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The density matrices of graphs are combinatorial laplacians normalised to have trace one

(Braunstein et al. 2006b). If the vertices of a graph are arranged as an array, its density

matrix carries a block structure with respect to which properties such as separability can be

considered. We prove that the so-called degree-criterion, which was conjectured to be

necessary and sufficient for the separability of density matrices of graphs, is equivalent to the

PPT-criterion. As such, it is not sufficient for testing the separability of density matrices of

graphs (we provide an explicit example). Nonetheless, we prove the sufficiency when one of

the array dimensions has length two (see Wu (2006) for an alternative proof).

Finally, we derive a rational upper bound on the concurrence of density matrices of graphs

and show that this bound is exact for graphs on four vertices.

1. Introduction

Density matrices of graphs were introduced in Braunstein et al. (2006a) and Braunstein

et al. (2006b) and are simply combinatorial laplacians normalised to have unit trace (the

normalisation consists of dividing the non-zero entries by twice the cardinality of the edge

set). In this way, we can associate with any graph G (with labelled vertices) a specific mixed

quantum state (identified with its matrix representation), which is then called the density

matrix of G. If the vertices of a graph are arranged in a multi-dimensional array, the

density matrix of the graph carries a block structure, which can be associated with a split

of the quantum system into subsystems. Each array dimension will then correspond to

one subsystem, and the length of the array dimension will equal the number of pure states

the subsystem can assume. It is useful to note that the combinatorial properties of the

graph G up to isomorphism do not always characterise its density matrix, and therefore

do not specify the physical properties of the state. This explains why we need to consider

labelled graphs. In other words, we assume that graphs with different adjacency matrices

(even if belonging to the same isomorphism class) have different density matrices, and

hence correspond to different quantum states, whose properties can be radically different.
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Studying density matrices of graphs with the tool-box provided by quantum mechanics

has a twofold role: from the perspective of combinatorics, this interface can be fruitful in

uncovering and re-defining graph theoretic properties; from the perspective of quantum

mechanics, density matrices of graphs can be seen as ‘simple’ and ‘highly symmetric’ states.

Observed in this light, the density matrices of graphs provide a restricted testing ground

for a better understanding of the techniques and concepts employed in more general

settings. Such an approach has particular value when considering the particular kind of

developments in quantum physics and its applications that we are experiencing today.

Indeed, the study of finite-dimensional states is important in quantum information

processing. This is the multidisciplinary area whose goal is to understand and exploit the

information encoded in quantum states (see Nielsen and Chuang (2000) for a monograph

on the subject and Alber et al. (2001) for a collection of overviews). The basis of this

field is the interpretation of certain quantum physical entities as information carriers and

their evolution in time as information processing dynamics. Such a view is giving rise

to a number of discoveries and successful real-world applications, the most popularised

examples being quantum communication and quantum computing. The main ingredient

that is most likely to be responsible for the ‘quantumness’ is the concept of entanglement,

which is a property associated with certain quantum states.

While entanglement was considered a mystery in the early stages of quantum physics,

it is nowadays recognised as a precious resource, which is difficult both to create and then

to preserve. Defining entanglement is not an easy task (see Bruß (2002) for an eloquent

compilation of definitions). It only makes sense to talk of entanglement if one considers

a system composed of at least two subsystems. Roughly speaking, the idea is that if the

two parties (or, equivalently, subsystems) are entangled, then a complete description of

the whole system does not imply a complete description of its parts, and vice versa. So,

two entangled systems present some sort of correlation that does not appear to occur

in the realm of classical mechanics, where complete information on the system implies a

complete description of its individual parts.

From the mathematical point of view, the theory of entanglement is rich and diverse.

It has branches in geometry, knots, Lie groups, positive maps, combinatorics, convex

optimisation, and so on. The main problems are:

(i) determine whether a given quantum state is entangled;

(ii) determine how much entanglement is in a given quantum state;

(iii) determine the ‘quality’ of entanglement (for example, the problem of distillability).

