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Models of graph growth are important for studying and simulating the behaviour of a
large variety of real-world phenomena and for the in silico construction of networks with
desirable properties. Such phenomena occur ubiquitously in the social sciences, technology,
and nature (see, for example, [22, 38], for overviews on complex networks). Many pages
have been written around the topic of graph growth [13]: among the most extensively
studied models are those based on preferential attachment – or “the rich get richer”scheme
– together with its many variations. Predating networks science, the basic idea behind
preferential attachment goes back to the 1920s and the work of the statistician Yule [47].
The set up usually consists of two ingredients: an iterative process in which new nodes are
added sequentially; and a mechanism for choosing neighbours. Only when the preference on
the neighbours is a linear function of the degrees of the nodes, then the degree distribution
of the growing graph turns out to be a power-law. The literature contains many variants
of preferential attachment, respectively defined by local rules, fitness, redirection, copying,
substructures, games, geometry, etc. [44].

We are interested in generalizing preferential attachment with steps specified by random
walks [7]. The original illustrated in [40] and [29] is simple. Imagine a walker moving along
the edges of a graph. At a given node, the walker chooses to stay where it is or to move
to one of the neighbouring nodes with a fixed but arbitrary probability. If we wait long
enough, the probability that the walker is at a specific node is proportional to the number
of its neighbours: this probability converges towards a unique stationary distribution and is
independent of the starting node – a fundamental property in algorithmic applications of
Markov chains [35, 41]. Once we are close enough to the stationary distribution, we add
a new node to the graph, and choose its neighbours according to the distribution induced
by the walker. If we keep adding nodes in this fashion, we eventually grow a graph whose
degree distribution follows a power-law. When the walker makes an unbiased choice at each
node, this mechanism produces exactly the Barabási-Albert (BA) random graph [11], which
is the most widely studied outcome of preferential attachment so far.

Graph growth fits into a larger picture: the study of dynamical graphs, i.e., graphs
changing in time. This is a direction that is currently generating interest as a natural
development of static network theory ([28] is a recent review). Letting the structure of
a graph co-evolve together with a dynamical process is a particularly appealing and well-
motivated idea. In particular, the existence or activity of a node and the strength of a link
can be time-dependent on the state of a dynamical process taking place on the graph. For
instance, if the nodes of a graph represent individuals having an opinion which changes over
time according to a certain rule, and the links stand for friendship among nodes, then the
existence and strength of each link can change over time as a function of the difference of
opinion between adjacent nodes. People usually tend to remain linked with neighbours who
share similar opinions, and to severe links to other individuals having different opinions. In
this case the structure of the network depends on the distribution of opinions and, on the
other hand, the opinion dynamics depends on the actual connection pattern. In a single
word, the network and the opinion formation process are co-evolving. Opinion formation is
of course only a very specific example of a process able to drive the evolution of a network.
Many other models of networks co-evolving with synchronization [10], diffusion [9], and voter
models [15, 45] have been discussed in the last decade (see [26]).

Networks seen as states of a quantum mechanical system co-evolving together with a clas-
sical process have been proposed to explore the role of emergence in approaches to discrete
quantum gravity [27]. Networks whose edges correspond to bipartite states – essentially
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certain circuits with two-qubit gates – have been studied in relation to entanglement distri-
bution [2].

With the aim of designing a new methodology to construct networks, we ask the following
question: what happens when we consider a graph whose growth depends on the state of
a quantum mechanical system? In particular, we are interested in replacing the walk that
gives the BA random graph with a quantum dynamics. At each step of the growth process,
the neighbours of the newly added node are chosen by observing the state of the quantum
system – by using a standard (von Neumann) measurement. We have the co-evolution
of two processes: each step of the graph growth process depends on a quantum dynamics
and, conversely, the dynamics takes place in a phase space (the graph) modified during the
growth.

