
An Application of the Deutsch-Jozsa Algorithm

to Formal Languages and the Word Problem in
Groups

Michael Batty1, Andrea Casaccino2,�, Andrew J. Duncan1, Sarah Rees1,
and Simone Severini3

1 Department of Mathematics, University of Newcastle upon Tyne, United Kingdom
2 Information Engineering Department, University of Siena, Italy

ndr981@tin.it
3 Institute for Quantum Computing and Department of Combinatorics and

Optimization, University of Waterloo, Canada

Abstract. We adapt the Deutsch-Jozsa algorithm to the context of for-
mal language theory. Specifically, we use the algorithm to distinguish
between trivial and nontrivial words in groups given by finite presenta-
tions, under the promise that a word is of a certain type. This is done by
extending the original algorithm to functions of arbitrary length binary
output, with the introduction of a more general concept of parity. We
provide examples in which properties of the algorithm allow to reduce
the number of oracle queries with respect to the deterministic classical
case. This has some consequences for the word problem in groups with
a particular kind of presentation.

1 The Deutsch-Jozsa Algorithm and Formal Languages

We apply a direct generalization of the Deutsch-Jozsa algorithm to the context of
formal language theory. More particularly, we extend the algorithm to distinguish
between trivial and nontrivial words in groups given by finite presentations,
under the promise that a word is of a certain type. For background information,
we refer the reader to [1] and [2].

The Deutsch-Jozsa algorithm concerns maps f : {0, 1}n −→ {0, 1}, which
we may think of as words of length 2n in a two-letter alphabet. Instead, let us
consider words of length 2n in a four-letter alphabet A = {a, b, c, d}. We identify
the letters with binary strings of length 2: a ↔ 00, b ↔ 01, c ↔ 10 and d ↔ 11.
In this way we can look at words of length 2n as in one-to-one correspondence
with maps f : {0, 1}n −→ {00, 01, 10, 11}.

First, consider the case n = 1, that is when the words have length 2. As with the
standard formulation of the Deutsch-Jozsa algorithm, the promise will be vacuous
in this case. We use the quantum circuit represented below. The circuit essentially
implements the Deutsch’s algorithm, but with input |11〉 rather than |1〉:
� Corresponding author.

Y. Kawano and M. Mosca (Eds.): TQC 2008, LNCS 5106, pp. 57–69, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

58 M. Batty et al.

x

y

x

Uf

W

W

W

f(x)y

0

11

After applying the Hadamard gates, the state of the system is

W ⊗ W2(|0〉 ⊗ |11〉) =
(|0〉 + |1〉√

2

)
⊗

(|0〉 − |1〉√
2

)⊗2

.

If x ∈ {0, 1} then we have

Uf

(
|x〉 ⊗

(|0〉 − |1〉√
2

)⊗2
)

= |x〉 ⊗ 1
2

(|00 ⊕ f(x)〉 − |01 ⊕ f(x)〉 − |10〉 ⊕ f(x)〉 + |11 ⊕ f(x)〉)

= (−1)p(f(x))|x〉 ⊗
(|1〉 − |0〉√

2

)⊗2

.

For a binary string y, we denote by p(y) the parity of y, that is if m is the
number of 1s in y then p(y) = m(mod2). After querying the oracle Uf , the state
is

(−1)p(f(0))|0〉 + (−1)p(f(1))|1〉√
2

⊗
(|0〉 − |1〉√

2

)⊗2

.

Finally, after the last Hadamard gate, the first qubit is in the state |0〉 if p(f(0)) =
p(f(1)) or |1〉 if p(f(0)) 	= p(f(1)). We shall say that f is parity constant if
p(f(0)) = p(f(1)); parity balanced, otherwise. By measuring the final state, we
obtain |0〉 with probability 1 if f is parity balanced and |1〉 with probability 1 if
f is parity constant.

Let us now introduce some terminology related to formal languages. Given a
word w : {0, 1}n −→ {a, b, c, d}, an anagram of w is a word of the form w ◦ φ,
where φ : {0, 1}n −→ {0, 1}n is a permutation. We write [w] for the set of all
anagrams of w. More formally, let F denote the free monoid on {a, b, c, d} and let
M denote the free commutative monoid on {a, b, c, d}. Let R denote the natural
map from F to M and suppose that w ∈ M . Then R(w) = [w], the set of
all anagrams of w. It is clear that the definition of parity balanced and parity
constant words extends to M in this way. The set of parity constant words is
then a union of sets of anagrams

C11
1 (a, b, c, d) = [aa] ∪ [bb] ∪ [cc] ∪ [dd] ∪ [bc] ∪ [ad].

Similarly, the set of parity balanced words is

B11
1 (a, b, c, d) = [ab] ∪ [ac] ∪ [bd] ∪ [cd].