As we mentioned above, density matrices of graphs are a restricted set in which these

tasks can be given a special treatment. Specifically, Braunstein et al. (2006a), Braunstein

et al. (2006b) and Wu (2006) considered the Quantum Separability Problem (QSP) for

these matrices. The QSP is the computational problem of deciding whether a given

quantum state is entangled or not, that is, whether it is separable (see Ioannou (2006) for

a recent review). The QSP is equivalent to an instance of a combinatorial optimisation

problem called the Weak Membership Problem and defined in Grötschel et al. (1988). In

its complete generality the QSP is NP-hard (Gurvits 2003).
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There is some evidence that the QSP for density matrices of graphs might be easier

than for general density matrices. A simple necessary condition for separability is that the

degrees of the vertices of G are the same as the degrees of the vertices of another graph,

G′, obtained from G by means of a simple operation acting on the edges. The operation

is a combinatorial analogue of the linear algebraic partial transposition. In fact, here the

graph G′ will be called the partially transposed graph, and the condition for separability

will be called the degree-criterion. Since the partial transposition is centrally involved in

the famous Peres–Horodecki criterion for the separability of general states (Peres 1996;

Horodecki et al. 1996) (which is also called the Positivity under Partial Transpose Criterion,

or, for short, the PPT-criterion), it is natural to investigate the relationship between the

degree-criterion and the PPT-criterion when they are applied to density matrices of graphs.

In this paper, we give an elementary proof that the two criteria are equivalent for

density matrices of graphs. We also exhibit a simple example showing that the degree-

criterion is not sufficient for testing separability of density matrices of disconnected graphs

(that is, graphs with more than one connected component). Additionally, we verify the

sufficiency of the degree-criterion when the dimension of one of the parties is two, thereby

giving an alternative proof of a result in Wu (2006). There are four sections in the paper.

After providing the necessary notions and terminology, the above observations are set

out in Section 2. Section 3 is devoted to point (ii) above. In particular, we focus on the

concurrence, which is a quantity associated with every density matrix and is strictly larger

than zero for entangled states (Hill and Wootters 1997). We derive a simple upper bound

on the concurrence of density matrices of graphs, and show the exactness of this bound

for graphs with four vertices. Finally, we draw some conclusions in Section 4.

2. The degree-criterion and the PPT-criterion for density matrices of graphs

The purpose of this section is to shed further light on the QSP of the density matrices

of graphs. First we give a formal statement of the QSP and define the PPT-criterion.

We will then recall the notion of a combinatorial laplacian. We will go on to define the

degree-criterion and prove its equivalence to the PPT-criterion. We conclude the section

by showing that the degree-criterion is necessary and sufficient for testing separability of

density matrices of graphs in �2
A ⊗ �q

B (see also Wu (2006)). Our reference for graph

theory is Godsil and Royle (2001).

2.1. The quantum separability problem

In the axiomatic formulation of quantum mechanics in Hilbert space, the state of a

quantum mechanical system that is associated with the n-dimensional Hilbert space

H ∼= �n is identified with an n×n positive semidefinite, trace-one hermitian matrix called

a density matrix. In Dirac notation, a unit vector in a Hilbert space H ∼= �n is denoted by

|ψ〉, where ψ is simply a label, and, given the vectors |ϕ〉 , |ψ〉 ∈ H, the linear functional

sending |ψ〉 to the inner product 〈ϕ|ψ〉 is denoted by 〈ϕ|. (We could easily avoid the

Dirac notation here, but we use it to be consistent with the standard literature.) For any

unit vector |ψ〉 ∈ H, the projector on |ψ〉 is the hermitian matrix P [|ψ〉] := |ψ〉〈ψ|, which
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is called a pure state. Every density matrix can be written as a weighted sum of pure

states (with real non-negative weights summing up to 1); if the sum has more than one

component, the state is said to be mixed. According to this definition, the decomposition

of a mixed density matrix into pure states is not necessarily unique. A matrix of the form

P [|ψ〉] ⊗ P [|ϕ〉] is called a product state, where the symbol ‘⊗’ denotes the Kronecker or

tensor product. Let SA and SB be two quantum mechanical systems associated with the

p-dimensional and q-dimensional Hilbert spaces HA
∼= �p

A and HB
∼= �q

B , respectively.