Quantum walks are an extensively studied area: a continuous version is discussed in [24]
and dates back to 1964; a discrete version was introduced in the 1990’s [3]. During the
past decade, quantum walks have acquired an important role in the context of quantum
computation as a methodology for designing algorithms [8, 33]. Quantum walks are also
essential in modeling quantum buses for the transfer of information in nanodevices. The
dynamics of an exciton in a spin chain or an arbitrarily coupled spin system is modeled by
a coherent quantum walk [16, 20]. Additionally, the transport of energy in large molecular
complexes has been explained using a class of quantum walks whose evolution is assisted by
interactions of the system with a noisy environment [39].

The quantum walker, like the classical (i.e., random) one, induces a probability distri-
bution on the nodes of a graph. However, the distribution is obtained by measuring the
state of the system at a given time. In quantum mechanics the state (of a closed system)
is identified with a unit vector in a complex phase space, with probabilities substituted
by amplitudes. A major property of quantum walks is the existence of interference effects
during the dynamics. Once the position of the quantum walker is measured, the resulting
probability distribution is the result of an interference pattern. Notably the distribution
does not converge in time because the evolution of a quantum mechanical system is com-
pletely reversible [3, 21]. The dynamics can be periodic, or quasi-periodic, but there is no
convergence unless we take a time-average [4] – or we stop the evolution at a given time.
Interference is one of the ingredients that permits algorithms of good performance to be de-
signed [1] and is also responsible of many counterintuitive behaviours of quantum systems.
For instance, transporting a packet of information from one node to another node without
error, even if routed “randomly” through the graph – a phenomenon called perfect state
transfer [20]; or reaching far away nodes with an average probability that is exponentially
higher than that for the classical analogue [18]. It is also remarkable that quantum walks
have been successfully implemented through various experimental schemes involving light
or matter [12, 34, 42].

Here we work with continuous-time quantum walks (CTQW) [25]. In these processes the
matrix defining network links is interpreted as the system Hamiltonian: this is the operator
corresponding to the total energy of the system. The Hamiltonian specifies the interactions
between the particles associated with the nodes in terms of coupling strengths. CTQWs
are reversible by definition, since the dynamics is governed by the Schrödinger equation. (A
formal definition is in Appendix.)

What can we say about graphs whose growth depends on the state of quantum walks?
Do they have structural properties comparable to those of the BA random graph? The time
at which the measurement is performed (i.e. the time at which the walk is stopped) drasti-
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cally influences the distribution of attachment probabilities; moreover, different attachment
probabilities depend on the initial node. This reflects the richer behaviour of quantum walks
with respect to random walks. We consider the time-average of all distributions obtained by
running the walk for a given time. At each step of the iteration, we could choose the distri-
bution obtained by stopping the walk at a time determined by a function of the number of
nodes. We choose here (arbitrarily) to run the walk for an infinite time – this is like stopping
the walk at a random time and it looks like a good choice for exploring the general idea.
The time length of each walk is in fact a tunable parameter, differently from the classical
BA model.

We consider three alternatives for the location of the starting node used to seed the
quantum walk: a) the walks always start from the initial node, i.e. the node added at the
first step of the graph growing iteration; b) the walks always start from the node added
at the last step; c) at each step, the starting node is chosen at random – of course, we
could consider any probability distribution on the set of existing nodes. Since the growth
is driven by the quantum walk which effectively acts as a “controller”, we expect different
asymptotic distributions. On the one hand, obtaining the time-average of a CTQW is
tractable problem; but on the other hand, predicting the properties of our growing graphs
is a difficult one because the time-average has erratic behaviour [23]. Presenting an analytic
treatments of the asymptotics remains open.

As summarized in Figure 1, different choices of the starting node produce graphs with
different structural properties. For (a), the final graph is characterized by a two-mode power-
law degree distribution (upper left panel) and has super-hubs, i.e. nodes with degree of the
same order of the total number of nodes. Such exceptionally highly-connected nodes are
usually among the oldest ones, i.e. the nodes added in the very first steps of the iteration.
The super-hub turns out to be incident with up to 30% of the total number of edges in the
final graph. This condensation phenomenon is indeed observed in real communication and
information networks, including the Internet and the World Wide Web, and in biological
networks [13]. Notice that the degree distribution obtained in (a) is different from that
obtained for the BA random graph shown in the same panel. An obvious by-product of the
existence of a super-hub is that the average length of the shortest paths between the nodes
is much smaller than the one observed in the Erdős-Renyi (ER) and BA random graphs of
the same size, as highlighted below.

