′ and π ′′. Therefore, the contribution of this
second case gives

Ar,s(x, y, z)

r∑

j=1

(zz′′)r−jAr,s(x, y, z; j, t).

Adding the above disjoint cases we obtain the recurrence relation. From the definitions, we
obtain that Ar,s(x, y, z;0) = Ar,s(x, y, z), as required. �

As we see in Lemma 6, to find a formula for the generating function Ar,s(x, y, z), we
need to find a recurrence relation for the generating functions Ar,s(x, y, z;p,q). This can
be done by using a similar techniques as in the proof of Lemma 3, which gives a recurrence
relation for the sequence Ar,s(x, y, z;p,q).

Lemma 7 Let z′ = x
1
s and z′′ = x

1
r , p = 2,3, . . . , r , and q = 2,3, . . . , s. Then the following

holds:

(i) Ar,s(x, y, z;1, q) = yzz′z′′Ar,s(x, y, z;q − 1).

(ii) Ar,s(x, y, z;p,q) = yzz′z′′Ar,s(x, y, z;p − 1, q)

+ yz′z′′
q−1∑

j=1

z′q−1−j
Ar,s(x, y, z;p − 1, j)

+ yzz′z′′Ar,s(x, y, z;q − 1)

s∑

j=1

z′s−j
Ar,s(x, y, z;p − 1, j).
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Proof Let π be any linear representation in Wrs(n) such that the last p vertices of π are
white, the first q vertices of π are black, and there is an edge between the first black vertex
and the last white vertex. The generating function for the number of such linear representa-
tions π , respect to the number vertices, the number of white vertices and the number edges
in π , is given by Ar,s(x, y, z;p,q). Now, let us write an equation for Ar,s(x, y, z;p,q) for
each of the following two cases:

• If p = 1 and q ≥ 1 then it is not hard to see from the definitions that Ar,s(x, y, z;1, q) =
yzz′z′′Ar,s(x, y, z;q − 1).

• Let p ≥ 2. Let us consider the following two cases that correspond to the degree of v,
the vertex before the last vertex (which is white). The contribution of the case when the
degree of v is zero gives yzz′z′′Ar,s(x, y, z;p − 1, q). If degree of v is one then there
exists a black vertex w connected by an edge with v. There are two possibilities: w is one
of the first q − 1 black vertices or it is not. Applying similar arguments as in the proof of
Lemma 3, we can see that the contribution of the first case gives

yz′z′′
q−1∑

j=1

z′q−1−j
Ar,s(x, y, z;p − 1, j)

and the contribution of the second case gives

yzz′z′′Ar,s(x, y, z;q − 1)

s∑

j=1

z′s−j
Ar,s(x, y, z;p − 1, j).

Together, the two case above give (ii), as claimed.
�

Hence, Lemmas 6 and 7 together with (6) gives a (nonlinear) system of equations
in the variables Ar,s(x, y, z), Ar,s(x, y, z; t) (t = 0,1, . . . , s), and Ar,s(x, y, z;p,q) (p =
1,2, . . . , r and q = 1,2, . . . , s).

Theorem 8 The generating function A = Ar,1(x, y, z) satisfies

A = 1 + x(1 + zr)A + x2yzrAr 1 − xryr(1 + A)r)

1 − xy(1 + A)
.

For example, when r = 1, the above theorem gives

A1,1(x, y, z) = 1 − xz − x − √
(1 − x − xz)2 − 4x2yz

2x2yz
.

Using the fact that 1−√
1−4x

2x
= ∑

n≥0 cnx
n, where cn = 1

n+1

(2n

n

)
the n-th Catalan number, we

have

A1,1(x, y, z) =
∑

n≥0

n∑

j=0

n−j∑

i=j

cj

(
n

i + j

)(
i + j

2j

)
xnyj zi .

Thus, the noncrossing normally ordered form of (a + a†)n is given by

NC((a + a†)n) =
n∑

j=0

n−j∑

i=j

cj

(
n

i + j

)(
i + j

2j

)
(a†)n−i−j ai−j . (7)
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Another application of Lemmas 6 and 7 with r = 1 and s ≥ 1 is that the generating
function A1,s (x, y, z) satisfies the equation

A1,s (x, y, z) = 1 + xzA1,s (x, y, z) + xA1,s(x, y, z)(1 + xyzA1,s (x, y, z))s . (8)

By Lagrange inversion formula [30] on the above equation, we obtain that

A1,s (x, y, z) =
∑

n≥0

n∑

j=0

n∑

i=j

1

n + 1

(
n + 1

j + 1

)(
n − j

n − i

)(
s(n − i)

j

)
xnyj zi,

which leads to the following result.

