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“The fundamental problem of communication is that of reproducing 
at one point either exactly or approximately a message selected at 
another point.”

                                         ----Claude Elwood Shannon, 1948

  

  

1. Exactly (zero-error): 

2. Approximately (small-error): 

3. Unambiguously (no mistake): 
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Why Zero-Error?

2. Only a finite number of uses of channel are available but high reliability is 
required. 

1. In some critical applications no error can be tolerated.

4. Many new and interesting unsolved problems.

Game: Answer 100 questions with “Yes”, “No”, or “Disclaim”.

Rules:  Correct +10$; Mistake  -1000$; Disclaim -1$ (per Q).

It is much better to say “I don’t know” than to make a possible false guess.

“Even a decision with tiny  probability of error may lead to fatal consequence!”

 “Zero-Error Information Theory” (Korner&Orlitsky,1998 )

Culmination: “The Strong Perfect Graph Theorem.” 
 (Chudnovsky, Robertson, Seymour, and Thomas, 2006)

3. Far-reaching connections with Graph theory,  Combinatorics, 
Communication complexity, and Quantum entanglement theory. 
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Overview of Talk

 

(i).  Entanglement between different uses enables 
perfect transmission of classical information.

(ii).  Both zero-error classical and quantum capacities 
are strongly super-additive, intuitively, 1+0>>1. 

(iii). Classical feedback can boost the zero-error 
capacity from zero to positive. 

These properties do NOT hold for classical memoryless channels.

Topic 1: Some striking quantum effects in zero-error 
communication via noisy quantum channels. 

Topic 2:  A notion of non-commutative graph and a quantum 
Lovasz theta function.
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Intuitive Meaning of Quantum Effect (i)

There is a class of quantum noisy channels of which a single use cannot 
transmit classical information exactly yet two uses can. 

 This is NOT true for classical memoryless channels (Shannon, 1956). 

Entangled encoding enables perfect transmission of classical information.
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Some Related Works

1. Basic Properties of zero-error capacity of quantum channels:  Medeiros et 
al,  arXiv, 2006; Beigi and Shor,arXiv, 2007. No entangled input states are 
allowed. 

2. Entanglement between different uses enables perfect transmission of 
classical information (for multi-user quantum channels): Duan and Shi,  
PRL, 2008.

3.  Super-activation of quantum capacity: Smith and Yard, Science, 2008.

4.  Disprove the celebrated additivity conjecture: Hastings, Nat. Phys., 2009.

5.  Strong Non-additivity of the private classical capacity: Li, Winter, Zou, and 
Guo, 2009; Smith and Smolin, arXiv, 2009.

6. Classical feedback increases the classical capacity of quantum channels : 
Smith and Smolin, 2009; (strong evidences provided in Bennett, Devetak, 
Shor, Smolin, PRL, 2006)
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Classical Discrete Memoryless Channels (CDMC)

General Form of CDMC: 

X: a probability distribution over input letters 

Y: a probability distribution over output letters 

A positive linear transformation between probability distributions!

X Y

Transition Probability Matrix:

Output letters:

Input letters:

Binary Symmetric Channel:

Input letters Output letters

Runyao Duan, Wuhan 2012 7



Classical states  vs. Quantum states
Pure states:

Mixed (general) states:

A finite set A finite-dimensional  Hilbert space

Some Dirac notations:
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Composite Systems and Quantum Entanglement

Two classical systems: X £ Y = f (x; y) : x 2 X ; y 2 Yg.
Two bits: f 00, 01, 10, 11g

Two quantum 
systems:

Entangled states (Non-factorable states):  

Entangled state is a valuable resource for quantum information processing.

Two qubits: jÃi = a00j00i + a01j01i + a10j10i + a11j11i .

ja00j2 + ja01j2 + ja10j2 + ja11j2 = 1.
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Quantum Memoryless Noisy Channels

©(½) =
NX

k = 1

Ek½E y
k :

Any quantum channel © : B(H d1
) ! B(H d2

) has the following Kraus repre-
sentat ion:

1. Ek are linear operators from H d1
to H d2

, i.e., d2 £ d1 matrices, represent
ambient noises applied to½.

2.
P N

k= 1 E y
k Ek = I d1

to guarantee t r ace-preserv ing,i.e., t r(©(½)) = t r(½).

The  most general form of physically realizable operations allowed by 
quantum mechanics.
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Classical DMC as Special Quantum Channels

½0 = (1 ¡ p)j0ih0j + pj1ih1j;
½1 = (1 ¡ p)j1ih1j + pj0ih0j:

©(½) = t r(½j0ih0j)½0 + tr(½j1ih1j)½1;
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Criterion for Distinguishability

©

De¯ nit ion: Two states ½0 and ½1 are said to be exact ly dist inguishable
if there exists a quantum channel(operat ion) © such that ©(½0) = j0ih0j and
©(½1) = j1ih1j.