The composite system SAB , which consists of the subsystems SA and SB , is associated with

the Hilbert space HAB
∼= �p

A ⊗ �q
B . The density matrix ρ of SAB is said to be separable if

— ρ =
∑N

i=1 piP [|ψi〉A] ⊗ P [|ϕi〉B], where pi � 0, for every i = 1, 2, . . . , N, and we have∑n
i=1 pi = 1;

— the projectors P [|ψi〉A]⊗ P [|ϕi〉B] are product states acting on HAB , respectively.

A density matrix ρ is said to be entangled if it is not separable. Entangled states cannot be

prepared from separable states by means of operations acting locally on the subsystems.

Although the definition given here refers to exactly two parties, entanglement can be

defined equally well for systems composed of many subsystems.

2.2. The PPT-criterion

The PPT-criterion is based on the notion of a partial transpose. This is a common and

important notion in the study of entanglement. Let ρ be a density matrix acting on the

Hilbert space HAB
∼= �p

A ⊗ �q
B . Let

{|u1〉 , |u2〉 , . . . , |up〉} and {|w1〉 , |w2〉 , . . . , |wq〉}

be orthonormal bases of �p
A and �q

B , respectively. Let {|v1〉 , |v2〉 , . . . , |vn〉} be an orthonor-

mal basis of HAB , where n = pq. Alternatively, we can index these basis vectors with

pairs (k, l). These vectors are taken as follows:

|v(k−1)q+l〉 = |vk,l〉 = |uk〉 |wl〉 , k = 1, . . . , p; l = 1, . . . , q.

The partial transpose of ρ with respect to the system SB is the pq × pq matrix, denoted

by ρΓB , with the
(
i, j; i′, j ′)-th entry defined as follows:

[ρΓB ]i,j;i′ ,j ′ = 〈ui|〈wj ′ |ρ|wj〉|ui′ 〉,

where 1 � i, i′ � p and 1 � j, j ′ � q. The density matrix of SAB can be written as

ρ =

⎛⎜⎝ A11 . . . A1p

...
. . .

...

Ap1 . . . App

⎞⎟⎠ , (1)
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with q × q matrices Aij acting on the space �q
B . The partial transpose is then realised by

transposing all these matrices:

ρΓB =

⎛⎜⎝ AT11 . . . AT1p
...

. . .
...

ATp1 . . . ATpp

⎞⎟⎠.
If ρ is separable, ρΓB � 0 (Peres 1996). However, the converse is not necessarily true,

since there exist entangled states with positive partial transpose (the so-called bound

entangled states). The failure of the PPT-criterion is then the failure of an operational

characterisation of entangled states, which is computationally simple to verify. The PPT-

criterion is necessary and sufficient for separability of density matrices acting on �2
A ⊗ �2

B

or �2
A ⊗ �3

B (Horodecki et al. 1996); it is also necessary and sufficient for certain infinite-

dimensional states (see Simon (2000), Duan et al. (2000), and Mancini and Severini (2007)

for a brief review). It is important to mention that only one other (operational) criterion

is known for detecting entanglement: the realignment criterion (Rudolph 2002; Chen and

Wu 2003). It can detect bound entanglement, but for some states it is weaker than the

PPT-criterion. Unfortunately, one can check numerically that the two criteria together

do not solve the QSP for all states (Horodecki and Lewenstein 2000). Generally, the

operational characterisation of entanglement is an open problem.

2.3. Combinatorial laplacians

In this subsection we recall the notion of a combinatorial laplacian. A graph G = (V , E)

is a pair defined as follows:

— V (G) is a non-empty and finite set whose elements are called vertices;

— E(G) is a non-empty set of unordered pairs of vertices, which are called edges.