Theorem 9 The normally ordered form of (a + (a†)s)n is given by

NC((a + (a†)s)n) =
n∑

j=0

n∑

i=j

1

n + 1

(
n + 1

j + 1

)(
n − j

n − i

)(
s(n − i)

j

)
(a†)s(n−i)−j ai−j .

We remark that Theorem 9 for s = 1 gives

NC((a + a†)n) =
n∑

j=0

n−j∑

i=j

1

n + 1

(
n + 1

j + 1

)(
n − j

n − i

)(
n − i

j

)
(a†)n−i−j ai−j

=
n∑

j=0

n−j∑

i=j

n!
j !(j + 1)!(i − j)!(n − i − j)! (a

†)n−i−j ai−j

=
n∑

j=0

n−j∑

i=j

(2j)!
j !(j + 1)!

n!
(i + j)!(n − i − j)!

(i + j)!
(2j)!(i − j)! (a

†)n−i−j ai−j

=
n∑

j=0

n−j∑

i=j

cj

(
n

i + j

)(
i + j

2j

)
(a†)n−i−j ai−j ,

as described in (7).

5 Two Particular Cases, k-ary Trees, and Lattice Paths

In this section, we relate our linear representations Vrs(n) and Wrs(n), for several particular
cases of r and s, to different combinatorial structure, such as k-ary trees, lattice paths, and
Dyck paths (these notions will be defined below).

5.1 The Case (ara†)n and k-ary Trees

Our goal is to show that the number of noncrossing contractions of (ara†)n is counted by
the generalized Catalan numbers Cn,k , defined by Cn,k = 1

(k−1)n+1

(
kn

n

)
. In our approach, we

give a recursive construction of the set Vr1(n). Intuitively, for a noncrossing contraction
π = πn(r+1) . . . π2π1 in Vr1(n), we may obtain a contraction in Vr1(n − 1). Then we need
to keep track of all possible ways to recover a noncrossing contraction in Vr1(n) from a
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smaller noncrossing contraction. In the recursive generation of noncrossing contractions
with n vertices, one is often concerned with the edges whose points have the label 1 in the
canonical sequential form. However, for the purpose of this paper, we consider edges whose
first point is labeled by 1. We denote by Eπ the edge (j,1). In general, we use the notation
Ei to denote the edge with first point i. In this sense, Eπ = E1. Also, we make use of the
ordered set Fπ of all white vertices j − 1, j − 2, . . . , i + 1, where i is maximal, j > i and i

is a black vertex.
An edge (j, i) is said to cover the edge (j ′, i ′) if and only if j > j ′ > i ′ > i. We have the

following lemma on the structure of the noncrossing contractions of (ara†)n. The lemma is
straightforward to prove.

Lemma 10 Let π be any noncrossing contraction in the set Vr1(n). Then the canonical
subsequential form of π is

π(m+1)(am + sm+1 − 1)′ . . . (am + sm)′a1(am + sm − 1)′ . . . (am + sm−1)
′am−1 . . .

(am + s2 − 1)′ . . . (am + s1)
′am(am + s1 − 1)′ . . .

(am + s0)
′π(m)amπ(m−1)(am−1 + r)′ . . .

(am−1 + 1)′am−1 . . . π(1)(a1 + r)′ . . . (a1 + 1)′a1

where a1 = 1, ai+1 −ai > r , si+1 ≥ si ≥ 0, π(i) ∈ Vr1(ai+1 −ai − r −1), i = 1,2, . . . ,m−1,
π(m) is either empty (s0 = 1) or π(m) = (am +s0 −1)θ(am +r)′ . . . (am +1)′ with θ ∈ Vr1(s0 −
2 − r), and π(m+1) ∈ Vr1(n − am+1 − s0 + 1). In other words, there exist m edges, say
Ei1 = Eπ,Ei2 , . . . ,Eim , such that the linear representation of π is either or where each
edge Eij covers the edge Eij+1 , such that the end points of Ei1 , . . . ,Eim are white vertices,
v1, . . . , vm, and there is no black vertex between vi and vj , for any i and j .