Note that both the terms of the alphabet in the bracket have the same parity
with the notation a ↔ 00, b ↔ 01, c ↔ 10 and d ↔ 11.

An Application of the Deutsch-Jozsa Algorithm 59

Suppose not to input |11〉 into the auxiliary workspace, but rather some other
number 0 ≤ n ≤ 3. How does this affect the sets of words we can distinguish
between? It is interesting to observe that we may define as follows a more general
type of “parity”. Let x be a nontrivial element of {00, 01, 10, 11}, where the
latter set is considered in the natural way as the vector space (Z2)2 = Z2 ⊕ Z2.
Define px(y) to be equal to 0, if y is in the subspace 〈x〉 = {00, x} and equal to 1,
otherwise. With this notation, p11(y) = p(y), the usual parity function. A similar
circuit, taking the auxiliary input ¬(x), that is the binary complement of x, will
distinguish between whether the word is x-constant or x-balanced (where these
terms have the obvious meaning). Again, measurement of the state will yield this
information with certainty. It is clear that if x = 00 then the output of the circuit
is independent of f , and so this is of no use. Let us now suppose that x = 01.
Then x-constant means that the output of f are in the same coset of {0, 1} in
(Z2)2 and x-balanced means that f(0) and f(1) are in different cosets, or, in
other words, both in or out the subspace 〈x〉 = {00, x}. The set of 01-constant
words is

C01
1 (a, b, c, d) = [aa] ∪ [bb] ∪ [cc] ∪ [dd] ∪ [ab] ∪ [cd]

and the set of 01-balanced words is

B01
1 (a, b, c, d) = [ac] ∪ [ad] ∪ [bc] ∪ [bd].

With the same notation,

C10
1 (a, b, c, d) = [aa] ∪ [bb] ∪ [cc] ∪ [dd] ∪ [ac] ∪ [bd]

and
B10

1 (a, b, c, d) = [ab] ∪ [ad] ∪ [bc] ∪ [cd].

As before, the first term and the second term in the bracket represent the first
output and the second output of the function, respectively. Also the parity is the
same as described before. Note that when the set is parity constant both terms
are in or out the subspace 〈x〉, while in the parity balanced case one term is in
the subspace and the other one is out.

It is now useful to introduce some general notation. Let x ∈ {0, 1}2. We denote
the set of x-constant words of length 2n over A by Cx

n(A) and the set of x-balanced
words of length 2n over A by Bx

n(A). We write Fx
n(A) = Cx

n(A)∪Bx
n(A) and call

this the set of x-feasible words of length 2n. The following fact is important in
the context of our discussion.

Theorem 1. Given a word w ∈ Fx
n , we can decide with a single quantum query

whether it is in Cx
n or Bx

n.

It is useful to observe that already in the seminal work [3], it was pointed out that
a classical randomized algorithm solves the Deutsch-Jozsa task with 3 classical
queries on average, whereas the quantum approach solve it with probability 1
using one single quantum query (see also [4]). Here the output of the function
f is no more a single bit but a bit string. Particulary, the possible output of

60 M. Batty et al.

the function is an n bit string where n is log2 (the alphabet symbol length).
Therefore, first of all, a word is given by k repeated random output of the
function, where k is the length of the word. In other terms, a word is like a
sequence obtained by tossing a dice with j faces, where j is the number of letters
in the alphabet. The parity constant output and the parity balanced output are
not mutually exclusive over a fixed word of length k and do not cover all the
possible k output combinations of the function. This means that it is possible to
see a word as obtained by k repeated queries to the function (e.g., given a word
in a certain set it is possible to deduce the parity of the function).

From this point of view, it is easy to see that the probability of being constant
over all possible anagrams, interpreting the output binary string of k queries as
anagrams of k letters, is higher than the balanced case, when k is small and
the difference decreases while the number of queries to the function increases.
As long as any possible parity function partitions into two classes the function
co-domain, it is clear that an higher number of possible outputs is not relevant
to the number of classical queries required to distinguish between the parity
constant and parity balanced cases. What is remarkable about this method is
that it allows to extend the Deutsch-Jozsa algorithm to functions with output
of any dimension, f : {0, 1}n −→ {0, 1}n. Defining appropriate parities, like for
groups or code membership problems, could give arise to potentially interesting
applications.