The final graph also exhibits a surprisingly high local cohesion. This corresponds to a
relatively high clustering coefficient (denoted by C), a property which is extensively found
in real networks but is rarely reproduced in models of random graphs without introducing
artificial ingredients. Another remarkable property is the presence of pronounced disassor-
tative degree-degree correlations: the average degree dk of the neighbours of a node with
degree k depends on k and decreases as a power-law, dk ∼ kν , with ν = −0.92. The exis-
tence of disassortative degree-degree correlations is partially due to the fact that the degree
distribution of the resulting graphs do not have a structural cut-off [14], so that the average
degree of the neighbours for a substantial fraction of the nodes (i.e., those nodes which share
an edge with the super-hub), is dominated by the degree of the super-hub. For comparison,
we report in the same panel the value of dk for the BA random graph, which is practically
independent of k, except for the boundary effects observed for high values of k.

Conversely, in (b) and (c), when the walk starts either from a randomly selected node or
from the last node, we obtain exponential degree distributions and small assortative degree-
degree correlations (upper right and lower right panels, respectively). The degrees appear
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FIG. 1: The structural properties of the final network heavily depend on the choice of the starting

node for the quantum walks. If the walks starts from the node used to seed the growth process

(upper left panel), we get a two-mode power-law degree distribution. Here there is a non-negligible

probability of forming a super-hub which condenses a large fraction of the edges of the network.

In this case, the final network also has pronounced disassortative degree-degree correlations (lower

left panel). Conversely, if the walk starts from the lastly added node, or from a randomly selected

one, then the degree distribution of the final network is instead exponential (upper right panel). In

this case there is a slightly assortative degree-degree correlations (lower right panel). The results

are based on 20 realizations with N = 3000 nodes and K = 9000 edges for each scenario.

to be more homogeneous: the final graph has neither hubs nor super-hubs, it exhibits a neg-
ligible clustering coefficient and an average shortest path length (denoted by ℓ) comparable
to that of an ER or a BA random graph with an equal number of nodes.

For the ER and BA random graphs, ℓ ≃ 4.29, C ≃ 0.0035 and ℓ ≃ 2.54, C ≃ 0.02,
respectively. When the walks start from the seed node of the growth process, then the final
graph exhibits a clustering coefficient C ≃ 0.331, which is much higher than expected in a
random graph, and a considerably smaller average path length ℓ ≃ 2.41, which is in turn
smaller than those observed in ER and BA graphs of the same size and order. Therefore,
graphs grown with this method are small–worlds [46]. When the walks start from the last
node, instead, we have ℓ ≃ 4.26 and C ≃ 0.0051, which are comparable with those observed
in ER and BA graphs. Choosing the starting node at random does not seem to result in
a significant difference: ℓ ≃ 4.18 and C ≃ 0.006. The notions of assortative/disassortative
degree-degree correlations, clustering coefficient and average shortest path-length are stan-
dard in the toolbox of network theory. (We recall these definitions in Appendix.)
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As mentioned above, CTQWs have reversible dynamics and the (von Neumann) entropy
of any state during the evolution is zero. The dynamics changes if we include an interac-
tion between the system and its environment. This introduces decoherence, a phenomenon
responsible for the quantum-to-classical transition. Due to decoherence effects, the system
becomes thermodynamically irreversible. There are various ways to model decoherence in
quantum walks, for example, by monitoring the evolution at a certain rate. The non-zero
probability of performing measurements can be interpreted as a weak coupling between the
quantum system and a Markovian environment. (See [31] for a detailed survey of the topic.)
Generally, when we increase the decoherence rate, the quantum features disappear and after
a critical point the behaviour of the system is classical. Thus, in the case of a fully deco-
hered quantum walk, we are able to recover the familiar preferential attachment induced
by classical random walks [11, 40] – a random walk can be also obtained algorithmically
from a CTQW [19]. We can interpolate between these two modes by turning the level of
decoherence up or down [17, 32]. For very high decoherence rates, the system will tend to
remain in the initial state due to the quantum Zeno effect [5]. This phenomenon can be
arguably used to influence the behaviour of the degree sequence by choosing the node from
which starting each walk.
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Appendix