A k-ary tree is a directed tree in which each vertex has degree 0 or k (see, e.g., [27]).
The number of k-ary trees with n vertices is counted by the k-ary numbers, defined by

1
kn+1 (

kn+1
n

), for any positive integers k and n. Let Tr,n be the set of r-ary tree with n nodes.
We denote by T 1, . . . , T r the children of its root (from right to left). Now we are ready to
define a bijection � recursively. Firstly, the empty contraction maps to the empty (r + 1)-ary
tree, which gives the bijection �:Vr1(0) 
→ Tr+1,0. Define F ′

π = {k1, k2, . . . , km} to be an
ordered subset (that is, k1 > k2 > · · · > km) of Fπ , such that the node ki is the end point of
the edge Eim+1−i

. Define the minimal vertex of Fπ by k0, that is, k0 = mini∈Fπ i. Suppose we
have defined the bijection �:Vr1(m) 
→ Tr+1,m for all m < n. For π ∈ Vr1(n), according to
the factorizations of the contraction π as described in Lemma 10, there are two cases, for all
m ≥ 1:

• If π(m) = ∅ (see Fig. 2) then we define the (km − k0 + 1)-th child of T to be T k1−k0+1 =
�(π(m+1)), and the (ki − k0 + 1)-th child of T to be T ki−k0+1 = �(π(i−1)), for each
i = 2,3, . . . ,m.

• If π(m) �= ∅ (see Fig. 3) then define the (r + 1)-th child of T to be T r+1 = �(π(m+1)), and
the (ki − k0 + 1)-th child of T to be T ki−k0+1 = �(π(i)), for each i = 1,2,3, . . . ,m.

In the case of m = 0, we define our tree T to be a (r + 1)-ary tree with root having only
one child, which is T r+1 = �(π(1)). We can see that if there is no child T r+1 of the root of
the (r + 1)-ary tree T , then this tree corresponds to a noncrossing contraction with a factor-
ization as described in Fig. 2; otherwise, the tree corresponds to a noncrossing contraction
with a factorization as described in Fig. 3. By induction on the length of the noncrossing
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Fig. 2 First factorization

Fig. 3 Second factorization

contractions and the unique construction of the map �, we have that � is invertible. It fol-
lows that is a bijection between the set of the noncrossing contractions Vr1(n) and the set
Tr+1,n of (r + 1)-ary trees. Thus, we have shown the following result.

Theorem 11 There is a bijection between the set of noncrossing contractions in Vr1(n) and
the set Tr+1,n of (r + 1)-ary trees.

Let Gr(x, y) be the generating function for the number of noncrossing contractions in
Vr1(n) with exactly m arcs, that is,

Gr(x, y) =
∑

n≥0

∑

π∈Vr1(n)

xny#arcs in π .

Then the bijection φ gives that Gr(x, y) = (1 + xGr(x, y))(1 + xyGr(x, y))r . By Lagrange
inversion formula [30] on the above equation, we obtain that

Gr(x, y) =
∑

n≥1

xn−1

n

n−1∑

i=0

(
n

i

)(
rn

n − 1 − i

)
yn−1−i .

As a consequence, we have the following theorem.

Theorem 12 The noncrossing normally ordered from of (ara†)n is given by

NC((ara†)n) =
n∑

j=0

1

n + 1

(
n + 1

j + 1

)(
rn + r

j

)
(a†)n−j arn−j .

Using similar arguments as in the construction of the bijection �, one can obtain a bijec-
tion between the set of the noncrossing contractions of (a(a†)r )n and the set of (r + 1)-ary
trees with n nodes.

Theorem 13 The noncrossing normally ordered from of (a(a†)r )n is given by

NC((a(a†)r )n) =
n∑

j=0

1

n + 1

(
n + 1

j + 1

)(
rn + r

j

)
(a†)rn−j an−j .
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Fig. 4 The set P2 of lattices paths

Fig. 5 The bijection �

5.2 The Case (a + (a†)2)n and Lattice Paths

In this section, we present a bijection � between the set of contractions W12(n) of the word
monomials in the expression F(a, a†) = (a + (a†)2)n and a special set Pn of L-lattice paths.
These are lattice paths on Z

2, which are of length 4n and go from (0,0) to (3n,0). Moreover,
the paths never go below the x-axis with the steps H = (2,1), D = (1,−1) and L = (1,2),
and with no three consecutive D steps (that is, there is no triple DDD). The paths of length
six are described in Fig. 4.