It is clarifying to fully work out an example for n = 2. If X is a subset of
{01, 10, 11} then we write FX

n (A) for ∩x∈XFx
n(A). We have

C11
2 (a, b, c, d) = [aaaa] ∪ [bbbb] ∪ [cccc] ∪ [dddd] ∪ [aaad]

∪[aadd] ∪ [addd] ∪ [bbbc] ∪ [bbcc] ∪ [bccc],
B11

2 (a, b, c, d) = [aabb] ∪ [aacc] ∪ [bbdd] ∪ [ccdd]
∪[aabc] ∪ [bcdd] ∪ [abbd] ∪ [accd] ∪ [abcd],

C01
2 (a, b, c, d) = [aaaa] ∪ [bbbb] ∪ [cccc] ∪ [dddd] ∪ [aaab]

∪[aabb] ∪ [abbb] ∪ [cccd] ∪ [ccdd] ∪ [cddd],
B01

2 (a, b, c, d) = [aacc] ∪ [aadd] ∪ [bbcc] ∪ [bbdd]
∪[aacd] ∪ [bbcd] ∪ [abcc] ∪ [abdd] ∪ [abcd],

F{01,11}
2 = [aaaa] ∪ [bbbb] ∪ [cccc] ∪ [dddd] ∪ [aabb]

∪[aacc] ∪ [aadd] ∪ [bbcc] ∪ [bbdd] ∪ [ccdd] ∪ [abcd].

When n = 2, in the parity balanced case half of the output is of the same parity.
We also have

B11
2 (a, b, c, d) ∩ B01

2 (a, b, c, d) = [abcd] ∪ [aacc] ∪ [bbdd],
C11
2 (a, b, c, d) ∩ B01

2 (a, b, c, d) = [aadd] ∪ [bbcc],
B11

2 (a, b, c, d) ∩ C01
2 (a, b, c, d) = [aabb] ∪ [ccdd],

C11
2 (a, b, c, d) ∩ C01

2 (a, b, c, d) = [aaaa] ∪ [bbbb] ∪ [cccc] ∪ [dddd].

An Application of the Deutsch-Jozsa Algorithm 61

Therefore, given a word in F{01,11}
2 , we can decide with two quantum queries in

which of these four languages the words is. The remaining possibilities for x are

C10
2 (a, b, c, d) = [aaaa] ∪ [bbbb] ∪ [cccc] ∪ [dddd] ∪ [aaac]

∪[aacc] ∪ [accc] ∪ [bbbd] ∪ [bbdd] ∪ [bddd],
B10

2 (a, b, c, d) = [aabb] ∪ [aadd] ∪ [bbcc] ∪ [ccdd] ∪ [aabd]
∪[bccd] ∪ [abbc] ∪ [acdd] ∪ [abcd],

F{10,11}
2 = [aaaa] ∪ [bbbb] ∪ [cccc] ∪ [dddd] ∪ [aabb] ∪ [aacc]

∪[aadd] ∪ [bbcc] ∪ [bbdd] ∪ [ccdd] ∪ [abcd].

We then have

F{01,11}
2 = F{10,11}

2 .

It can be checked that this is also equal to F{01,10}
2 . However, the three pos-

sibilities X = {01, 11}, {10, 11} and {01, 10} all distinguish between different
languages, since we have

B11
2 (a, b, c, d) ∩ B10

2 (a, b, c, d) = [abcd] ∪ [aabb] ∪ [ccdd],
C11
2 (a, b, c, d) ∩ B10

2 (a, b, c, d) = [aadd] ∪ [bbcc],
B11

2 (a, b, c, d) ∩ C10
2 (a, b, c, d) = [aacc] ∪ [bbdd],

C11
2 (a, b, c, d) ∩ C10

2 (a, b, c, d) = [aaaa] ∪ [bbbb] ∪ [cccc] ∪ [dddd],
B01

2 (a, b, c, d) ∩ B10
2 (a, b, c, d) = [abcd] ∪ [aadd] ∪ [bbcc],

C01
2 (a, b, c, d) ∩ B10

2 (a, b, c, d) = [aabb] ∪ [ccdd],
B01

2 (a, b, c, d) ∩ C10
2 (a, b, c, d) = [aacc] ∪ [bbdd],

C01
2 (a, b, c, d) ∩ C10

2 (a, b, c, d) = [aaaa] ∪ [bbbb] ∪ [cccc] ∪ [dddd].

This provides an improvement over the classical deterministic setting, where we
need three queries to distinguish any of these sets of four languages.

We have then seen that

F{01,11}
2 = F{10,11}

2 = F{01,10}
2 = F{01,10,11}

2 .

It may be interesting to consider larger alphabets:

{a, b, c, d, e, f, g, h} → {000, 001, 010, 011, 100, 101, 110, 111}.