Quantum walks

In what follows, a graph G = (V,E) is an ordered pair, where V (G) is a set whose elements
are called nodes and E(G) ⊆ V (G)× V (G) is a set whose elements are called edges. Since
we consider graphs growing over time, we denote by Gt = (V,E) the configuration of nodes
and edges at time t. Notice that the time of the growth is a discrete variable which is
increased by one for each new node added to the graph. Consequently, the graph Gt has
exactly t nodes. The lazy walk matrix on a graph at time t, Gt = (V,E), is (or, equivalently,
is induced by) W (Gt) =

1
2
(It+A (Gt)∆ (Gt)

−1), where It is the t× t identity matrix, A (Gt)
and ∆ (Gt) are the adjacency matrix and the degree matrix of Gt, respectively. Recall that
[A (Gt)]i,j = 1 if {vi, vj} ∈ E (Gt) and [A (Gt)]i,j = 0, otherwise; [∆ (Gt)]i,j = δi,jd (i), where
d (vi) := |{vj : {vi, vj} ∈ E (Gt)}| is the degree of vi, and δi,j is the Kronecker delta. The

rule of the walk at the t-iteration is W s (Gt)
−→v i 7−→

−→
ψ s, where

−→v i is an element of the

standard basis of Rt and
−→
ψ s ∈ Rt. The matrix W s (Gt) induces a distribution on the nodes

of Gt. The j-point of the distribution corresponds to the probability of finding the walker
at node vj at time s if the walk started at time 0 from node vi. Thus, the probability is

P [i→ j, s] = ⟨−→v j,
−→
ψ s⟩.

Independently of the initial state, the lazy walk W (Gt) converges to a unique stationary
(probability) distribution π (Gt), such that [π (Gt)]i = d (i) /2 |E (Gt)|, for each i = 1, ..., t
(see, e.g., [30]). Convergence is guaranteed by the stochasticity of W (Gt) and by the fact
that there is a non-zero probability for the walker to remain at each node. The rate of
convergence depends on the spectral gap of the adjacency matrix.

The stationary distribution of a lazy walk on G2 is clearly the vector π (G2) =
1
2
[1, 1]T .

When adding v3 to G2, we define P [{v1, v3} ∈ E (G3)] = P [{v2, v3} ∈ E (G3)] =
1
2
, which

follows from π (G0). More generally, when adding a node vt+1 to Gt, we attach vt+1 to m ≥ 1
nodes in Gt, so that the probability of attaching vt+1 to vi reads P[{vt+1, vi} ∈ E (Gt+1)] =
[π (Gt)]i. The parameter m is fixed but arbitrary. It is important to remark that m is not
necessarily the degree of node vt+1 at the end of the growth process which may occur at a
time T > t. When m > 1 we usually start the growth from a (connected) graph Gm.

This mechanism constructs exactly the scale-free graphs for the original version of the
Barabási-Albert (BA) model [11]. In the BA model, bypassing the walk, a node vt+1 of degree
m is added at time t. The probability that vt+1 is adjacent to vi is in fact P[{vt+1, vi} ∈
E (Gt+1)] = [π (Gt)]i = d (i) /2 |E (Gt)|, which is exactly the stationary probability of finding
a lazy random walker in Gt at node vi.