A loop is an edge of the form {vi, vi}, for some vertex vi. We assume that E(G) does not

contain loops. A graph G is said to be on n vertices if the number of elements in V (G)

is n. The adjacency matrix of a graph on n vertices G is an n × n matrix, denoted M(G),

having rows and columns labelled by the vertices of G, and the ij-th entry defined as

follows†:

[M(G)]i,j :=

{
1 if {vi, vj} ∈ E(G)

0 if {vi, vj} /∈ E(G).

Two vertices vi and vj are said to be adjacent if {vi, vj} ∈ E(G). The degree of a vertex

vi ∈ V (G), denoted dG(vi), is the number of edges adjacent to vi. The degree-sum of G is

defined and denoted

dG =

n∑
i=1

dG(vi).

† We are only considering ‘simple’ graphs here.
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The degree matrix of G is an n× n matrix, denoted Δ(G), with its ij-th entry defined by

[Δ(G)]i,j :=

{
dG(vi) if i = j

0 if i 	= j.

The combinatorial laplacian matrix (laplacian for short) of a graph G is the matrix

L(G) := Δ(G) −M(G).

According to our definition of a graph, L(G) 	= 0. Moreover, the laplacian of a graph

G, scaled by the degree-sum of G, has trace one and is semidefinite positive. As such it

has the characteristic features of a quantum mechanical density matrix, hence it would

provide a link to quantum states. On the basis of this observation, we fix the following

definition: the density matrix of a graph G is the matrix

ρG :=
1

dG
L(G).

Let Gn be the set of density matrices of graphs on n vertices. The set Gn is a subset of the

set of all density matrices acting on the n-dimensional Hilbert space HAB
∼= �p

A ⊗ �q
B ,

where n = pq. The number of elements in Gn equals the number of graphs on n vertices, a

number that grows superexponentially in n. There are many applications of laplacians. In

particular, their eigensystems are a rich source of information about graphs (Mohar 1988).

It is important to note that graphs with different adjacency matrices have different

density matrices, this is even the case for graphs belonging to the same isomorphism class

(for example, those obtained from each other by permutation of the vertex labels). In

fact, given a graph G with density matrix ρG, if there exists a permutation matrix P such

that PTM(G)P = M(G′), then G ∼= G′. As a consequence G′ has density matrix PTρGP .

Finally, given the density matrix ρG of a graph, in order to have a correspondence with

a quantum state (density operator), we have to specify the basis in the Hilbert space with

respect to which the quantum state (density operator) has ρG as matrix representation.

This can be done by associating vertex labels with orthonormal vectors.

2.4. The degree-criterion

Let G be a graph on n = pq vertices v1, v2, . . . , vn. These vertices are represented here as

ordered pairs as follows:

v(k−1)p+l = (uk, wl) ≡ ukwl, k = 1, . . . , p; l = 1, . . . , q.

By respecting this labelling, we associate G with the orthonormal basis

{|vi〉 : i = 1, 2, . . . , n} = {|uj〉 ⊗ |wk〉 : j = 1, 2, . . . , p; k = 1, 2, . . . , q}

of the Hilbert space HAB
∼= �p

A ⊗ �q
B , where

{|uj〉 : j = 1, 2, . . . , p} and {|wk〉 : k = 1, 2, . . . , q}

are orthonormal bases of the Hilbert spaces HA
∼= �p and HB

∼= �q , respectively. The

partial transpose of a graph G = (V , E) (with respect to HB), denoted GΓB = (V , E ′), is
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the graph such that

{uiwj , ukwl} ∈ E ′ if and only if {uiwl, ukwj} ∈ E.