Here, it still possible to define a parity, based on the even number of 1s, like p11.
This is equivalent to determine if a word w is in the subspace {000,011,101,110},
also denoted padfg. In this case, the set of parity constant and parity balanced
words can be obtained using the auxiliary input |111〉 in the circuit described
before:

62 M. Batty et al.

Uf

(
|x〉 ⊗

(|0〉 − |1〉√
3

)⊗3
)

= |x〉 ⊗ 1
2
(|000 ⊕ f(x)〉 − |001 ⊕ f(x)〉 − |010 ⊕ f(x)〉 + |011 ⊕ f(x)〉

− |100 ⊕ f(x)〉 + |101 ⊕ f(x)〉 + |110 ⊕ f(x)〉 − |111 ⊕ f(x)〉)

= (−1)p(f(x))|x〉 ⊗
(|1〉 − |0〉√

3

)⊗3

.

As result of this input, Uf gives (i.e, it is possible to recognize the membership
of a letter from the plus sign in front of term) the following set

Cadfg
1 (a, b, c, d, e, f, g) = [aa] ∪ [bb] ∪ [cc] ∪ [dd] ∪ [ee] ∪ [ff] ∪ [gg] ∪ [hh] ∪ [ad] ∪ [af]

∪[ag] ∪ [df] ∪ [dg] ∪ [fg] ∪ [bc] ∪ [be] ∪ [bh] ∪ [ce] ∪ [ch] ∪ [eh].

Similarly, the set of parity balanced words is

Badfg
1 (a, b, c, d, e, f, g) = [ab] ∪ [ac] ∪ [bd] ∪ [cd] ∪ [ae] ∪ [ah] ∪ [de] ∪ [dh]

∪[bf] ∪ [bg] ∪ [cf] ∪ [cg] ∪ [fe] ∪ [fh] ∪ [ge] ∪ [gh].

Other parities can be defined considering different set of vectors. For our pur-
poses it is sufficient to define a set composed by the elements pabcd = {000, 001,
010, 011}. This plays the same role as p01. In this case, the set of parity con-
stant word can be obtained by using |100〉 as auxiliary input. The circuit has
the following output:

Uf

(
|x〉 ⊗

(|0〉 − |1〉√
3

) (|0〉 + |1〉√
3

)⊗2
)

= |x〉 ⊗ 1
2
(|000 ⊕ f(x)〉 + |001 ⊕ f(x)〉 + |010〉 ⊕ f(x)〉 + |011 ⊕ f(x)〉

− |100 ⊕ f(x)〉 − |101 ⊕ f(x)〉 − |110 ⊕ f(x)〉 − |111 ⊕ f(x)〉)

= (−1)p(f(x))|x〉 ⊗
(|1〉 − |0〉√

3

) (|1〉 + |0〉√
3

)⊗2

.

As discussed before this procedure gives the following sets:

Cabcd
1 (a, b, c, d, e, f, g) = [aa] ∪ [bb] ∪ [cc] ∪ [dd] ∪ [ee] ∪ [ff] ∪ [gg] ∪ [hh] ∪ [ab] ∪ [ac]

∪[ad] ∪ [bc] ∪ [bd] ∪ [cd] ∪ [ef] ∪ [eg] ∪ [eh] ∪ [fg] ∪ [fh] ∪ [gh].

The set of parity balanced words is

Babcd
1 (a, b, c, d, e, f, g) = [ae] ∪ [af] ∪ [ag] ∪ [ah] ∪ [be] ∪ [bf] ∪ [bg] ∪ [bh]

∪[ce] ∪ [cf] ∪ [cg] ∪ [ch] ∪ [de] ∪ [df] ∪ [dg] ∪ [dh].

For reasons that will be clear later, it is important to define also the parity,
based on the subspace padeh = {000, 011, 101, 111}, for which the set of parity
constant words is obtained by setting as auxiliary input the state |011〉:

An Application of the Deutsch-Jozsa Algorithm 63

Uf

(
|x〉 ⊗

(|0〉 + |1〉√
3

) (|0〉 − |1〉√
3

)⊗2
)

= |x〉 ⊗ 1
2
(|000 ⊕ f(x)〉 − |001 ⊕ f(x)〉 − |010〉 ⊕ f(x)〉 + |011 ⊕ f(x)〉 +

− |100 ⊕ f(x)〉 + |101 ⊕ f(x)〉 − |110 ⊕ f(x)〉 + |111 ⊕ f(x)〉)

= (−1)p(f(x))|x〉 ⊗
(|1〉 − |0〉√

3

)⊗2 (|1〉 + |0〉√
3

)
.

The sets produced are represented by

Cadeh
1 (a, b, c, d, e, f, g) = [aa] ∪ [bb] ∪ [cc] ∪ [dd] ∪ [ee] ∪ [ff] ∪ [gg] ∪ [hh] ∪ [ad] ∪ [ae]

∪[ah] ∪ [de] ∪ [dh] ∪ [eh] ∪ [bc] ∪ [bf] ∪ [bg] ∪ [cf] ∪ [cg] ∪ [fg];

for the balanced case, we have

Badeh
1 (a, b, c, d, e, f, g) = [ab] ∪ [ac] ∪ [af] ∪ [ag] ∪ [db] ∪ [dc] ∪ [df] ∪ [dg]

∪[eb] ∪ [ec] ∪ [ef] ∪ [eg] ∪ [hb] ∪ [hc] ∪ [hf] ∪ [hg].

