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We initiate the study of zero-error capacity of quantum
channels when the receiver and sender have at their disposal a
noiseless feedback channel of unlimited quantum capacity, in
analogy to Shannon’s zero-error communication theory with
instantaneous feedback. We first show that this capacity is
a function only of the linear span of Kraus operators of the
channel, which generalizes the bipartite equivocation graph
in the classical case. This then opens the door to the search
for a quantum analogue of the fractional packing number of
a bipartite graph. We present a candidate for this, moti-
vated by a conjecture originally made my Shannon and proved
by Ahlswede, which we demonstrate to have many desirable
properties, including being additive and an upper bound to
the feedback-assisted zero-error capacity. We also sketch a cod-
ing theorem for a weaker version of this capacity attaining the
upper bound, but have to leave open the question whether the
(strict) feedback-assisted zero-error capacity – plus a constant
amount (i.e. zero rate) of forward communication – and our
upper bound always coincide. We illustrate our ideas with a
number of examples: Weyl-diagonal channels and classical-
quantum channels.

I. Zero-error communication assisted by feedback.
Consider a quantum channel N : S(A) −→ S(B),
i.e. a completely positive and trace preserving (cptp)
linear map from the operators on A to those of B
(both finite-dimensional Hilbert spaces), with Kraus and
Stinespring representations

N (ρ) =
∑
j

EjρE
†
j = TrC V ρV

†,

for linear operators Ej : A −→ B such that
∑
j E
†
jEj =

11, and an isometry V : A −→ B ⊗ C, respectively. We
will discuss a model of communication where Alice uses
the channel n times in succession, allowing Bob after
each round to send her back an arbitrary quantum sys-
tem. They may also share an entangled state prior to
the first round. Their goal is to allow Alice to send one
of M messages down the channel uses such that Bob is
able to distinguish them perfectly. More formally, the
most general quantum feedback-assisted code consists of a
state (w.l.o.g. pure) |φ〉 ∈ X0 ⊗ Y0 and for each message
m = 1, . . . ,M isometries for encoding and feedback de-

coding

U
(m)
t : Xt−1 ⊗ Ft−1 −→ At ⊗Xt,

Wt : Yt−1 ⊗Bt −→ Ft ⊗ Yt,

for t = 1, . . . , n and appropriate local quantum systems
X0 (Alice) and Yt (Bob), as well the feedback-carrying
systems Ft; see Fig. 1. For consistency (and w.l.o.g.),
F0 = Fn = C are trivial.

We call it a zero-error code if there is a measurement on
Yn that distinguishes Bob’s output states ρm =

∑
j ρ

(j)
m ,

with certainty, where the sum is over the states

ρ
(j)
m = TrXn

(
1∏
t=n

(WtEjtU
(m)
t )|φ〉〈φ|

n∏
t=1

(U
(m)
t

†
E†jtW

†
t )

)
,

the output states given a specific sequence j = j1 . . . jn
of Kraus operators. In other words, these states ρm have
to have mutually orthogonal supports, i.e. for all m 6=
m′, all j, k and ξ ≥ 0 on L(Xn),

0 = 〈φ|
n∏
t=1

(U
(m′)
t

†
E†jtW

†
t )ξ

1∏
t=n

(WtEjtU
(m)
t )|φ〉.

By linearity, we see that this condition depends only on
the linear span of the Kraus operators,

K = K(N ) = span{Ej : j},

in fact it can evidently be expressed as the orthogonal-
ity of a tensor defined as a function of |φ〉, the U (m)

t and
Wt to the subspace (K ⊗K†)⊗n – cf. similar albeit sim-
pler characterisations of zero-error and entanglement-
assisted zero-error codes in terms of S = K†K [7].

Proposition 1 A feedback-assisted code for a channel N be-
ing zero-error is a property solely of the Kraus space K =
K(N ). In particular, the feedback-assisted zero-error capacity
of N , limn

1
n log maxM , is a function only of K, and will be

denoted as C0EF (K).

