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Abstract

We consider a discrete-time dynamical process on graphs, firstly introduced in
connection with a protocol for controlling large networks of spin 1/2 quantum
mechanical particles [Burgarth and Giovannetti 2007 Phys. Rev. Lett. 99,
100501]. A description is as follows: each vertex of an initially selected set
has a packet of information (the same for every element of the set), which will
be distributed among vertices of the graph; a vertex v can pass its packet to an
adjacent vertex w only if w is its only neighbor without the information. By
means of examples, we describe some general properties, mainly concerning
homeomorphism and redundant edges. We prove that the cardinality of the
smallest sets propagating the information in all vertices of a balanced m-ary
tree of depth k is exactly (mk+1 + (−1)k)/(m + 1). For binary trees, this number
is related to alternating sign matrices.

PACS number: 03.67.−a

1. Introduction

Background. In view of applications such as quantum RAM or charge-coupled devices,
Burgarth and Giovannetti [2] introduced a protocol for arbitrarily control networks of coupled
spin 1/2 quantum particles (for example, an array of trapped ions). An important feature of
the protocol lies on the ability of transforming the physical state of the entire network, by
acting sequentially with the same local operation on a specific subset of particles. This is
valuable, since physical operations on quantum objects are generally difficult to implement.
It has been shown in [2] that a network can be prepared in an arbitrary state by acting on the
particles of a subset, only if that subset satisfies certain conditions related to the eigensystem
of the Hamiltonian. Such conditions can be lifted from the physical scenario and analyzed
in a purely combinatorial setting. This can be described in what follows as a discrete-time
dynamical process on graphs.

Definition. A (simple) graph G = (V ,E) is an ordered pair of sets defined as follows: V (G)

is a non-empty set, whose elements are called vertices; E(G) is a non-empty set of unordered
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Figure 1. The illustration of the steps of the propagation process taking place on a small graph
G, as an example. The square vertices are the elements included in PS(0) at the beginning of the
process. The other black vertices are the elements of the set PS(t)\PS(0), with t = 1, 2, 3, 4. The
grey vertices are the elements of V (G)\PS(t). The steps are then represented by five diagrams
with time flowing from the top diagram (the diagram labeled by 0) to the bottom one (the diagram
labeled by 4.). For this specific graph PS(4) = V (G). Therefore, the propagation is able to cover
the vertex set entirely.

pairs of vertices, whose elements are called edges. Let G = (V ,E) be a graph with V (G) =
{1, 2, . . . , n}. Given a set S ⊂ V (G), let N [S] = {w ∈ V (G)\S : ∃v ∈ S : {v,w} ∈ E(G)}
be the (closed) neighborhood of S. Let PS : [n] −→ V (G) be a map associating a subset of
V (G) to each time t ∈ [n] = {0, 1, . . . , n − 1}. We consider the following process:

• We select a set S ⊆ V (G) and fix PS(0) = S.
• For each t ∈ [n]\{0}, we have PS(t) = PS(t − 1) ∪ T , where T ⊆ N [PS(t − 1)].

Moreover, if w ∈ PS(t)\PS(t − 1) then there is v ∈ PS(t − 1) such that {v,w} ∈ E(G)

and N [v]\{w} � PS(t − 1).

In other words, at time t = 0, we select a subset of vertices PS(0). At time t = 1, we may
insert some vertices into PS(0) and obtain PS(1). The propagation will go on until eventually
PS(k) = V (G), for some k. Clearly, k � n − 1. However, the propagation is not free, but
it obeys some rules. Specifically, a vertex w can be inserted at time t in PS(t), only if it is
adjacent to v ∈ PS(t −1) and all other neighbors of v (except w itself) are already in PS(t −1).
If there is k such that PS(k) = V (G), we say that S propagates to G. We denote this fact by
S�G. Note that PS(t − 1) ⊆ PS(t). We denote by #A the cardinality of a generic set A. It is
important to remark that not every set PS(0) is able to propagate to the entire graph. In fact,
there are cases in which the propagation stalls. This can happen if PS(0) does not contain
a sufficiently large number of vertices. Additionally, the propagation process may still halt
before it has extended to the entire graph, because of a wrong choice of initial vertices even if
their number is large enough. Figure 1 represents the steps of the described dynamical process
taking place on a small graph. We shall adopt the convention that in all figures time goes from
top to bottom.