By generalizing the above picture, given a graph on t nodes, Gt, we define a unitary matrix
U (s, t) = e−iA(Gt)s, where s ∈ R+. Unitary means that U (s, t)U † (s, t) = U † (s, t)U (s, t) =
I, where I is the identity matrix and U † (s, t) is the adjoint of U (s, t). In this case the
dynamics is reversible / non-dissipative because of unitarity. The matrix U (s, t) defines a
continuous time quantum walk (CTQW) on Gt [8]. The rule of the CTQW at the t-iteration
is U (s, t) |vi⟩ 7−→ |ψs⟩, where |vi⟩ is an element of the standard basis of a formal Hilbert
space H ∼= Ct and |ψs⟩ ∈ H. The Dirac notation tells that ∥|ψs⟩∥ = 1. The probability
that at time s the walker visits a node vj starting in a node vi is P [i→ j, s] = |[U (s, t)]i,j|2.
This probability is obtained by a projective measurement on |ψt⟩: P [i→ j, s] = |⟨vj|ψt⟩|2.
The vector (or ray) |ψt⟩ contains the amplitudes associated to each element of the standard
basis. The measurement transforms amplitudes into probabilities. According to the axioms
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of quantum mechanics the post-measurement state is the observed standard basis vector.
The matrix A (Gt) is interpreted as the Hamiltonian inducing the quantum mechanical

evolution of a particle whose degrees of freedom of the dynamics are constrained on the
edges of Gt. Indeed, this can be seen as the operator describing the evolution of the single
excitation sector of a quantum spin system (XY model) in virtue of the Jordan-Wigner
transformation [16].

At the t-th iteration, the mixing matrix of the CTQW at time s is defined by

Ms,t = eiA(Gt)s ◦ e−iA(Gt)s = U (s, t) ◦ U (−s, t) ,

where [A ◦B]i,j := [A]i,j · [B]i,j denotes the Schur-Hadamard product of two matrices A and
B. The matrix Ms,t depends on s; it gives the instantaneous mixing behaviour of the walk.
Formally, an element ofMs,t is constructed by multiplying together the amplitudes obtained
by evolving the system for a time s in the future and for a time s in the past. Differently
from the case of a lazy random walk, here there is never convergence, because the dynamics
is non-dissipative. For the walk, we have ∥|ψs⟩∥ = ∥U (s, t) |vi⟩∥ = 1.

We could also define an instantaneous mixing time by looking at the smallest s ∈ R+

for which the probability induced by the CTQW is close in some measure of similarity (for
example, total variation distance) to the uniform or the stationary probability distribution.
A possibly different growth model can be defined by making use of the distribution obtained
at a given time s. In this case, the growth is entirely dependent on the chosen value of s;
this could be fixed for each t or as a function of t, for instance. To avoid a dependence on
s, we consider a time-average of Ms,t.

The average mixing matrix is defined by taking a Cesaro mean:

M̂t = lim
s→∞

1

s

∫ s

0

eiA(Gt)s ◦ e−iA(Gt)sds =
∑
j

E◦2
j,t,

where Er is the r-th idempotent of the spectral decomposition of A(Gt) =
∑

j λjEj. In

other words, Ej,t represents the orthogonal projection onto the eigenspace ker(A(Gt)−λjI),
where λj is the j-th eigenvalue of A(Gt). The ij-th entry of M̂t is the average probability

that a walker is found at node vj (starting at node vi). Remarkably, M̂t is rational [23].
In our model of growth based on CTQWs, the attaching probability is defined by

P[{vt+1, vj} ∈ E (Gt+1)] = [M̂t]i,j, if we assume that the walker started from node vi at
the t-th iteration of the growth process. Depending on the starting node vi, we get a dif-
ferent attaching probability which will be completely defined by Gt. The time length of the

walk is not relevant given that M̂t is defined as a limit for s→ ∞.
Let Kn denote the complete graph on n vertices. This is the unique graph with n(n−1)/2

edges. Let [A]i the i-th row of a matrix A.

Algorithm. The growth of a graph based on CTQWs starts with Gm = Km. Then, for
every t > m, we samplem neighbours vj1 , vj2 , ..., vjm of the new node vt from the distribution

[M̂t−1]i and create m edges {vt, vj1}, {vt, vj2}, ..., {vt, vjm}.