In the case of a classical channel N : X −→ Y ,
with transition probabilities N(y|x), assisted by classi-
cal noiseless feedback, the above problem was first stud-
ied – and completely solved – by Shannon [9]. Shan-
non proved that, if also a finite amount, i.e. zero-rate, of
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FIG. 1. Diagrammatic representation of a feedback-assisted
code for messages m sent down a channel N used n times,
in the form of a schematic circuit diagram. All boxes are
isometries (acting on suitably large input and output quan-
tum registers), and the solid lines and arrows represent the
“sending” of the respective register. Bob’s final output state
ρm after n rounds of using the channel and feedback is in
register Yn.

noiseless forward communication available, then

C0F (N) = logα∗(Γ).

Here, Γ = Γ(N) is the equivocation (bipartite) graph
with an edge xy iff N(y|x) > 0, and α∗(Γ) is the so-
called fractional packing number – see Appendix A of the
attached paper for its definition, and for a proof of the
following result, conjectured by Shannon and proved by
Ahlswede [2]:

Proposition 2 For a bipartite graph Γ on X × Y such that
every x ∈ X is adjacent to at least one y ∈ Y ,

logα∗(Γ) = Cmin(Γ)

:= min{C(N) : Γ(N) is a subgraph of Γ},

whereC(N) is the usual Shannon capacity of a noisy classical
channel [8].

Note that for (the quantum realisation of) a classical

channel, i.e. N (ρ) =
∑
xy N(y|x)|y〉〈x|ρ|x〉〈y|, the corre-

sponding subspace is given by

K = span{|y〉〈x| : xy is an edge in Γ},

so K should really be understood as the quantum gen-
eralisation of the equivocation graph (a quantum bipar-
tite graph), much as S = K†K was advocated in [7] as a
quantum generalisation of an undirected graph.

In the following we explore this capacity and an up-
per bound on it, referring for practically all proofs to the
attached full paper.

II. Upper bound on C0EF: a quantum fractional pack-
ing number? Recall that for a channel N : S(A) −→
S(B), the entanglement-assisted classical capacity [4],
i.e. the maximum rate of asymptotically error-free com-
munication via many uses of the channel assisted by a
suitable pre-shared entangled state, is given by

CE(N ) = max
ρ

I(A : B)σ,

where σAB = (id ⊗ N )φAA′ is the joint input-output
state, φAA′ is a purification of ρ, and I(A : B) =
S(σA) + S(σB) − S(σAB) is the quantum mutual infor-
mation. Using this, we define for a quantum bipartite
graph K < L(A → B) such that 11 ∈ K†K (these are
precisely the possible Kraus subspaces of channels):

CminE(K) := min{CE(N ) : K(N ) < K}.

This definition is of course motivated by Proposition 2,
suggesting 2CminE(K) as a possible quantum generalisa-
tion of the fractional packing number. For one thing,
for the quantum realisation K of a classical equivoca-
tion graph Γ, it is easy to see that indeed CminE(K) =
Cmin(Γ) = logα∗(Γ).

At least, this quantity is related to the feedback-
assisted zero-error capacity: the Quantum Reverse
Shannon Theorem [3, 5] tell us that CE(N ) is not in-
creased even by allowing feedback, so that C0EF (K) is
upper bounded by the entanglement-assisted capacity
CE(N ) for any channel N such that K(N ) ⊂ K, hence

Lemma 3 For any quantum bipartite graph K < L(A →
B) with 11 ∈ K†K, C0EF (K) ≤ CminE(K).

Some evidence that with our definition we might
be on the right track comes from the realisation that
CminE(K) shares many properties with Cmin(Γ). First,
CminE(K) come from the following results.

Lemma 4 For any quantum bipartite graph K < L(A→B)
such that 11 ∈ K†K,

CminE(K) = min
N s.t.

K(N)<K

max
ρ

I(ρ;N ) = max
ρ

min
N s.t.

K(N)<K

I(ρ;N ).
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Lemma 5 For quantum bipartite graphs K1 < L(A1→B1)

and K2 < L(A2→B2) with 11 ∈ K†iKi,

CminE(K1 ⊗K2) = CminE(K1) + CminE(K2).