If Δ(G) = Δ
(
GΓB

)
, we say that G satisfies the degree-criterion. The following conjecture

was proposed in Braunstein et al. (2006b): a density matrix ρG of a graph on n = pq

vertices is separable in �p
A ⊗ �q

B if and only if Δ(G) = Δ
(
GΓB

)
. A proof of this conjecture

would give a simple method for testing the separability of density matrices of graphs, as

we would only need to check whether the n × n diagonal matrices Δ(G) and Δ
(
GΓB

)
are

equal. There are counterexamples to this conjecture when the graph has isolated vertices

(that is, vertices not belonging to any edge). This is the case for the graph G defined on a

3 × 3 array with laplacian

L(G) =

⎛⎜⎝ I4 0 −I4
0

... 0

−I4 0 I4

⎞⎟⎠
where Id is the d-dimensional identity matrix. Indeed, G satisfies the degree-criterion, but

ρG is entangled. However, we do not have any counterexample for connected graphs yet.

The following are some known partial results for separability:

— Let ρG be the density matrix of a graph on n = pq vertices. If ρG is separable in

�p
A ⊗ �q

B , then Δ(G) = Δ
(
GΓB

)
(Braunstein et al. 2006b).

— If G is a nearest point graph on n = pq vertices, then the density matrix ρG is separable

in �p
A ⊗ �q

B if and only if Δ (G) = Δ
(
GΓB

)
(Braunstein et al. 2006b).

(It may be worth recalling the definition of a nearest point graph. Consider a

rectangular lattice with pq points arranged in p rows and q columns such that

the distance between two neighbouring points on the same row or in the same column

is 1. A nearest point graph is a graph whose vertices are identified with the points of

the lattice and with edges having length 1 or
√

2.)
— Let G and H be two graphs on n = pq vertices. If ρG is separable in �p ⊗ �q and

G ∼= H (that is, G and H are isomorphic), then ρH is not necessarily separable in

�p⊗�q . However, there are exceptions, as observed by the following point (Braunstein

et al. 2006a).
— Let Kn be the complete graph on n vertices. Recall that the complete graph is the

graph with an edge between any pair of vertices. One can show that, for any n = pq,

the density matrix ρKn
is separable in �p ⊗ �q . Notice that for a graph H such that

M(H) = M(G) ⊗M(G′) for some graphs G and G′, the density matrix ρH is separable.

Of course, if a density matrix ρG is separable, it does not necessarily mean that M(G) is

a tensor product. The star graph on n vertices v1, v2, . . . , vn, denoted K1,n−1, is the graph

whose set of edges is {{v1, vi} : i = 2, 3, . . , n}. The density matrix ρK1,n−1
is entangled

for n = pq � 4. So, the separability properties of complete graphs and star graphs do

not depend on the labelling. It is an open problem to determine if these graphs are

the only ones with this property (Braunstein et al. 2006a).
— If ρG is the density matrix of a graph on n = 2q vertices, then ρΓB

G � 0 if and only if

ρG is separable in �2
A ⊗ �q

B . Equivalently, the PPT-criterion is necessary and sufficient

to test separability in this case (Wu 2006).
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— Wu (2006) considered generalised laplacians. Let S be the set of density matrices with

non-negative row sums and non-positive off-diagonal entries. If a density matrix ρ ∈ S

of dimension n = pq is such that the matrices Aij (as in Equation 1) are line sum

symmetric, then ρ is separable in �p
A ⊗ �q

B . A matrix is line sum symmetric if the i-th

column sum is equal to the i-th row sum for each i.

As a corollary, Wu (2006) proved that if a density matrix ρ ∈ S of dimension n = pq

and with zero row sums is such that [ρ]i,j;i′ ,j ′ 	= 0 implies that |i − i′| � 1, then ρ is

separable in �p
A ⊗ �q

B if and only if ρΓB has zero row sums (Corollary 3). This result

generalises the separability of nearest point graphs. In fact, for a nearest point graph

the condition |j − j ′| � 1 is also required. It is relevant to point out here that ρΓB has

zero row sum if and only if the degree-criterion if satisfied.

2.5. Equivalence of the degree- and PPT-criteria

Here we prove that for laplacians the PPT-criterion is equivalent to the degree-criterion.