Interpretation. We may depict the above scenario in a more concrete language: each vertex of
an initially selected set has a packet of information (the same for every vertex in the set), which
has to be diffused among the vertices of the graph; a vertex v can pass its packet to an adjacent
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vertex w only if w is its only neighbor still without the information. In this way, v does not
need to discriminate among its neighbors, even if it is permitted to pass the information to
only one of those. Equivalently, this can be interpreted as a procedure for coloring (with the
same color) the vertices of a graph, in such a way that a vertex can be colored at a certain time
step, only if it is the unique uncolored neighbor of an already colored vertex. Note that the
propagation is not synchronized, that is, we do not require that at a certain time k, a vertex is
necessarily included in PS(k) if it is the unique uncolored neighbor of a colored vertex.

A quantitative question. Here is a precise mathematical problem: given a simple undirected
graph G, find a set of minimum cardinality that does propagate in G. The cardinality of such
a set will be denoted by π(G). Obviously π(G) is invariant under isomorphism, since it does
not depend on the labeling of the vertices. Note that in this problem we do not take into
consideration the propagation time. The problem can be in fact modified by imposing time
constraints. Finding π(G) is of practical importance, when trying to optimize the number of
local operations required to initialize and then control, a networks of spin 1/2 particles. The
computational complexity aspects of the question, a formulation as an orientation problem,
and approximation algorithms are studied in [1]. Roughly speaking, it looks like that π(G)

depends on the expansion properties of G. Intuitively higher is the number of ‘ways out’ from
each subset of vertices of a certain size and higher is π(G).

Summary of results and structure of the paper. We shall focus mainly on trees. Apart
from the introduction, this paper contains two sections. In section 2, we underline some
general properties of propagation, by taking as examples paths, combs and stars. We focus
on homeomorphism and the maximum possible number of edges that a graph can have, given
the cardinality of the initial set PS(0). We finally make a comment about Hamiltonicity and
propagation in digraphs. In section 3, we will focus on balanced trees. As a main observation,
we prove that the cardinality of the smallest set propagating in all vertices of a balanced m-ary
tree of depth k is exactly (mk+1 + (−1)k)/(m + 1). For balanced binary trees these integers
realize the Jacobsthal sequence, which is related to alternating sign matrices. The last section
is a brief conclusion.

Our reference on the theory of graphs for the terminology not defined here is the book by
Diestel [5].

2. General facts by example

Homeomorphism. It is worth keeping in mind that π(G) is invariant under homeomorphism.
It is then more appropriate to think about π(G) not as a quantity associated with a single
graph G, but rather to a family of graphs, whose members are all the graphs homeomorphic
to G. Recall that graphs G and H are homeomorphic if H (G) can be obtained by subdivision
and smoothing on G (H): a subdivision of an edge {u, v} consists of deleting {u, v}, adding
a vertex w, plus the edges {u,w} and {w, v}; a smoothing is the reverse operation, and it is
then performed only on vertices of degree two. A tree is a graph in which any two vertices
are connected by exactly one path. This property, plus the homeomorphism remark, makes
propagation on trees particularly amenable to quick observations.

Paths. Let Pn be the path of length n. The path Pn models the classic spin chain with equal
nearest neighbor couplings or more complex networks via the notion of graph covering and
equitable partitions (see, e.g., [3]). This is probably the graph for which π(G) is simplest to
determine. Indeed π(Pn) = 1, for every n. This fact is self-evident and it does not need a
proof. If V (Pn) = {1, 2, . . . , n} and {v,w} ∈ E(G) only if w = v + 1, then it is sufficient
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Figure 2. Propagation on the path P4: here PS(0) = {1}. For a path on n vertices,
PS(n − 1) = V (Pn). In fact, PS(3) = {1, 2, 3, 4}, as we can see in the bottom diagram.

Figure 3. Propagation on the graph C5 + {2, 5} ∪ {3, 5}: here PS(0) = {1, 5} and PS(3) =
{1, 2, 3, 4, 5}, as we can see in the bottom diagram. This graph is useful to point out that
augmenting Cn with extra edges can still keep #S = 2. In general, it is nontrivial to determine if
we can add edges to a given graph by keeping fixed the cardinality of S.

to take S = {1} or S = {n}. Clearly, PS(n − 1) = V (Pn). Let Gn = (V ,E) be a graph in
which #V (G) = n. Let G = {Gn : Gn satisfies a property P for all n} be a family of graphs.
We can look at the number π(Gn) as a function f : Z −→ Z, defined as f (n) = π(Gn), for
all Gn ∈ G. We have seen that π(Pn) = 1 is independent of n. This suggests the following
structural graph theory problem: characterize classes of graphs G, for which π(Gn) = c,
where c is a constant, for all Gn ∈ G. Paths have this behavior, since π(Pn) = 1, for all n. The
same can be said for n-cycles, since π(Cn) = 2. For complete graphs this is a linear function:
π(Kn) = n − 1. Figure 2 describes how {1}�P4.

