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Answer:
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give expectation ≤ 2.5

classical theories*
give expectation ≤ 2

quantum theory**
gives expectation ≤ 5≈2.23

*Wright (1978); **Klyachko et al. (2008)
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*Klyachko et al. (2008)

            is the max. violation of the
Klyachko-Can-Biniciouglu-Shumovsky (KCBS) 
inequality*. 
The inequality can be used to detect genuine quantum 
effects and it is the simplest non-contextual inequality 
violated by a qutrit (because the orthogonal 
representation has dimension 3).
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representation has dimension 3).

Remark.

C5
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Quantum mechanics as a “sandwich theory”*

EC⊂EQ⊂ENS

2. Results*cf. Knuth (1994)

EC

EQ

ENSmembership in        of a 
vector can be tested with 
a semidefinite program!  

EQ



  

*Liang-Spekkens-Wiseman (2010)

Standard result about the Lovász function can be then 
used to give the max. violation of known inequalities. For 
example, the max. violation for the n-cycle generalization 
of the KCBS inequality, recently computed in * is 
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Remark.

Cn=
ncos /n
1cos /n
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classical ones”. For a perfect graph                                     
                                                                                    

Whenever                 we have a difference between 
classical theories and quantum mechanics and a “state 
dependent” proof of the Kochen-Specker theorem**.      

Classicality and perfectness

2. Results*Berge (1961); **where effects sum to unity

H =H =  H 

EC=EQ=ENS

GG

The KCBS inequality is based on       
which is the smallest non-perfect graph.

C5
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(i.e., classical and quantum theories can have arbitrarily 
large separation)*. 

1. Many intractable problems are tractable for perfect 
graphs (i.e., when classical and quantum theories 
coincide).

2. There are graphs s.t.                  and                          
(i.e., classical and quantum theories can have arbitrarily 
large separation)*. 

Two remarks

2. Results*Koniagin (1981)

G=2 G=n1 /3
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x∈Xsettings
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y∈Ysettings
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{abxy ,a' b ' x ' y }∈E iff
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[    is the hypergraph of all cliques* in G]
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2. Results
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{abxy ,a' b ' x ' y }∈E iff
x=x '∧a≠a ' ∨y=y '∧b≠b ' 

exclusiveness;
compatibility: 
the observables of 
Alice and Bob commute. 

V=A×B×X×YG=V ,E 
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are the sets of correlations obtainable by local hidden 
variables, local quantum measurements on a bipartite 
state, idem  but without completeness relation for the 
measurement, and non-signaling theories, respectively:

A classification theorem for correlations

EC
1 ⊂EQ

id⊂EQ
1 ⊂ENS

1 



EX=C ,Q , NS
1 :=EX  ∩{w : ∀ xy ∑

wab∣xy

w ab∣xy=1}

EQ
id:={w ab∣xy abxy : ∀ xy ∑

ab
P ab∣xy=id}
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1
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1

EQ
id

EC
1

maximization over 
         and    
is equivalent to 
maximization over 
         and

ENS
1ENS
1

ENS
1 EC

1

ENS EC

Fact
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are efficient 
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to maximum 
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EC

EQ
1

EQ
idthere is no efficient

algorithm, unless the 
polynomial hierarchy 
collapses*

Fact

*Ito-Kobayashi-Matsumoto (2009)
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EC
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1
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maxima via SDP
are efficient 
upper bounds
to maximum 
quantum violations

Fact

EQ
idProblem: how well        approximates        ?     EQ

1
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inequality*
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settings and outcomes: A=B=X=Y={0,1}
∑

wab∣xy : x⋅y=a XOR b
w ab∣xyconstraint: 

CHSH inequality

G=3
classical max. 

FP =4
non-signaling max. 

quantum max. 

G=22≈3.4

∣〈∣v 1〉∣
2

∣〈∣v 2〉∣
2

∣〈∣v 3〉∣
2

∣〈∣v 4〉∣
2

∣〈∣v 5〉∣
2

∣〈∣v 6〉∣
2

∣〈∣v 7〉∣
2

∣〈∣v 8〉∣
2



  

1. Introduction: non-contextuality2. Results

CHSH inequality

G=3
classical max. 

FPG=4
non-signaling max. 

G=22≈3.4
quantum max. 

it attains the 
Tsirelson bound 



  

1. Introduction: non-contextuality2. Results*Collins-Gisin (2004); **Navascués-Acín-Pironio (2008)

EC

EQ
1

EQ
id

Collins-Gisin inequality (I3322)*

max. 6.2514 

max. 6.2508** 

EQ
id⊂EQ

1



  

    3. Open problems: 
       1. theoretical:
           relations to Bell inequalities 
       2. applied: 
           loophole-free experiments 
       3. a complexity perspective: 
           degree of perfectness

3. Open problems
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Can any violation of a non-contextual 
inequality be converted into a 
(comparably large) 
violation of a Bell inequality? 

Is your entropy 5 bits?

“theoretical open problem” 
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So far, forty years after Bell paper, all Bell 
experiments have loopholes: are graphs 
with a large separation between the 
independence number and the Lovász 
function good candidates for loophole-free 
experiments with inefficient detectors?



  

3. Open problems

Can any violation of a non-contextual inequality be 
converted into a (comparably large) 
violation of a Bell inequality? 

Is your entropy 5 bits?

“complexity open problem” 

So far, forty years after Bell paper, all Bell experiments have loopholes: are 
graphs with a large separation between the independence number and the 
Lovász function good candidates for loophole-free experiments with 
inefficient detectors?

Perfect graphs have many efficient 
algorithms that in general are NP-hard. We 
have shown that compatibility structures 
from perfect graphs have coincident 
classical and quantum description. Can we 
define a notion of parametric complexity 
according to the classical-quantum gap?



  

3. Open problems

Can any violation of a non-contextual inequality be 
converted into a (comparably large) 
violation of a Bell inequality? 

Is your entropy 5 bits?

open problems

*09:55, Fri, Matthews' talk; poster Duan-Severini-Winter

So far, forty years after Bell paper, all Bell experiments have loopholes: are 
graphs with a large separation between the independence number and the 
Lovász function good candidates for loophole-free experiments with 
inefficient detectors?

Perfect graphs have many efficient algorithms that in general are NP-hard. 
We have shown that compatibility structures from perfect graphs have 
coincident classical and quantum description. Can we define a notion of 
parametric complexity according to the classical-quantum gap?

The Lovász function is fundamental 
in zero-error classical and quantum 
information theory*. Can we recast 
the non-contextuality framework into 
an information theoretic one?  
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Is your entropy 5 bits?
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So far, forty years after Bell paper, all Bell experiments have loopholes: are 
graphs with a large separation between the independence number and the 
Lovász function good candidates for loophole-free experiments with 
inefficient detectors?

Perfect graphs have many efficient algorithms that in general are NP-hard. 
We have shown that compatibility structures from perfect graphs have 
coincident classical and quantum description. Can we define a notion of 
parametric complexity according to the classical-quantum gap?

The Lovász function is fundamental in zero-error classical and quantum 
information theory. Can we recast the non-contextuality framework into an 
information theoretic one? 
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