Observation 1. Let ρ be a matrix acting on �p
A ⊗ �q

B and satisfying the PPT-criterion,

and x⊗ y be a separable vector in �p
A ⊗ �q

B . Then the condition ρ(x⊗ y) = 0 implies the

condition ρΓB (x⊗ y) = 0. In fact, we have

(x⊗ y)∗ ρ (x⊗ y) = (x⊗ y)∗ ρΓB (x⊗ y) = 0,

and by the positivity of ρΓB , it follows that ρΓB (x⊗ y) = 0.

Here the star denotes adjoint and the overbar denotes complex conjugation. A simple

proof of Braunstein et al. (2006b, Theorem 2) can be derived from this result, with x and

y being equal to the all-ones vector.

Observation 2. As a consequence of Observation 1, if ρ is a separable density matrix and

ρ =

N∑
k=1

(xk ⊗ yk) (xk ⊗ yk)
∗

is a separable decomposition of ρ, then, for any k = 1, 2, . . . , N, we have the following

conditions:

— (xk ⊗ yk) ∈ range(ρ);
— (xk ⊗ yk) ∈ range(ρΓB ).

Theorem 1. Let ρG be the density matrix of a graph G. Then ρG satisfies the PPT-criterion

if and only if it satisfies the degree-criterion.

Proof. We have ρG (e⊗ e) = 0, because ρG is the laplacian of G scaled by some

coefficient, where e is the all-ones vector of the required dimension. Suppose that the

degree-criterion is satisfied. Then ρΓB
G = ρGΓB . Hence ρΓB

G is positive. It follows that

ρG satisfies the PPT-criterion. Suppose that the PPT-criterion is satisfied. Then, by

Observation 1, we have that ρΓB
G (e⊗ e) = 0. This is exactly the degree-criterion on

ρG.
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2.6. Separability in �2
A ⊗ �q

B

Here we prove that the degree-criterion is necessary and sufficient to test separability in

�2
A ⊗ �q

B of density matrices of graphs, therefore giving an alternative proof to a result in

Wu (2006).

Theorem 2. Let G be a graph on n = 2q vertices. Then ρG is separable in �2
A ⊗ �q

B if and

only if the degree-criterion is satisfied.

Proof. The implication ‘⇒’ is easily verified. We prove the implication ‘⇐’. If G satisfies

the degree-criterion, we can write

ρG = L1 + L2 + L3,

where

L1 :=

(
X1 0

0 0

)
, L2 :=

(
0 0

0 X2

)
and L3 :=

(
X3 X4

XT
4 X3

)
and X1, . . . , X4 are appropriate matrices. Now, L1 and L2 are trivially separable. The

matrix L3 is separable because it is a PSD block-Töplitz matrix. Hence, ρG is separable.

3. Concurrence

In this section we focus on the concurrence of the density matrices of graphs. The notion

of concurrence was introduced in Hill and Wootters (1997). The concurrence of a density

matrix acting on �p
A ⊗ �q

B is a quantity that is strictly larger than zero if the state is

entangled and zero if it is separable. It is defined as follows: if |ψ〉AB ∈ �p
A ⊗ �q

B , the

concurrence of |ψ〉AB is denoted and defined by

C(ψ) =

√
2(1 − tr(ρ2

A)),

where

ρA = trB(|ψ〉AB〈ψ|).
Let ρAB be a density matrix acting on �p

A ⊗ �q
B . The concurrence of ρAB is denoted and

defined as

C(ρAB) = inf

{∑
i

ωiC(ψi) : ρAB =
∑
i

ωi|ψi〉AB〈ψi|, 0 � ωi � 1,
∑
i

ωi = 1

}
.

Now let p = q = 2 and

σy = −i|1〉〈2| + i|2〉〈1|,
where |1〉 and |2〉 are the eigenvectors of the matrix

σz =

(
1 0

0 −1

)
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corresponding to the eigenvalues 1 and −1, respectively. An analytical formula for C(ρAB)

is given by

C(ρAB) = max{0, λ1 − λ2 − λ3 − λ4},

where λ1, λ2, λ3 and λ4 are the square roots of the eigenvalues of ρABρ̃AB arranged in

decreasing order and

ρ̃AB := (σy ⊗ σy)ρ
T
AB(σy ⊗ σy).

