
Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Good Programming Practice

Patrick Guio

Patrick Guio Good Programming Practice

Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Outline

1 Coding techniques (Readability and Maintainability)

2 Programming Practice (Performance Enhancements)

3 Compiling code

4 Debugging & Optimising

5 Maintaining code

Patrick Guio Good Programming Practice

Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Code Formatting: Be Consistent!

Rule of thumb:
Consistency more important than specific formatting style

No matter how many SPACE’s you use for an indent, use it
consistently throughout the source code. SPACE’s and
TAB’s do not mix well!
Indent code to better convey the logical structure of your
code. Without indenting, code becomes difficult to follow.
i f . . . then
i f . . . then
. . .
e lse
. . .
end i f
. . .
e lse
. . .
end i f

Patrick Guio Good Programming Practice

Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Code Formatting (Contd)

Establish a maximum line length for comments and code to
avoid having to scroll the window of the text editor (and
allow clean hard-copy even though printing is not
recommended!).
Use SPACE after each “comma” in lists, such as array
values and arguments, also before and after the “equal” of
an assignment

Energy = 0.5 ∗ k_b ∗ Temp(i , j , k)

Use empty lines to provide organisational clues to source
code, blocks (“paragraphs”-like structure) help the reader
in comprehending the logical segmenting.
When a line is broken across several lines, make it obvious
that the line is incomplete using indentation.

Patrick Guio Good Programming Practice

Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Code Formatting (Contd)

Avoid placing more that one statement per line, an
exception is loop in C and C++

f o r (i = 0 ; i < 100; i ++)

In FORTRAN, avoid to define format statements “far away”
from the READ/WRITE statement itself

w r i t e (f i l e I d , 99062) i t e r
. . .
99062 format (’ Number o f i t e r a t i o n s = ’ , i 7)

Even better, avoid label at all and include the format within
the statement

w r i t e (f i l e I d , " (’ Number o f i t e r a t i o n s = ’ , i 7) ") i t e r

Patrick Guio Good Programming Practice

Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Code Formatting (Contd)

Enable syntax highlighting in your text editor.
Use freely available program that help to indent, format,
and beautify your source code automatically and
consistently.

indent for C, astyle for C, C++, C# and Java.
floppy for FORTRAN 77, tidy for FORTRAN 77/90.

Break large, complex sections of code into smaller,
comprehensible modules (subroutine/functions/methods).
A good rule is that modules do not exceed the size of the
text editor window.
Arrange and separate your source code logically between
files.

Patrick Guio Good Programming Practice

Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Naming convention: Be Consistent!

Rule of thumb:
Consistency more important than specific naming convention

Choose and stick to a style for naming various elements of
the code, this is one of the most influential aids to
understand the logical flow.
Difficulty to find a proper name for a routine/variable may
indicate a need to further analysis to define its purpose. . .
“Ce que l’on conçoit bien s’énonce clairement”, from “l’art
poétique”, Nicolas Boileau, 1674.
A name should tell what rather than how, avoid names that
expose underlying implementation.
Ideally you would like to be able to read the code as prose.

Patrick Guio Good Programming Practice

Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Naming convention (Contd)

Avoid elusive names, open to subjective interpretation like
Analyse (. . .) / / subrou t ine or f u n c t i o n or method
nnsmcomp1 / / v a r i a b l e

It brings ambiguity more than abstraction. . .
Use a verb-noun method to name routines that perform
some operation-on-a-given-object. Most names are
constructed by concatenating several words, use
mixed-case formatting or underscore to ease reading.

ca l cu la teK ine t i cEne rgy (. . .)
ca l cu l a te_k i ne t i c_ene rgy (. . .)

or any other derivatives.

Patrick Guio Good Programming Practice

Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Naming convention (Contd)

In Object-Oriented languages, it is redundant to include the
class name in the name of a member field or function, like

c lass so l ve r {
/ / DON’ T USE
i n t so lve rGr idS ize ;
/ / USE INSTEAD
i n t g r i dS ize ;
. . .

In languages with overloading capability (C++, Matlab,. . .),
overloaded functions should perform a similar task.
Append/Prepend computation qualifiers like Av, Sum, Min,
Max and Index to the end of a variable when appropriate.
Use customary opposite pairs for names such as
min/max, begin/end, start/stop, open/close.