It is indeed possible to generalize the circuit for an arbitrary length binary
function co-domain. In particular, the length of the output binary string will
be determined by log2 of the cardinality of the alphabet considered (for ex-
ample, two bits for a 4-elements alphabet). Moreover, to each parity function
subspace corresponds a unique input to be fed into the circuit shown before. The
Hadamard gate transforms each bit of the input binary string into the state |+〉
or |−〉 depending on the value of the bit. For the generic input |0 . . . 1〉, we have

Uf

(
|x〉 ⊗

(|0〉 + |1〉√
n

)
. . .

(|0〉 − |1〉√
n

))
= (−1)p(f(x))|x〉 ⊗

(|1〉 + |0〉√
n

)⊗n (|1〉 + |0〉√
n

)
.

Now we are going to analyze longer words. For example, if n = 2, for padfg,
the set of parity balanced words is

Cadfg
2 (a, b, c, d, e, f, g) = [aaaa] ∪ [bbbb] ∪ [cccc] ∪ [dddd] ∪ [eeee]

∪[ffff] ∪ [gggg] ∪ [hhhh] ∪ [aaad] ∪ [aadd]
∪[addd] ∪ [aaaf] ∪ [aaff] ∪ [afff] ∪ [aaag]
∪[aggg] ∪ [dddf] ∪ [ddff] ∪ [dfff] ∪ [fffg]
∪[ffgg] ∪ [fggg] ∪ [bbbc] ∪ [bbcc] ∪ [bccc]
∪[bbbe] ∪ [bbee] ∪ [beee] ∪ [ccce] ∪ [ccee]
∪[ceee] ∪ [bbbh] ∪ [bbhh] ∪ [bhhh] ∪ [ccch]
∪[cchh] ∪ [chhh] ∪ [eeeh] ∪ [eehh] ∪ [ehhh];

64 M. Batty et al.

while the set of parity balanced words is

Badfg
2 (a, b, c, d, e, f, g) = [aabb] ∪ [aacc] ∪ [aaee] ∪ [aahh] ∪ [ddbb]

∪[ddcc] ∪ [ddee] ∪ [ddhh] ∪ [ffbb] ∪ [ffcc]
∪[ffee] ∪ [ffhh] ∪ [ggbb] ∪ [ggcc] ∪ [ggee]
∪[gghh] ∪ [adbc] ∪ [afce] ∪ [agbc] ∪ [agbe]
∪[agce] ∪ [adce] ∪ [adbe] ∪ [adhe] ∪ [agch]
∪[afce] ∪ [afch] ∪ [adbe] ∪ [adbh] ∪ [afbc]
∪[afbh] ∪ [agbh] ∪ [ageh] ∪ [afeh] ∪ [afbe].

For pabcd, the set of parity balanced words is

Cabcd
2 (a, b, c, d, e, f, g) = [aaaa] ∪ [bbbb] ∪ [cccc] ∪ [dddd] ∪ [eeee]

∪[ffff] ∪ [gggg] ∪ [hhhh] ∪ [aaab] ∪ [aabb]
∪[abbb] ∪ [aaac] ∪ [aacc] ∪ [accc] ∪ [aaad]
∪[aadd] ∪ [addd] ∪ [bbbc] ∪ [bbcc] ∪ [bccc]
∪[bbbd] ∪ [bbdd] ∪ [bddd] ∪ [cccd] ∪ [ccdd]
∪[cddd] ∪ [eeef] ∪ [eeff] ∪ [efff] ∪ [eeeg]
∪[eegg] ∪ [eggg] ∪ [eeeh] ∪ [eehh] ∪ [ehhh]
∪[fffg] ∪ [ffgg] ∪ [fffh] ∪ [ffhh] ∪ [fhhh]
∪[gggh] ∪ [gghh] ∪ [ghhh];

the set of parity balanced words is

Babcd
2 (a, b, c, d, e, f, g) = [aaee] ∪ [aaff] ∪ [aagg] ∪ [aahh] ∪ [bbee]

∪[bbff] ∪ [bbgg] ∪ [bbhh] ∪ [ccee] ∪ [ffcc]
∪[ccgg] ∪ [cchh] ∪ [ddee] ∪ [ddff] ∪ [ddgg]
∪[ddhh] ∪ [abef] ∪ [abeg] ∪ [abeh] ∪ [acef]
∪[aceg] ∪ [aceh] ∪ [adef] ∪ [adeg] ∪ [adeh]
∪[abfg] ∪ [abfh] ∪ [acfg] ∪ [acfh] ∪ [adfg]
∪[adfh] ∪ [agbh] ∪ [agch] ∪ [adgh].