The importance of the concurrence stems from its relation with the so-called entanglement

of formation, which is the most widely accepted measure of entanglement (see Bennett et

al. (1996); see also Plenio and Virmani (2006)). For a pure state (that is a state of the

form P
[
|ψ〉

]
) of a system SAB , a good measure of entanglement is the entropy of the

density matrix associated with one of the two subsystems. Choosing the system SA, this

can be written as

E(ψ) := −tr(ρA log2 ρA),

where

ρA = trB(P
[
|ψ〉

]
).

For a mixed state ρ, the entanglement of formation is defined by

Ef(ρ) := min
∑
i

piE(ψi),

where the minimum is taken over all pure-state decompositions of the density matrix ρ.

It is evident that computing Ef is, in general, not an easy task. Explicit formulas are

only known for very specific classes of states, such as the Werner states (Vollbrecht and

Werner 2001). The role of concurrence is explained by the following result (Wootters 1998).

Let ρ be a mixed-density matrix of dimension 4. Then

Ef(ρ) = H

(
1

2
+

1

2

√
1 − C(ρ)2

)
,

where

H(x) = −x ln x− (1 − x) ln(1 − x)

is the standard information-theoretic entropy. Remarkably, Ef(ρ) increases monotonically

as a function of C(ρ).

For density matrices of graphs of dimension 4 the situation can be described as follows.

There are twelve non-isomorphic graphs on 4 vertices. Seven of these graphs can have

entangled density matrices. The tables below present these graphs and their respective

concurrences:
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Notice that in all cases the value of the concurrence is 1 over the number of edges.

Moreover, one easily sees that the optimal decomposition of the density matrices of these

graphs just corresponds to the decomposition of the combinatorial laplacians as sums of

laplacians of 1-edge graphs.

This motivates the following definitions.

Definition 1. Let G = (V , E) be a graph with its n = pq vertices arranged in a p× q array.

We say an edge e ∈ E is separable if the density matrix of the 1-edge graph Ge = (V , {e})
is separable. We call e ∈ E matched if e ∈ E ′, and unmatched otherwise.

Recall that E ′ is the set of edges of the partially transposed graph G′. Thus an edge is

matched if and only if it is part of a criss-cross† or it is separable. Since graphs consisting

of a criss-cross give rise to separable density matrices, we have the following results.

Observation 3. Let G = (V , E) be as above, and E1 ⊂ E be the subset of all matched

edges. Then the graph G1 = (V , E1) has a separable density matrix.

Observation 4. Let G = (V , {e}) be a 1-edge graph with its n = pq vertices arranged in a

p× q array, and let ρe be its density matrix. Then the concurrence of ρe is given by 0 if e

is a separable edge and by 1 if e is not separable, and hence unmatched.

Corollary 2. Let G = (V , E) be as above, and let n1 be the number of matched edges of

G and n2 be the number of unmatched edges. Then the concurrence of the density matrix

ρ of G is bounded from above by

C(ρ) �
n2

n1 + n2
.

In particular, for any graph G with density matrix ρ, we have C(ρ) � 1.

Proof. Assume the above notation, and let ρ1, ρ2 be the density matrices of the graphs

(V , E1) and (V , E2), respectively, where E1 is the set of matched edges and E2 the set of

† A criss-cross is a set {{(k, i), (l, j)}, {(k, j), (l, i)}} of two edges belonging to a set of (vertex-disjoint) entangled

edges on n = pq vertices (see also Braunstein et al. (2006a)).
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unmatched edges. Then the density matrix ρ of G is given by the convex combination

ρ =
n1

n1 + n2
ρ1 +

n2

n1 + n2
ρ2 ,

and the density matrix ρ2 is given by

ρ2 =
1

n2

∑
e∈E2

ρe ,

where ρe is the density matrix of the 1-edge graph (V , {e}). By convexity of the concurrence

and by Observations 3 and 4, we obtain

C(ρ) �
n1

n1 + n2
C(ρ1) +

∑
e∈E2

1

n1 + n2
C(ρe) =

n2

n1 + n2
.