Adding edges (I). Since π(Pn) = 1 and the minimum degree of Pn is 1, it is also natural to ask
about graphs for which π(G) is exactly the minimum degree, that is, the trivial lower bound.
Paths also suggest another question: given a graph G on n vertices and S ⊂ V (G), what is the
maximum number of edges that G can have such that S�G. One can obtain a cycle Cn from
a path Pn by adding an extra edge to Pn. For covering Cn by propagation, we need #S � 2.
Specifically, if S contains just two adjacent vertices then S�Cn. Can we augment Cn by extra
edges and keep #S = 2? Let E(Cn) = {1, 2}, {1, n}, {2, 3}, . . . , {n − 1, n}. Let S = {1, n}.
Still S�Cn + {2, n}. More generally, S�Cn +

⋃
i{2, i}. It is plausible to conjecture that when

#S = 2 and V (G) = n, then #E(G) = 2n − 3 (n � 2) is the maximum possible number of
edges that G can have if S�G. The graph Cn +

⋃
i{2, i} attains the bound. Figure 3 describes

how {1, 5}�C5 + {2, 5} ∪ {3, 5}.
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Figure 4. Propagation in P5,2.

Figure 5. Propagation on the comb P3,2 saturated with an additional number of edges. The extra
edges are represented by dotted lines. Note that adding a single vertex to a graph, in which we
have already fixed the initially selected vertices, may be sufficient to stop the propagation.

Combs. A comb Pn,k is a path Pn having a copy of Pk attached to each vertex. Usually the
plane embedding of this tree is such that the copies of Pk are all drawn in the upper region of
the plane determined by Pn. This justifies the term ‘comb’; the path Pn is then called bone
and the paths Pk are called fingers. So, #V (Pn,k) = kn. The comb Pn,k has two vertices
of degree 2, n − 2 vertices of degree 3, and kn − n + 2 vertices and k vertices of degree 1.
Given the invariance under homeomorphism, it is sufficient to deal with Pn,2. In fact, longer
fingers attached to the vertices of the bone Pn would not modify π(Pn,k). Equivalently,
π(Pn,k) = π(Pn,2) for every k. We have π(Pn,2) = n/2 if n is even and π(Pn,2) = �n/2	 if n
is odd. Figure 4 shows how a three-element set propagates in P5,2.

Adding edges (II). As we have already seen in the previous paragraphs, in some situations
one can add edges, and a pre-selected set will still propagate in the graph. Certainly, one can
always add edges connecting only the pre-selected vertices and create a clique of size #S. In
combs, different from the case of Cn, we can construct a clique of size n/2, containing then
1
8n2 − 1

4 edges. This implies that the total number of edges is going to increase with a faster
pace than in Cn augmented by redundant edges (see figure 5). In a generic graph, we can
always add redundant edges connecting vertices in S and then complete the subgraph induced
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by S to a clique, without altering the dynamics. Other edges can be added provided that these
satisfy some conditions. Given v ∈ PS(t), if we can add {v,w} ∈ E(G) then

(i) Suppose w ∈ PS(t). Then there is a vertex y such that y � w at time r < t .
(ii) Suppose w /∈ PS(t).

(a) If N [v] ⊆ PS(t) then we can simply proceed to include w in PS(t + 1).
(b) If N [v] � PS(t) then there is a vertex y such that y � w at a time t ′ < t ′′, where t ′′

is the time step at which v � z, for some vertex z.

We ask: what is the maximum number of edges in Pn,2 +H so that π(Pn,2) = π(Pn,2 +H)?
What about graphs in general? The answer is not immediate and we leave it as an open problem.

Stars. The complete bipartite graph K1,n−1 is also said to be a star on n vertices. Contextually
to quantum networks, properties of free bosons hopping on star networks were investigated
in [6]. If S � K1,n−1 then #S = n − 2, by taking n − 2 leaves (i.e., the vertices of degree
1). Among all graphs on n vertices, the complete graph Kn is the only graph for which the
ratio n/#PS(0) is smaller. If we include the root in S (i.e., the vertex of degree n − 1), then
#S = n − 1. This implies that we can add 1

2n2 − 3
2n + 1 redundant edges to K1,n−1 and obtain

Kn such that S � K1,n−1 and S � Kn, for exactly the same set S. If a graph G has K1,n−1 as
a spanning subgraph then #PS(0) ∈ {n − 2, n − 1}, for G. Recall that a spanning subgraph
is a subgraph that contains all the vertices of the original graph. Valuable remarking that if
a set propagates in a graph then it will propagate in all of its spanning subgraphs. Equally,
the minimum cardinality of such a set is nonincreasing when restricting ourselves to spanning
subgraphs.