The same reasoning carried on for a four-letters alphabet can be applied to
form the set of words

Fx
n(A) = Cx

n(A) ∪ Bx
n(A)

and the relative intersections. A potential generalization comes from error cor-
recting codes. This could be based on introducing an encoding in which the
letters of the alphabet are associated to the codewords of a subspace quantum
error correcting code. A form of parity could be defined by considering the re-
maining subspaces.

An Application of the Deutsch-Jozsa Algorithm 65

2 Application to the Word Problem in Groups

Let {a, b, c = B, d = A} be a paired alphabet, where A represents a−1 and B
represents b−1. We first consider words of length 2. Parity constant words are
“character constant”, i.e. consist of only one letter, whether it be lower or upper
case. Parity balanced words are “character balanced”. The words corresponding
to the parity constant case are aa,aA,bb,bB,Bb,BB,Aa,AA. Those corresponding
to the parity balanced case are ab,aB,ba,bA,Ba,BA,Ab,AB. The words w in the
first list all satisfy w ∈ 〈a〉 ∪ 〈b〉 (in fact we have w ∈ 〈a2〉 ∪ 〈b2〉), whereas those
w in the second list all satisfy w /∈ 〈a〉 ∪ 〈b〉. Thus, for words of length 2, we can
determine with a single measurement whether or not w ∈ 〈a〉 ∪ 〈b〉.

If x = 01 then the x-constant words are aa,ab,ba,bb,BA,BB,AA,AB and the x-
balanced words are aB,aA,bB,bA,Aa,Ab,Ba,Bb. So, 01-constant and 01-balanced
may be thought of as “case constant” and “case balanced” where the case can
be upper or lower. For example, a commutator word (reduced or not) is always
case balanced. “Case constant” and “case balanced” are properties of w, rather
than w. This is not the case for “parity constant” and “parity balanced”.

If x = 10 then the x-constant words are aa,aB,bb,bA,Ba,BB,Ab,AA and the
x-balanced words are ab,aA,ba,bB,Bb,BA,AB,Aa. This does not seem to have
any nice interpretation, while the 10-balanced corresponds to the cyclic subgroup
generated by ab and the 11-constant set solve a problem of union of subgroup
membership for 〈a〉 ∪ 〈b〉. The elements represented by these words are depicted
on the following Cayley graph portions:

a

b

A

B

x=11 x=01 x=10

−balanced −constantx x

Note that w is 11-constant but not 01-constant and w is 11-constant and not
10-constant then w = F 11

2 . This gives a method of solving the word problem for
words of length 2 using two quantum queries.

Definition 1. We say that words in F11
1 ∩ F01

1 are QWP-feasible (quantum
word problem feasible). We write the set of such words as QWP1.

For n = 1, if we are promised that w is QWP-feasible then the quantum query
complexity of the property “is w trivial?” seems to be 2. But this is not a

66 M. Batty et al.

reduction in complexity from the classical case. However, there is hope that an
analogous method might be an improvement in quantum query complexity for
longer words. We have the following

Proposition 1. For all n, if we are promised that the word w of length 2n is
11-feasible then the quantum query complexity of the property “Does w represent
an element of 〈a〉 ∪ 〈b〉?” is 1.

This is directly analogous to the Deutsch-Jozsa algorithm, and the proof is the
same. It is unclear how to extend the definition of QWP beyond two letters.
Here are examples of two groups where we require different promises:

Proposition 2. Consider the free abelian group G = 〈a, b | ab = ba〉. Let w be
a four-letter word in A which is in F11

1 ∩ F01
2 ∩ F10

2 . Then the quantum query
complexity of the question “Does w represent the trivial element of G?” is at
most 3.

Proof. The first query asks whether w ∈ C01
2 or w ∈ B01

2 . If the former is true
then w is not trivial so stop. If w ∈ B01

2 then proceed to the second query, which
is whether w ∈ C11

2 or w ∈ B11
2 . If the former is true then w is trivial so stop.

Otherwise we know that w ∈ B11
2 ∩B01

2 and we may proceed to the third query.
There are two possibilities. The first possibility is that we have a word with two
As and two bs or a word with two as and two Bs. That is, w is a cyclic rotation
of (AAbb)±1. The second possibility is that we have one each of A, b, a and B.
In the first case, w is nontrivial and in C10

2 ; in the second case, w is trivial and
in B01

2 . So our third query is whether w ∈ C10
2 or w ∈ B10

2 ; this solves the word
problem provided w is as promised.