Patrick Guio Good Programming Practice

Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Naming convention (Contd)

Boolean type variable names (and functions returning
boolean) should contain is/Is to “imply” a True/False
value

i f (dataIsLoaded) { / / boolean v a r i a b l e
. . .

wh i le (! s imu la t i on . i sF in i shed ()) { / / member f u n c t i o n r e t u r n i n g a boolean
. . .

Avoid using terms such as “Flag” for status variable
different from boolean type

i n t e g r a t i o n F l a g / / expect a boolean type
integrat ionMethodType / / expect a s ta tus value

Even for short-lived variable, use a meaningful name. Use
single-letter variable (i, j) for short-loop indexes only.

Patrick Guio Good Programming Practice

Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Naming convention (Contd)

If using Charles Simonyi’s Hungarian Naming Convention,
or some derivative, develop a list of standard set of
prefixes for the project (for instance arr1df, arr1di,
arr2df, etc. . .).
For variable names, it can be useful to include notation that
indicate the scope of the variable, such as the prefix g_ for
global or l_ for local.
“Constants” (literals) should be all uppercase with
underscores between. For instance, the C header file
“math.h” define π and

√
2 as the literal

def ine M_PI 3.14159265358979323846 /∗ p i ∗ /
de f ine M_SQRT2 1.41421356237309504880 /∗ s q r t (2) ∗ /

Patrick Guio Good Programming Practice

Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Keep lifetime of variables as short as possible when the
variable represents a finite resource such as a file
descriptor.
Keep scope of variables as small as possible to avoid
confusion and ensure maintainability.
Use variables and routines for one purpose only. Avoid
multipurpose routines that perform a variety of unrelated
tasks. . .
Keep in mind what control flow constructs do, for instance
i f (isReady) then
. . .
e lse i f (.NOT. isReady) then

. . .
end i f

contains an unnecessary construction. Which one?

Patrick Guio Good Programming Practice

Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Take advantage of the control flow construct capabilities of
a language, for instance in FORTRAN 90 use

s e l e c t case (number)
case (: 0)

. . .
case (1 : 2)

. . .
case (3 :)

. . .
d e f a u l t

. . .
end s e l e c t

instead of
i f (number . l t . 0) then

. . .
e lse i f (number . eq . 1 . or . number . eq . 2) then

. . .
e lse i f (number . ge . 3) then

. . .
e lse

. . .
end i f

Patrick Guio Good Programming Practice

Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Some common sense and critical analysis can help to
avoid such “flaw”. nn is never modified in the subroutine,
called once with value zero. . . . What is wrong?

subrou t ine upda te_ f i e l ds (. . . , nn)
. . .
i n t e g e r nn
do j = 1 , maxDim2

do i = 1 , maxDim1
do k = 1 , maxDim3

. . .
i f (nn . eq . 0) then

. . .
e lse

. . .
end i f
. . .

end do
end do

end do

Don’t forget how array are stored internally in C and
FORTRAN, “optimal” encapsulated loops over several
dimensions is different for C and FORTRAN.

Patrick Guio Good Programming Practice

Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Use literals. A good rule is to gather related literals in a
single “header” file to include wherever needed.
Don’t assume output formats. Functions should return
values in original type, the caller should decide what to do,
reformat, sent to standard output, etc. . .
Wrap built-in functions and third-party library functions with
your own wrapper functions can be beneficial. This is a
good practice to serve several purposes:

If third-party libraries interface change, only the the wrapper
functions need change, not the main application.
Easier to add code or breakpoints at one place in the
wrapper when debugging for instance.

Patrick Guio Good Programming Practice

Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Test returned status for error conditions. When you try to
open a file, write to, read from, or close it, doesn’t mean
you will succeed. When calling a function that can “throw”
an error, you should add code to deal with that potential
error.
Recover or fail “gracefully”. Robust programs should report
an error message (and optimally attempt to continue).
Provide useful error messages. Expanding on the previous
point, you should provide a user-friendly error message
while simultaneously logging a programmer-friendly
message with enough information that they can investigate
the cause of the error.