½k

T heorem: Two states ½0 and ½1 are exact ly dist inguishable if and only if
they are orthogonal, i.e., ½0 ? ½1, or equivalent ly ½0½1 = 0.

©(½k ) = jkihkj; k = 0;1
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Definition of Zero-Error Capacity

The one-shot zero-error capacity (or quantum independent number) of a 
quantum channel    , denote as         , is the maximum  integer      that there 
exists states                       such that                             are pairwise orthogonal 
(thus distinguishable).  (Medeiros et al, 2006; Beigi and Shor, 2007).

A single use of      can transmit           messages exactly.

The (asymptotic) zero-error classical capacity of     , denoted by          ,   is 
defined as follows: 

A single use of      can asymptotically transmit          messages exactly.

Remarks:  If measure in bits, we have                               .  But           is more 
convenient and intuitive.   Sometimes we are also interested in          , the 
zero-error quantum capacity of     .
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Classical Case: Shannon Capacity of a Graph

The reachable set of an input letter x:

 The confusability graph  is given as follows:

Theorem (Shannon, 1956): The zero-error capacity of a CDMC  is completely 
determined by the independent number of its confusability graph. 

 x and x’ are adjacent (or confusable ): 

We also have

One-shot zero-error capacity:

Asymptotic zero-error capacity:

Given a CDMC

A connection between zero-error information theory and graph theory!
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A Classic Example: Pentagon Channel
The Pentagon Channel  C5 (Shannon,1956):

In 1979 (23 years later!) it was finally confirmed by Lovasz using 
the celebrated theta function named after him that 

The zero-error capacity of other odd cycles C2n+1  and their graph 
complements for n>2 are still widely open!!!

0

1

2 3

4
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Remark 1. The same result has been obtained previously (Beigi and Shor,
2007), but t he connect ion wit h UB was not ment ioned t here.

Quantum Case: Feasibility of Zero-Error Communication 

Proof. K(E) is extendible isequivalent to the existence of a rank-one mat rix
jÃ0 ihÃ1 j such that t r(E y

k E j jÃ0 ihÃ1j) = 0, or equivalent ly,

hÃ0 jE y
k E j jÃ1 i = 0;

which is exact ly E(jÃ0 ihÃ0 j) ? E(jÃ1 ihÃ1 j).

R emar k 2. The zero-error capacity of E is completely determined by the
mat rix subspace K(E).

A subset                   is said to be extendible if the orthogonal complement        
(in the sense of Hilbert-Schmidt) contains an element with matrix rank one. 
Otherwise S is said to be an unextendible bases (UB).

Lemma 1:                    iff                                       is extendible.
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Characterization  of

Quest ion Given a matrix subspace S on B(Hd), when there is a quantum
channel E such that S = K(E)?

Remarks:  

1.Lemma 2 greatly simplifies the study of zero-error capacity of 
quantum channels. 

2.It suggests a non-commutative version of classical graphs.

3.    Any subspace S satisfying the conditions i) and ii) is precisely an 
operator system in operator algebras. 

Lemma 2 Given a matrix subspaceS on B(Hd), there isa quantum channel
E such that S = K(E) i® S satis¯es i) Sy = S and ii) I d 2 S.

K(E)
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Quantum Effect (i)

For any classical discrete memoryless channel N, £(N) = 1 i®®(N) = 1.
(1956, Shannon).

Theorem 1 There isquantumchannel E such that ®(E) = 1and £(E) > 1.
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Proof Outline:

Quantum Effect (i) (cont.)

1. We only need to construct two quantum channels E0 and E1 such that
®(E0) = ®(E1) = 1 and ®(E0 ­ E1) > 1. Choose E = E0 © E1. Then
®(E) = 1 and ®(E­  2) > 1:

2. By Lemmas 1 and 2, the problem is reduced to ¯nd two matrix subspaces
S0 and S1 such that a) S0 and S1 are unextendible; b) S0 ­ S1 is ex-
tendible; c) there are quantum channels E0 and E1 such that S0 = K(E0)
and S1 = K(E1).

3. S0 and S1 satisfy a) and b) can be constructed easily by employing the
techniques in previous works (Duan and Shi, 2008). Part c) is equiva-
lent to further enforce S0 and S1 satisfy Sy

k = Sk and I d 2 Sk , k = 0;1.
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An explicit construction for d=4

a) and b)  need a tedious but routine calculation. (details omitted)

c) is by inspection.

Let S0 be a matrix subspace spanned by the following matrixbases:

F1 = j0ih0j + j1ih1j;
F2 = j2ih2j + j3ih3j;
F3 = j2ih0j ¡ j0ih2j;
F4 = j3ih0j + j0ih3j;
F5 = j1ih3j + j3ih1j;
F6 = cosµj0ih1j + sinµj2ih3j ¡ j1ih2j;
F7 = cosµj1ih0j + sinµj3ih2j ¡ j2ih1j;
F8 = sinµj0ih1j ¡ cosµj2ih3j + sinµj1ih0j ¡ cosµj3ih2j;

where 0 < µ < ¼=2 is a parameter. Let U = j0ih0j ¡ j1ih1j + j2ih2j ¡ j3ih3j,
and let S1 = US?