Digraphs and Hamiltonicity. An orientation of a graph G is a directed graph
−→
G obtained by

giving a direction to the edges of G and in this way substituting E(G) with a set of directed
arcs. The propagation dynamics induces a partial ordering on the vertices of G and therefore
an orientation. Observe that the definition given in the introduction of this communication
can be extended to digraphs in a straightforward way. We ask: given a graph G, can we
always find an orientation

−→
G and a set S such that S �

−→
G and #S = 1? If G has a Hamilton

path then the answer is in the affirmative, because we can just orient forward the edges of the
Hamilton path and backwards the remaining edges. Note that the grid considered in [2] is
Hamiltonian. We can then always take a single vertex to propagate in an arbitrary large grid,
as far as we give a proper orientation to the edges. Formally, let

−→
P n be the Hamilton-directed

path and let S = {1}. With respect to
−→
G , we have PS(t) = {1, 2, . . . , t}, for each t. The arc

set of
−→
G is E(

−→
G) = E(

−→
P n) ∪ {(u, v) : {u, v} ∈ E(G) ∧ v < u}. In the oriented version,

we get #PS(0) = 1 also for the complete graph. For Kn, the orientation giving rise to a
Hamilton-directed path is obtained by constructing any Hamiltonian tournament. An example
is given in figure 6.

3. Balanced trees

Let us denote by T2,k a balanced binary tree of depth k. Then #V (T2,k) = 2k − 1. The root
of T2,k is denoted by v. All the remaining vertices are denoted by vx , where x ∈ {0, 1}i , for
i = 1, . . . , k − 1. In particular, {v, v0}, {v, v1} ∈ E(Tk,n) and {vx, vx0}, {vx, vx1} ∈ E(T2,k),
for every x ∈ {0, 1}i and i = 1, . . . , k − 2. The number of time steps needed to cover a tree
is necessarily equal to the diameter of the tree.

Top-down propagation. A set S is said to propagate in T2,k by top-down propagation, when it
propagates in T2,k and if vx ∈ PS(t) then x ∈ {0, 1}i , with i � t +1, for every t. Equivalently, in
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Figure 6. A single vertex propagating in an orientation of the graph K4. A single vertex is
sufficient to propagate on a Hamiltonian graph once an orientation has been chosen.

top-down propagation, the information flow goes from the root to the leaves. As a consequence,
v ∈ PS(0). It is straightforward to determine πTD(T2,k), i.e., the cardinality of the smallest
set covering T2,k by top-down propagation: given a tree T2,k , we have πTD(T2,k) = 2k−1. Let
us see why. If S = {v} then PS(1) = S. So, we need to include v0 or v1 in S. Let us take
S = {v, v0}. Now, PS(1) = {v, v0, v1}. However, PS(2) = PS(1). So, we need to include
v00, v01, v10 or v11 in S. In this way, if S = {v, v0}∪{vx : x = y0∧y ∈ {0, 1}i , 1 � i � k −2}
then S�G. It is then clear that πTD(T2,k) = #S = 2k−1.

Bottom-up propagation. A set S is said to propagate in T2,k by bottom-up propagation, when
it propagates in T2,k and if vx ∈ PS(t) then x ∈ {0, 1}i , with i = k − 1 if t = 0, i = k − 2 if
t = 1, and so on. Equivalently, in bottom-up propagation, the information flow goes from the
leaves (i.e., the vertices of the form vx , with x ∈ {0, 1}k−1) to the root. It is obvious that T2,k

is covered by bottom-up propagation if PS(0) is the set of all leaves, that is #PS(0) = 2k−1.
This is not equal to the optimum, if we want that v ∈ S only if v is a leaf, without any further
constraint. Figure 7 describes bottom-up propagation in T2,3. We will give a formal proof of
the next result, a technical lemma for establishing theorem 2.

Lemma 1. For T2,k be a balanced binary tree of depth k. Then πleaf(T2,k) = π(T2,k) =
2k+(−1)k−1

3 , i.e., the (k − 1)th Jacobsthal number.