Patrick Guio Good Programming Practice

Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Understanding “Makefile”

“Makefile” contain statements like
t a r g e t : dependencies

command_to_update_target # o p t i o n a l

When the “command_to_update_target” is provided,
the statement is called an explicit rule.
“Makefile” can define variables

CXX=g++
CXXFLAGS=−O
h e l l o : h e l l o . cpp

$ (CXX) $ (CXXFLAGS) −o h e l l o h e l l o . cpp

Variables are useful as they can be redefined on the
command line, allowing to change compiler, compiler
options without editing the file. For instance
% make hello CXX=icpc CXXFLAGS=-g

Patrick Guio Good Programming Practice

Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Understanding Makefile (contd)

“Makefile” variables can be substituted
OBJECTS=$ (SOURCES: . cpp =.o)

“Makefile” can define inference rules, such as
. SUFFIXES : . cpp

. cpp . o :
$ (CXX) $ (CXXFLAGS) −o $@−c $<

or e q u i v a l e n t l y

%.o : %.cpp
$ (CXX) $ (CXXFLAGS) −o $@−c $<

Use make -p to get the database of variables and
inference rules.

$@ contains the target name
$ˆ contains the list of dependencies
$< contains the first element of the list of dependencies

Patrick Guio Good Programming Practice

Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Writing a “Makefile”

There is no unique way to write a “Makefile”, here is
one way to compile a FORTRAN 90 code

FC= i f o r t
FFLAGS=−O
SOURCES=main . f90 i n i t . f90 i n t e g r a t e . f90
OBJECTS=$ (SOURCES: . f90 =.o)
EXECUTABLE=myProg

d e f a u l t : $ (EXECUTABLE)

$ (EXECUTABLE) : $ (OBJECTS)
$ (FC) $ (FFLAGS) −o $@ $^

%.o : %. f90
$ (FC) $ (FFLAGS) −o $@ $<

You can force another compiler and other options on the
command line with
% make FC=myCompiler FFLAGS=myOptions

Patrick Guio Good Programming Practice

Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Debugging

All compilers have the option -g which can be used to
generate extra information to be used together with a
symbolic debugger (commands of gdb such as run,
break, start/step, list, print and of course help
can do a lot to debug!)
Intel FORTRAN compiler ifort have options to check run
time condition like -check uninit for uninitialised
variables or -check bounds for access outside allocated
array.
Reading the documentation of your compiler/debugger is
always a good start (man ifort / icpc / idb / g++ / gcc
/ gfortran / gdb / . . .).

Patrick Guio Good Programming Practice

Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Optimising

All compilers have the option -O which provides default
and “safe” optimisation.
Note that some compiler optimise without any options,
while others don’t. Be careful!
Intel FORTRAN compiler ifort (as well as the C++
compiler icpc) have options for more aggressive
optimisation such as -fast, and hardware-dependent
such as the -xSSE family.
Information about your CPU capability on a Linux system
can be found in the file /proc/cpuinfo.

Patrick Guio Good Programming Practice

Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Setting up a Version Control System (cvs)

You need first to set up your cvs repository. Choose a
directory with disk space for several times the size of your
actual source package, then set the CVSROOT environment
variable to this path. For instance, for the Berkeley/C shell
family
% setenv CVSROOT
:ext:yourId@yourServer:pathToYourRepo then
run the command to initialise the repository
% cvs init
This command is run only once and creates the repository
and the special module containing the configuration files
for this repository.

Patrick Guio Good Programming Practice

Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Using cvs

You can import your code into the sub directory
myProject of the repository by running the “import”
command from the root directory of your project
% cvs import myProject mySoft START
mySoft is a so-called vendor tag, START is the initial
release tag.
Then you can get a working copy of your project with the
command
% cvs checkout myProject
It will create the sub directory myProject and put all the
files you have imported into the repository to allow further
development.

Patrick Guio Good Programming Practice

Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Using cvs (contd)

If you make any changes (and you are happy with them),
you can commit your changes into the repository with the
command
% cvs commit [filename(s)]
without forgetting to log your changes.
If you have “checked out” your project on another machine,
you can synchronise these with the following command
% cvs update

Patrick Guio Good Programming Practice

Coding techniques
Programming Practice

Compiling code
Debugging & Optimising

Maintaining code

Conclusion

Programming is not an exact science, but the more you
practice, the more you develop skills. . .
Using such “cooking recipes” and a bit of common sense
should hopefully help you to develop your awareness for
good practice.

Due to the limited time, this course introduced a limited
amount of aspects to good programming practice, feel free
to drop by my office to discuss any programming problems,
I will try to help you.

Patrick Guio Good Programming Practice

	 Coding techniques(Readability and Maintainability)
	Programming Practice(Performance Enhancements)
	Compiling code
	Debugging & Optimising
	Maintaining code