Let P be a path in Pn. Then, using a first return decomposition (first return to x-axis) we
obtain the factorization of P as either

HDP ′, LDDP ′, LDP ′HDDP ′′, HP ′HDDP ′′D, or LDP ′LDP ′′HDDHDDP ′′′,

where P ′,P ′′,P ′′′ are paths of smaller length (see Fig. 5). On the basis of this observation,
the bijection � can be defined recursively. Firstly, the empty contraction maps to the empty
path, which gives the bijection �:W12(0) 
→ P0. Suppose we have defined the bijection
�:W12(m) 
→ Pm for all m < n. For π ∈ W12(n), according to the factorizations of the
contraction π , there are five cases:

(i) The contraction π starts with a white vertex, namely π = π ′1′ ∈ W12(n). We define
�(π) to be the joint of the steps HD and the path P ′ = �(β), where βi = π ′

i − 1
(define i ′ − d = (i − d)′), for each i = 1,2, . . . , n − 1 (see Fig. 5(1)).

(ii) The contraction π starts with a black vertex, namely π = π ′1 ∈ W12(n). We define
�(π) to be the joint of the steps LDD and the path P ′ = �(β), where βi = π ′

i − 1, for
each i = 1,2, . . . , n − 1 (see Fig. 5(2)).

(iii) The contraction π starts with an arc followed by a black vertex with degree zero, that
is, π = π ′′1π ′21 ∈ W12(n), where in π ′ does not occur the letter 2. We define �(π)

to be the joint of the step LD, the path P ′ = �(β ′), the steps HDD, and the path
P ′′ = �(β ′′), where, for each i, β ′

i = π ′
i − 2 and β ′′

i = π ′′
i − max(2, �) such that � is the

maximal letter of π ′ (see Fig. 5(3)).
(iv) The contraction π starts with a black vertex of degree zero followed by an arc, that is,

π = π ′′2π ′21 ∈ W12(n), where in π ′′ does not occur the letter 1. We define �(π) to be
the joint of the step H , the path P ′ = �(β ′), the steps HDD, and the path P ′′ = �(β ′′),
where, for each i, β ′

i = π ′
i −2 and β ′′

i = π ′′
i −max(2, �) such that � is the maximal letter

of π ′ (see Fig. 5(3)).
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(v) The contraction π starts with two arcs, that is π = π ′′′2π ′′1π ′21 ∈ W12(n). We de-
fine �(π) to be the joint of the steps LD, the path P ′ = �(β ′), the steps LD, the
path P ′′ = �(β ′′), the steps HDDHDD, and the path P ′′′ = �(β ′′′); for each i,
β ′

i = π ′
i − 2, β ′′

i = π ′′
i − max(2, �′) and β ′′′ = π ′′′

i − max(2, �′, �′′), such that �′ and
�′′ are the maximal letters of π ′ and π ′′, respectively (see Fig. 5(4)).

The inverse map of � is clearly understood from the above cases (see the factorizations
of the paths in Pn and the factorizations of the contractions in W12(n) as described in Fig. 5).

Theorem 14 The map � is a bijection between the set of contractions in W12(n) and the
set of lattices paths in Pn. Moreover, for any contraction π ∈ W12(n), we have:

(i) the number of arcs in the linear representation of π equals the number of HDD in the
corresponding path �(π);

(ii) the number of white vertices in the linear representation of π equals the number of HD

in the corresponding path �(π).

Let P (x, y) = ∑
n≥0

∑
P∈Pn

xnyHDD(P ) be the generating function for the number of
paths P of length 3n in Pn, respect to the semilength n of P and the number of occurrences
HDD(P ) in the string HDD in P . Then by the factorization of the paths in P , see Fig. 5,
we obtain that the generating function P (x, y) satisfies

P (x, y) = 1 + 2xP (x, y) + 2x2yP 2(x, y) + x3y2P 3(x, y).

From (8) we obtain that P (x, y) = A1,s (x, y,1). Thus we can state the following result.

Corollary 15 The noncrossing normally ordered form of (a + (a†)2)n is given by

NC((a + (a†)2)n) =
n∑

j=0

n∑

i=j

1

n + 1

(
n + 1

j + 1

)(
n − j

n − i

)(
2n − 2i

j

)
(a†)2n−2i−j ai−j .