Proof. First, take T2,3. It is useful to write Pk
S(0) and Sk when considering T2,k . Suppose

the elements of P3
S(0) being leaves only. We can start by including in S3 a single vertex, say

v00, in agreement with the notation defined. We will think of the information flow going from
bottom-left to bottom-right, with the propagation starts from v00 and ending at v11. (Just think
of T2,3 drawn on the plane in the usual way.) We will add vertices in S online, as required,
every time the propagation stops. In this way, we provide that #S is as small as possible. We

have v00
1

� v0 only if v01 ∈ P3
S(0). The notation is easy: v00 propagates to v0 at time 1. Now

S3 = {v00, v01}. So, v0
2

� v and v
3

� v1. At this stage, v1
4

� v11 only if v10 ∈ S3. At the
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Figure 7. Bottom-up propagation in the graph T2,3. Information tends to propagate from the
leaves to the root.

end, S3 = {v00, v01, v10} and #S3 = 3. It follows that πleaf(T2,3) = π(T2,3) = 3. The tree
T2,4 can be constructed by taking two copies of T2,3 and adding an extra vertex adjacent of
the roots of the smaller trees. The new vertex is the root of T2,4. We can include the set S3

in P4
S(0) for T2,4. The root of T2,4 is automatically covered and so the vertex v1 ∈ V (T2,4).

This is sufficient to show that the set S4 = {v000, v001, v100, v110} propagates in T2,4. So,
#P4

S(0) = (
2 · #P3

S(0)
) − 1 = 5. Let G be the graph obtained by adding a pendant vertex

to the root of T2,4 (i.e., a vertex of degree one). For this graph π(G) = #P4
S(0) + 1 = 6

puts in evidence a recursive way to obtain πleaf(T2,k). Since T2,k+1 is constructed with two
copies of T2,k plus a new root, we can write #Pk

S(0) = 2
(
#Pk−1

S (0)
)

+ 1, for k odd, and
#Pk

S(0) = 2
(
#Pk−1

S (0)
) − 1, for k even. Such quantities are exactly πleaf(T2,k) = π(T2,k)

because the vertices inserted online in Sk are leaves. Odd and even cases are combined in the
formula π(T2,k) = 2k+(−1)k−1

3 , the (k − 1)th Jacobsthal number [9]. �

It has been pointed out that a set S � G if S represents a configuration incompatible
with a nontrivial eigenstate of the network Hamiltonian [2]. Connections between the ground-
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state vector for some special spin systems and the alternating-sign matrices (ASMs) form
an active field of research in the interface between combinatorics, statistical mechanics and
condensed matter (see [7] and the references therein). The number of ASMs of size n is
A(n) = ∏n−1

l=0
(3l+1)!
(n+l)! . Frey and Sellers [4] proved that A(n) is odd if and only if n is a

Jacobsthal number. This observation could reveal a potential link between ASMs and the
physics (e.g., properties of the eigensystem) involved in the protocol proposed in [2], for
networks modeled by trees.

Theorem 2 is the main point of this section. The proof is essentially the same as that of
lemma 1. The sequences realized by π(Tm,k) can be seen as generalizations of the Jacobsthal
numbers.

Theorem 1. Let Tm,k be an balanced m-ary tree of depth k. Then πleaf(Tm,k) = π(Tm,k) =
mk+1+(−1)k

m+1 .

The table below contains the first values of π(Tm,k):

m/k 1 2 3 4 5 6
1 1 0 1 0 1 0
2 1 1 3 5 11 21
3 1 2 7 20 61 182
4 1 3 13 51 205 819
5 1 4 21 104 521 2604
6 1 5 31 185 1111 6665

The number Qm,k = ∑k+1
i=0(−1)k+1−imk+1−i is the mkth entry of the table, disregarding of

the signs. All sequences realized by the rows of the table appear to count walks of length
k between any two vertices in the complete graph Km+1, i.e., these are equal to A(Km+1)

k
i,j

(with i �= j ), where A(Km) is the adjacency matrix of Km. It is an open problem to exhibit a
bijection between each element in an initially selected set of minimal cardinality propagating
in Tm,k and walks of length k in Km+1.

4. Conclusion

We have considered the dynamical process on graphs introduced in [2]. The process can
be described as a discrete propagation of information on graphs obeying certain rules. By
means of examples, we described some general properties. Focusing on trees, we proved that
the cardinality of the smallest set propagating the information in all vertices of a balanced
m-ary tree of depth k is exactly (mk+1 + (−1)k)/(m + 1). For binary trees, this number is
related to alternating sign matrices. Given that the propagation model arises from a protocol
for controlling networks of coupled spin 1/2 quantum particles, a deeper analysis of this last
observation may enrich the already strong correspondence (see, e.g., [8]) between ground
states of certain spin systems and alternating sign matrices.
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