It is indeed possible to generalize this theorem to the 8-letters alphabet in-
troduced earlier, by considering the four-paired alphabet {a, b, c, d, e = D, f =
C, g = B, h = A}, where the upper-case A, B, C, D letters represent respectively
a−1, b−1, c−1, d−1. In particular, we have the following statement:

Proposition 3. Consider the free group G = 〈a, b, c, d | abcd = dcba〉. Let w

be a 8-letter word in A which is in Fadfg
3 ∩ Fabcd

3 ∩ Fadeh
3 . Then the quantum

query complexity of the question “Does w represent the trivial element of G?” is
at most 3.

Proof. The first query asks whether w ∈ Cabcd
3 or w ∈ Babcd

3 . If the former is true
then w is not trivial so stop. If w ∈ Babcd

3 then proceed to the second query,
which is whether w ∈ Cadfg

3 or w ∈ Badfg
3 . If the former is true then w is trivial

so stop. Otherwise we know that w ∈ Badfg
3 ∩ Babcd

3 and we may proceed to the
third query. There are two possibilities. The first possibility is that we have a
word with two As two Ds and two as and two ds or a word with two Cs two
Bs, two cs and two bs. That is, w is a cyclic rotation of (AADDaadd)±1 or
(BBCCbbcc)±1. The second possibility is that we have one each of A, b, a B,
C, d,c, and D . In the first case, w is nontrivial and in Cadeh

3 ; in the second, w
is trivial and in Babcd

3 . Our third query is whether w ∈ Cadeh
3 or w ∈ Babcd

3 ; this
solves the word problem provided w is as promised.

An Application of the Deutsch-Jozsa Algorithm 67

Looking at the first two queries it seems possible to generalize this result for
every paired alphabet of dimension 2n−1 and words of length 2n, by defining
parities based on the even number of ones, like padfg. This is always possible
because of the equipartition of the binary strings with respect to the number of
ones and on the subspaces formed by the first 2n−1 vectors labeled from zero to
2n. The last parities required is the one used to identify words that are cyclic
permutations of elements of the alphabet, for example, padeh. Moreover it’s also
easy to see that the setting is independent on the dimension of the alphabet as
long it’s possible to define a parity function that splits in two part the number of
symbols and it’s an efficient way of recognizing the membership of an element to
a given subset. It does not seem easy to distinguish between trivial and nontrivial
four-letter words in the free group of rank 2 using less than 4 quantum queries.
However, the first indication that classical query complexity can be improved
upon in a nonabelian finitely presented group is the following:

Proposition 4. Consider the group presented by G = 〈a, b | a2 = b2〉. Suppose
we are given a word w of length 4 in A such that w ∈ F11

2 ∩ F01
2 . Then the

quantum query complexity of the question “Does w represent the trivial element
of G?” is at most 3.

Proof. The first two queries are as in the proof of the last proposition. So we
can assume that if we do not already know whether or not w is trivial, w ∈
B11

2 ∩ B01
2 and we may proceed to the third query. For this, we construct a

“syllable function”

f : {0, 1} → {aa, ab, aB, aA, ba, bb, bB, bA, Ba, Bb, BB, Ba, Aa, Ab, AB, AA}.
It maps AA,BB,Aa,aA,Ab,AB,ab,aB to 0 and Bb,bB,BA,bA,Ba,ba,aa,bb to 1.
Note that, since w ∈ B11

2 ∩B01
2 , w is either a cyclic rotation of (AAbb)±1 or w is

an anagram of AaBb. Words in the first case are all trivial, because a2 = b2 is a
relation in G, and these words are all balanced under the syllable function. Words
in the second case are nontrivial if and only if they are nontrivial commutators.
Commutators are constant under the syllable function. Words in the second
case which are trivial (i.e., not commutators) are all balanced under the syllable
function. Thus a third query of “is w syllable-balanced or syllable-constant” will
complete the solution of the word problem. The following table lists all 0-syllabs
and 1-syllabs:

0-syllabs 1-syllabs
AA aa
BB bb
Aa Bb
aA bB
Ab bA
AB BA
ab ba
aB Ba

68 M. Batty et al.

While the group G in the last proposition is nonabelian, it can be shown to have
a free abelian subgroup of rank 2 and index 4; it is an extension of Z⊕Z by the
Klein 4-group.

Proposition 5. Consider the group presented by G = 〈a, b, c, d | a2b2 = b2a2〉.
Suppose we are given a word w of length 8 in A such that w ∈ Fadfg

3 ∩ Fabcd
3 .

Then the quantum query complexity of the question “Does w represent the trivial
element of G?” is at most 3.