For all of the above graphs on four vertices, either the density matrix is separable or

we have n2 = 1, in which case 1 over the number of edges is an upper bound for the

concurrence. As can be seen from the table, the bound is actually achieved.

The concurrences of graph density matrices that have rank 2 are listed in Hildebrand

(2006). Examples IVb, IVc and IX in Hildebrand (2006) or the tally-mark† show that, in

general, the upper bound is not exact, even for graphs on 2 × 3 arrays.

Definition 3. We say a graph G = (V , E) is maximally entangled if the concurrence of its

density matrix ρ is given by C(ρ) = 1.

Hence, all edges of a maximally entangled graph must be unmatched.

Some questions arise naturally:

— Are there non-isomorphic graphs with the same concurrence?

— How can graphs with rational concurrence be characterised?

— Is the concurrence of ρG related to specific combinatorial properties of G?

— Can the set of edges of a graph G = (V , E) with density matrix ρ always be partitioned

into two subsets E1, E2 such that the density matrix of (V , E1) is separable, (V , E2) is

maximally entangled and

C(ρ) =
#E2

#E
?

— How can maximally entangled graphs be characterised?

— Does there exist a class of density matrices of graphs for which testing separability is

a difficult problem?

It might be that the existence of such a class would provide a transparent proof that

detecting entanglement is hard.

† A tally-mark is a set

{(k, i1), (l, i2)}, {(k, i2), (l, i3)}, . . . , {(k, is+1), (l, is+2)}, {(k, is+2), (l, i1)}

of s + 2 edges, where k < l, s � 0 and i1 < i2 < · · · < is+2, belonging to a set of (vertex-disjoint) entangled

edges on n = pq vertices (see also Braunstein et al. (2006a)). Note that a criss-cross is a tally-mark with two

edges.
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Unfortunately, explicit formulae for computing the concurrence of density matrices are

only known currently for dimensions n � 4 (Rungta et al. 2001; Li and Zhu 2003; Mintert

et al. 2005) and for density matrices of rank 2 (Hildebrand 2006). This is an obstacle

when it comes to thinking about the questions above. Nevertheless, one can still hope to

find an ad-hoc formula for C(ρ), when ρ is the density matrix of a graph. In fact, it may

well be that the optimal decompositions of ρG into pure states are very special. Finding

such a formula would be interesting in view of potential generalisations.

Putting the concurrence to one side, one may ask if there is some entanglement measure

specifically tailored for ρG. Considering the apparent success of the degree-criterion, a

naive measure would be the normalised Euclidean norm EN(ρG) :=
∥∥Δ(G) − Δ(GΓB )

∥∥.

The logarithmic negativity is a well-known entanglement measure, and it is defined by

LN(ρG) := log2(1 + 2N(ρG)), where N(ρG) is the sum of the magnitudes of all negative

eigenvalues of ρΓB
G (Vidal and Werner 2002). There are examples of graphs G and H for

which EN(ρG) = EN(ρH ) but LN(ρG) 	= LN(ρH ) (Gosh 2006).

4. Conclusion

We have proved that the degree-criterion is equivalent to the PPT-criterion. It is thus,

in general, not sufficient for the separability of the density matrices of graphs. As a

matter of fact, we have provided a counterexample within graphs having isolated vertices.

Nevertheless, we have been able to prove the sufficiency of the degree-criterion when one

of the subsystems has dimension two. In particular, as a corollary of Theorem 2, one can

easily obtain the separability of criss-crosses and tally-marks.

We have also considered the concurrence as a possible entanglement measure of density

matrices of graphs. There could be more suitable entanglement measures for states like

this, especially as no explicit formula for concurrence is known when n > 4 and the rank

of the density matrix is greater than 2. Further studies are required on the subject of the

density matrices of graphs. However, we believe that such states provide a restricted testing

ground for achieving a better understanding of the techniques and concepts employed in

more general settings.
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