Lemma 6 Both C0EF and CminE are monotonic under pre-
and post-processing of the channel: for quantum bipartite
graphs K < L(A → B) and KA < L(A0 → A),
KB < L(B → B0), note that the matrix-multiplied space
KBKKA < L(A0 → B0) is a quantum bipartite graph.
Then,

C0EF (K) ≥ C0EF (KBKKA),

CminE(K) ≥ CminE(KBKKA).

III. CminE(K) equals the feedback-assisted conclusive
capacity. To make the statement in this section’s title a
theorem, we need to give a definition of this capacity.
The idea of it is that the sender and receiver may use
arbitrary entanglement and feedback strategies to trans-
mit classical messages through n→∞many uses of the
channel, and at the end of the protocol they need to ei-
ther succeed in transmitting the message, or conclude
that they failed, which must not happen with probabil-
ity larger than ε → 0. Here, “n uses of the channel”
refers to an arbitrary channel (cptp map) N (n) such that
K
(
N (n)

)
< K⊗n. This channel may be chosen adver-

sarially, and a code has to use the resources available in
such a way that the maximum decoding error probabil-
ity over all N (n) is bounded by ε. Then, with the max-
imum number of messages in a code denoted M(n, ε),
we may define

C∗EF (K) := lim
ε→0

lim
n→∞

1

n
logM(n, ε).

Theorem 7 For any quantum bipartite graph K < L(A →
B) with 11 ∈ K†K, C∗EF (K) = CminE(K).

With this result as our best evidence that indeed
C0EF (K) = CminE(K) in general (assuming availabil-
ity of a finite amount of zero-error communication, as in
the classical case), we close this section.

IV. Examples: Weyl-diagonal and cq-channels.
A. Denoting by X and Z the discrete transla-

tion and phase shift, consider the channel N0(ρ) =∑d−1
a,b=0 pabX

aZbρZ−bX−a, with probabilities pab ≥ 0
summing to 1. Clearly,

K = K(N0) = span{Wab := XaZb : pab > 0}.

One can prove that

CminE(K) = 2 log d− log k = C0EF (K).

B. For a given orthonormal basis {|i〉} of the input
space, and pure states |ψi〉 in the output space, con-
sider the cq-channel N0(ρ) =

∑
i |ψi〉〈i|ρ|i〉〈ψi|, which

has Kraus subspace

K = K(N0) = span{|ψi〉〈i|},

and one can show that

CminE(K) = max
(pi) p.d.

S

(∑
i

pi|ψi〉〈ψi|

)
.

Note that this can vary arbitrarily between 0 and log |A|
even when K†K = L(A) (i.e. all |ψi〉 are pairwise non-
orthogonal).

Proposition 8 C0EF (K) – when assisted by a finite amount
of noiseless forward communication – is always positive if
CminE(K) is; i.e. if the |ψi〉 are not all collinear. Fur-
thermore, C0EF (K) depends nontrivially on the geometry
of the vector arrangement, even if they are all pairwise non-
orthogonal: when they are close to parallel, C0EF (K) is ar-
bitrarily close to 0, when they are sufficiently close to being
mutually orthogonal, C0EF (K) is arbitrarily close to log |A|.

We have also investigated a class of cq-channels with
mixed output states and showed that C0EF for these is
positive, but refer the reader to the attached full paper
for details.

V. Conclusion. We have introduced the problem of de-
termining the zero-error capacity of a quantum channel
assisted by noiseless feedback, for which we introduce
an interesting upper bound, achievable under certain re-
laxations of the problem.

We consider our work here mainly as opening up the
problem, and close highlighting the open questions and
possible next steps:

1. Is CminE(K) always an achievable ffedback-
assisted zero-error rate? Is even C0EF (K) > 0
whenever CminE(K) > 0? The cq-channels con-
sidered above seem to offer a good testing ground
for ideas.

2. Is there a manifestly linear or semidefinite pro-
gramming (or even just convex optimisation) char-
acterisation of 2CminE(K)? To make progress, we
need at least to understand some properties of an
optimalN for givenK, and potentially also an op-
timal input state.

3. What is the zero-error simulation cost of a fixed
channel N ? Minimum cost over all channels with
K(N ) < K? (Cf. results along these lines for clas-
sical channels in [6].)
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