Proof. The first two queries are as in the proof of the last proposition. So we
can assume that if we do not already know whether or not w is trivial, w ∈
Badfg

3 ∩ Babcd
3 and we may proceed to the third query. For this, we construct an

extended syllable function whose output has a cardinality of 2n−1. Some of the
elements are listed below:

f : {0, 1} −→ {aaaa, bbbb,BBBB,AAAA, aaab, aabb, abbb,
aaaB, aaBB, aBBB, aaaA, aaAA, aAAA, aaAA,
aAAA, bbbB, bbBB, bBBB, bbbA, bbAA, bAAA,
bbba, bbaa, baaa, BBBa, BBaa, Baaa,BBBb,
BBbb, Bbbb, BBBA, BBAA, BAAA, AAAa, AAaa,
Aaaa, AAAb, AAbb, Abbb, AAAB, AABB, ABBB, ...}

Examples of this map are

AAAA,BBBB,Abbb, AAaa, aBBB, aaBB, aaaB, abAB,ABab,ABab, AABB . . . to 0

and

aaaa, bbbb,Bbbb, BBbb, bBBB, bAAA, BBAA, BAAA, baaa, bAAA, aabb, bbaa . . . to 1.

Note that since w ∈ Badfg
3 ∩Babcd

3 , w is either a cyclic rotation of (AABBaabb)±1

or w is an anagram of AAaaBBbb. Words in the first case are all trivial, because
a2b2 = b2a2 is a relation in G, and these words are all balanced under the
syllable function. Words in the second case are nontrivial if and only if are
nontrivial sequence of letters, that is not commutator-like sequence with respect
to the presentation. Words in the second case which are trivial (i.e., not trivial
sequence) are all balanced under the extended syllable function. Thus a third
query of “is w syllable-balanced or syllable-constant” will complete the solution
of the word problem.

The same considerations can be made by looking at different sets of generators or
relations like G = 〈a, b, c, d | c2d2 = d2c2〉 and G = 〈a, b, c, d | b2c2 = c2b2〉. It is
important to notice that all the alternate sets of relations five groups isomorphic
to the group considered in Proposition 5. To see this, it is sufficient to relabel the
generators. The relation in G is in fact very general and it is possible to obtain the
same result with a whole family of similar relations. This can be done by varying
the parity function used for the queries, choosing the presentation accordingly.
Moreover such a group is a free group of rank 2 with G = 〈a, b, c, d | a2b2 = b2a2〉.

An Application of the Deutsch-Jozsa Algorithm 69

It is simple to see that since the other two generators, c and d, are not involved
in the proof, it is possible to take the free product of G with any free group and
get to the same conclusion. In particular it is possible to extend the free product
with any group and see the invariance of those three quantum queries under free
products.

Notice that the choice of some particular kind of relations and an higher
number of generators in the setting of the problem may increase the number of
queries required. The reason of this is the exponential growth in the number of
permutations, in particular, in those cases where splitting the words in parity
balanced and parity constant does not help. Generalize to other different sets
of generators and possibly for free products, and limiting to commutator words
might give interesting promises. It is also useful to remark the importance of
having the correct and certain answer to each of the queries used to prove the
above propositions. As we have mentioned before, although it is possible to
obtain on average with three classical queries the same results given by the
Deutsch-Jozsa algorithm (see [4]), we assume for our proofs to have three certain
answers to the queries. This means that on average the solution to the problems
proposed requires at least nine classical queries (i.e., three classical queries for
each quantum one). This makes explicit the gain in number of queries of the
quantum setting with respect to the classical deterministic one.

3 Conclusions

We have extended the original Deutsch-Jozsa algorithm to functions of arbi-
trary length binary output with the introduction of a more general concept of
parity. This setting allows to consider a mapping between a binary string and
the elements of an alphabet. The mapping helps to solve some instances of the
word problem, using small alphabets and free groups, in a reduced number of
queries with respect to the deterministic classical case. Extensions to more gen-
eral groups and presentations may give interesting promises.

Acknowledgments. The authors would like to thank Andrew Childs for useful
remarks. Part of this work as been carried out while Andrea Casaccino was
attending “The Seventh Canadian Summer School on Quantum Information”,
hosted by Perimeter Institute and the Institute for Quantum Computing, at the
University of Waterloo.

References

1. Lyndon, R.C., Schupp, P.E.: Combinatorial group theory. Classics in Mathematics.
Springer, Heidelberg (2001) (reprint of the 1977 edition)

2. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information.
Cambridge University Press, Cambridge (2000)

3. Deutsch, D., Jozsa, R.: Rapid Solution of Problems by Quantum Computation.
Proc. R. Soc. of London A 439, 553–558 (1992)

4. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Limit on the speed of quantum
computation on determining parity. Phys. Rev. Lett. 81, 5552–5554 (1998)

	An Application of the Deutsch-Jozsa Algorithm to Formal Languages and the Word Problem in Groups
	The Deutsch-Jozsa Algorithm and Formal Languages
	Application to the Word Problem in Groups
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