0 , where S?
0 is the orthogonal complement via Hilbert-Schmidt

inner product. (Const ruct ion based on: Duan and Shi, 2008)
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A special class of quantum channels

Control input:

Data input: Data output

Control output

E =
NX

k= 1

Ek ­ F k ;

where both Ek and F k are super-operators. Usually we choose f F kg to be a set
of quantum operat ions and f Ekg is a quantum measurement , i.e.,

P N
k= 1 Ek is

t race-preserving.
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A special class of quantum channels (cont.)

Control input:

Data input: Data output

Control output

A generalization of the retro-correctible channels (Bennett,  
Devtak, Shor, Smolin, 2006) 

E =
NX

k= 1

E(cont rol)
k ­ F (dat a)

k ;

Alice: Bob

B asic Proper t y: If the receiver Bob can dist inguish between f Ekg, he will
be able to infer the hidden measurement outcome k. Thus the net e®ect of the
channel E will reduce to one of f Fkg. In the case that F k has a large amount
of classical or quantum capacity, E will also have large capacity.
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Quantum effect (ii): Strong Super-additivity
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We can further show that auxiliary resources such as shared 
entanglement (more later), classical and quantum feedbacks can 
either simplify the feasibility problem greatly, or increase the capacity 
dramatically.  

T heorem 3. There is a quantum channel E from B(H 2) to B(H 2 ­ H 4)
such that C (0) (E) = 0 and C (0)

cf b(E) ¸ Q(0)
cf b(E) > 0, where \ cfb means classical

feedback.

Quantum effect (iii): Auxiliary resources
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Open Problems and Recent Progresses

P r oblem 1: There are quantum channels E0 and E1 such that C (0) (E0) =
C (0) (E1) = 0 and C (0) (E0 ­ E1) > 0.

P r oblem 2: There are quantum channels E0 and E1 such that C (0) (E0) =
C (0) (E1) = 0 and Q(0) (E0 ­ E1) > 0.

Note added: In their independent  work (arXiv: 0906.2547) Cubitt, Chen, and 
Harrow have obtained some interesting results about zero-error capacity that 
partially overlap our main Result 1. Most notably, they have resolved the above 
open problem 1 (and in a later work problem 2). However, explicit 
constructions are still unknown.
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Non-Commutative Graphs and Zero-Error 
Communication

Entanglement-assisted  zero-error  classical capacity of quantum channels: 
Alice and Bob can make use of (pre-shared) entanglement for communication

Key observation:  All these quantities only depend on          .  In general, almost 
known quantities of zero-error communication only depends on         . Thus we 
can focus on non-commutative graphs rather than actual channels.

We can introduce more notions of capacities for zero-error communication by 
consider the type of information (quantum or classical) we are interested in or 
the auxiliary resources that might be available (classical feedback, quantum 
feedback, and shared entanglement, etc). 

In bits,

One-shot ent-assisted zero-error classical capacity:

Asymptotic  ent-assisted zero-error classical capacity :
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A quantum Lovasz theta function

Not well-behaved:

Let S be a non-commutative graph (operator system) over a d-dimensional 
Hilbert space.  A direct (somehow native) generalization of Lovasz theta 
function is the following:

A “correct” version (similar to the idea of completely bounded norm):

  Duan, Severini, and Winter, 2010,  arXiv: 1002.2514; also ISIT 2011. 
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A Quantum Lovasz theta function

Theorem (Duan, Severini, and Winter, 2010): Let S, S0, S1 be non-commutative 
graphs (operator systems). Then  the following hold: 

        satisfies a number of natural properties that we are expecting for a 
“Quantum Lovasz theta function”:

2. Multiplicativity under tensor product:

 3.  Upper bound for ent-assisted zero-error 
capacity: 
4.  Consistent with Lovasz theta function for classical graphs:

1. Semi-definite programming characterization. In particular,  we have

Combining  3 and 4, we have:

The first inequality can be strict (Leung et al, 2011), and the second 
inequality was obtained independently by Beigi (arXiv: 1002.2488).
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Some Questions

1. Is it true that                                          ?  This is true for classical G0 and G1.

2. Do we have the equality                                     for general  non-commutative 
graph  S? In particular, do we have                                 for any classical graph 
G?

3.  A more complete theory for non-commutative graphs? (For instance, 
how to define natural notions of perfect graphs, chromatic number,  etc. 
(Duan, Severini, Winter, and Paulsen, work in progress).
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Thank you for your attention!
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