The edges are all added at the same time, after m distinct CTQWs have been performed
on Gt−1. The starting node vi of the CTQW can be arbitrarily chosen. In the main body
of the paper we report some observations obtained for three different choices of the starting
node, namely a) the first node, b) the last node added to the graph and c) a different



10

randomly sampled node for each step of the algorithm. The initial condition Gm = Km can
be also relaxed.

This simple growth algorithm, based on the sampling of new edges according to the time-
average of the attaching probability distribution, suffers from the fact that the evaluation of
the Cesaro mean requires the full spectrum of the adjacency matrix A(Gt). This is the critical
step. In fact, although efficient schemes exist to compute the few largest eigenvalues of a
symmetric matrix of size n, the time complexity of the computation of the whole spectrum
is ∼ O(n3). At a first analysis, it follows that the number of steps needed to sample graph
of t nodes constructed with our method is of the order O(t3). Sampling a CTQW-based
graph is much more costly than sampling a BA random graph, for which the most efficient
algorithm runs in O(t).

Network-theoretic parameters

Let G = (V,E) be a graph on n nodes {v1, v2, ..., vn}. The average degree of G is
d(G) =

∑n
i=1 d(vi). Let d(vi) = k, for a given node vi ∈ V (G); then the average degree of the

neighbours of vi is denoted by dk. We say that two nodes vi, vj ∈ V (G) are connected if there
is l ∈ Z+ such that [Al(G)]i,j > 0. Equivalently, vi and vj are connected if there is a walk form
vi to vj. A walk from vi to vj is a sequence of edges {{vi = i0, i1}, {i1, i2}, . . . , {in−1, in =
vj}}, where the nodes are not necessarily all distinct. When the nodes of a walk are all
distinct then the we call it a path. The length of a path is the number of edges in the
path. The distance d(i, j) between vi, vj ∈ V (G) is defined as the length of the path from
vi to vj with the minimum number of edges. The average shortest path length of G is then
defined as ℓ := 1

n(n−1)

∑
i,j d(i, j). If there is no path containing vi and vj then d(i, j) = ∞,

by convention. Consequently, ℓ is finite only for connected graphs, i.e. when every pair
of nodes of the graph is contained in a path. The graphs generated by the algorithm
are connected by construction. The clustering coefficient Ci of a node vi ∈ V (G) is a
measure of the local cohesion at vi. Taking k = d(vi), we have Ci :=

1
k(k−1)

T (vi), where

T (vi) is the number of different triangles containing vi. A triangle is a graph of the form
({vi, vj, vk}, {{vi, vj}, {vj, vk}, {vi, vk}}). The clustering coefficient of G is the average of the
clustering coefficients of all nodes: C = 1

n

∑
iCi (See [37] for a general reference on these

notions).
Real networks usually exhibit correlations in their structure. For instance, in some net-

works (mostly social, information and communication networks) high-degree nodes are pref-
erentially linked to other high-degree nodes, while in biological and technological networks
high-degree nodes are preferentially linked to low-degree nodes [38]. The existence of degree-
degree correlations can be quantified in different ways. One of the most common methods
is by computing dk as a function of k. If a graph is uncorrelated then the degree of the
neighbours of a node of degree k does not depend on k, and it is possible to show that
dk = ⟨k2⟩/⟨k⟩. In real networks we observe that dk depends on k: if dk increases when k de-
creases, we say that the network has assortative degree-degree correlations ; on the contrary,
if dk decreases when k increases, we say that the network has disassortative degree-degree
correlations. (See [36] for an in-depth discussion about degree correlations in networks.) In
most real networks, dk ∼ kν (with a little abuse of notation) and the exponent ν can be
effectively used to quantify degree-degree correlations: ν > 0 and ν < 0 define assortative
and disassortative networks, respectively [43]. The larger the modulus of ν, the stronger are
the degree-degree correlations.