5.3 (a + a†)n, (aa†)n, and 2-Motzkin Paths

A 2-Motzkin path of length n is a path on the plane from the origin (0,0) to (n,0) consisting
of up steps, down steps, level steps colored black, and level steps colored gray, such that
the path does not go below the x-axis. We will use U , D, L, and L′, to represent the up,
down, black level, gray level steps, respectively (see Fig. 6). Most probably, the notion of
2-Motzkin path firstly appeared in the work of Delest and Viennot [13] and has been studied
in a number of works, including [2, 14].

First, we describe a bijection � between the set of linear representations V11(n) and the
set Mn of 2-Motzkin paths of length n. Let π = π2nπ2n−1 . . . π1 be a linear representation
in V11(n). We read each time two vertices from π from right to left and successively generate
the 2-Motzkin path. When a black vertex π2j−1 with degree zero is followed by a white
vertex π2j with degree zero, then in the 2-Motzkin path we add a black level step L. When a
black vertex π2j−1 with degree one is followed by a white vertex π2j with degree one, then

Fig. 6 2-Motzkin paths of
length 2
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in the 2-Motzkin path we add a gray level step L′. When a black vertex π2j−1 with degree
one (resp. zero) is followed by a white vertex π2j with degree zero (resp. one), then in the
2-Motzkin path we add an up (resp. down) step U (resp. D). The reverse of the map � is
obvious.

Proposition 16 There is a bijection � between the set of noncrossing contractions in V11(n)

and the set of 2-Motzkin paths of length n. Moreover, π ∈ V11(n) has exactly m edges if and
only if the number of black level steps and up-steps in �(π) equals m.

The above proposition gives that the noncrossing normally ordered form of (aa†)n is
given by

NC((aa†)n) =
n∑

j=0

1

n + 1

(
n + 1

j + 1

)(
n + 1

j

)
(a†)n−j an−j

(see Theorem 13) where the numbers 1
n+1

(
n+1
j+1

)(
n+1
j

)
are the so-called Narayana numbers

(see, e.g., [31]).
Now, we describe a second bijection 
 between the set of linear representations W11(n)

and the set Mn of 2-Motzkin paths of length n. Let π = π2nπ2n−1 . . . π1 be a linear repre-
sentation in W11(n). We read π from right to left to generate the 2-Motzkin path. When a
black (resp. white) vertex πj with degree zero is read, then in the 2-Motzkin path we add a
black (resp. gray) level step L (resp. L′). When a black (resp. white) vertex with degree one
is read, then in the 2-Motzkin path we add an up (resp. down) step U (resp. D). The reverse
of the map 
 is again obvious.

Proposition 17 There is a bijection 
, between the set of noncrossing contractions in
W11(n) and the set of 2-Motzkin paths of length n. Moreover, π ∈ W11(n) has exactly m

edges and d white vertices if and only if the number of up-steps in 
(π) equals m and the
number of gray level steps in 
(π) is d − m.

The above proposition gives that the noncrossing normally ordered form of (a + a†)n is
given by

NC((a + a†)n) =
n∑

j=0

n−j∑

i=j

cj

(
n

i + j

)(
i + j

2j

)
(a†)n−i−j ai−j .

as described in Theorem 9.

6 Open Problems

A number of directions for further research seem to arise naturally. The first and foremost
problem consists in deriving a more physical understanding of the process of noncrossing
normal ordering. As discussed in Sect. 2, the result of noncrossing normal ordering cannot be
reproduced by the conventional normal ordering where some kind of commutation relations
is assumed. Thus, the statistics resulting from the noncrossing normal ordering is a new and
nontrivial phenomenon which clearly deserves closer study. In this context it is not even
clear whether one should call the operators for which the noncrossing normal ordering is
applied “bosonic” anymore.

Let us also state two mathematical problems:
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• Study the nonnesting normally ordered form of a given expression F(a, a†). We say that
the two edges e = (a, b) and e′ = (c, d) are nesting if a < c < d < b (that is, the edge e

covers the edge e′) or c < a < b < d (that is, the edge e′ covers the edge e). In the case of
nonnesting partitions, see [21].

• Study the distribution of a given statistic on the set of normally ordered form of a given
expression. For example, study the asymptotic behavior of the number of edges that cover
other edges in the normally ordered form of (a(a†)r )n, when n tends to infinity.
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