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Lucy Calder and Ofer Lahav 
look back at the surprisingly 
long history of dark energy, 
the dominant but mysterious 
component of our universe.

The term “dark energy” was coined as 
recently as 1999, yet it has become one 
of the most mysterious and frequently 

debated topics in physics. Millions of pounds 
and countless hours are being spent on imaging 
and spectrographic surveys that aim to explain 
why observations point to the accelerating 
expansion of the universe – and with good rea-
son. It has become apparent that the Earth, the 
planets, the stars and everything we are famil-
iar with, make up only a tiny 4% of the total 
matter and energy in the universe. Increasingly 
dependable evidence from gravitational lens-
ing, galaxy rotation curves and studies of the 
cosmic microwave background radiation (CMB) 
indicates that non-baryonic cold dark matter 
(CDM) makes up about 21% of the rest, but the 
remaining 75%, the dark energy, has not been 
satisfactorily explained.

It can be incorporated into Albert Einstein’s 
general relativity (GR) by re-admitting into the 
field equations the cosmological constant, Λ, 
a term that Einstein introduced in 1917 and 
subsequently abandoned. In this context, dark 
energy can be described as a fluid with constant 
energy density ρΛ and pressure pΛ, characterized 
by an equation of state w = pΛ/ρΛ = −1. (Through-
out this article we set c = h = 1.) The negative 
pressure gives rise to repulsive gravity and can 
thus accelerate the expansion of the universe 
once it starts dominating over matter and radia-
tion. Current data, from Type Ia supernovae, 
baryon acoustic oscillations and the CMB, all 
point to this conclusion – a flat universe with a 
cosmological constant – and the ΛCDM model 
is now standard.

However, it is also possible that dark energy 
changes over time and is described by a gradu-
ally evolving scalar field, and in some circles, 
the term dark energy is reserved for this situ-
ation. Another idea is that cosmic acceleration 
is caused by inhomogeneities or by topological 
defects such as strings or domain walls. Even 
more radical is the possibility that GR is incom-
plete and we must develop a modified theory of 
gravity to account for the observations.

What do we think it is?
Since the 1960s, the cosmological constant 
has usually been interpreted as the zero point 
energy of the vacuum, similar to the ground 
state energy of a harmonic oscillator in quan-
tum physics. Unfortunately, observations sug-
gest a value for the energy density that is as 
much as 120 orders of magnitude smaller than 
that predicted by particle physics. This enor-
mous discrepancy can be reduced to 60 orders 
of magnitude if the energy cut-off is taken to 
be of order the supersymmetric breaking scale, 
but there is still a huge intractable difference 
between theory and experiment. This was artic-
ulated as the “cosmological constant problem” 
by Steven Weinberg (1989).

A second cosmological constant problem 
became obvious in the late 1990s when the High-
Z Supernova Team and the Supernova Cosmol-
ogy Project both published their observations on 
the apparent luminosity of Type Ia supernovae, 
which indicated that the expansion of the universe 
is accelerating. The simplest interpretation, the 
ΛCDM model, requires that the vacuum energy 
density ρΛ is presently of the same order of mag-
nitude as the mass energy density ρM, whereas at 
early times (after inflation) the relative cosmo-
logical constant would have been negligible. It 
seems bizarre, and suggestive, that life on Earth 
has evolved during this brief cosmological era. 
Why does the epoch of galaxy formation coincide 
with the time when Λ starts to dominate? This 
requires an explanation even in models involving 
a dynamical dark energy component.

Table 1 presents the main events in the history 
of dark energy since 1917. The story is one of 
changing cultural attitudes, theoretical inno-
vation and incredible technological advances. 
It encompasses large areas of physics and 
astronomy and provides a fascinating insight 
into the unpredictable development of science. 
Einstein introduced Λ in order to fit the data 
to his conception of the universe, but not long 
after he came to regard it as superfluous and 
unattractive. Nevertheless, the addition of Λ 
to the gravitational field equations is the only 
conceivable modification that does not vastly 
alter the structure of the theory and this was 
reason enough for it not to be forgotten, while 
a series of observations throughout the 20th 
century hinted at its presence. The number of 
papers on the subject markedly increased in the 
1980s, when the concept of inflation arose out 
of particle physics and there was significant 
observational evidence for non-baryonic dark 
matter; the literature has continued to expand 
dramatically as the cosmological tests for the 
fundamental parameters have improved. 

Before the publication of the supernovae 
data, most scientists thought it likely that, due 
to some as yet undiscovered mechanism, Λ was 
exactly zero. Aesthetically, zero seemed a much 
more attractive idea than almost-zero. When it 
became clear that the expansion of the universe 
is accelerating, the cosmological constant prob-
lems assumed central importance. The strange-
ness of the situation points to some profound 
lack of understanding in fundamental physics, 
which may only be resolved when we have a 
more complete theory of quantum gravity.

Newton, Hooke and Einstein
Isaac Newton’s three volumes of Principia were 
published in Latin in July 1687 and immediately 
had a significant effect on the scientific commu-
nity, making Newton famous at the age of 45.

In propositions 70 to 71 he proves the inverse-
square law of gravitation whereby a point 
mass m situated outside a sphere of mass M is 
attracted towards the centre of the sphere with 
a force F inversely proportional to the square of 
its distance r from the centre:

                                   F = – ​ GMm _____ 
r2

  ​� (1)

He goes on to show that the force acts as if 
all the mass is concentrated in the centre of the 
sphere and that the same law holds between two 
different spheres, which meant that this math-
ematical analysis could be applied to the actual 
problems of astronomy.

What is intriguing is that, having completed 
this discussion, Newton explores the conse-
quences of a wide range of central force laws and 
comes to the conclusion that there is a second 
form for which spherically symmetric masses 
can be treated as if all the mass is located at the 
central point. That is when “the compounded 

Dark energy is one of the biggest 
mysteries in science. In this article the 
origin of the concept is traced as far back 
as Newton and Hooke in the 17th century. 
Newton considered, along with the 
inverse-square law, a force of attraction 
that varies linearly with distance. A direct 
link can be made between this term 
and Einstein’s cosmological constant, 
Λ, and this leads to a possible relation 
between Λ and the total mass of the 
universe. Mach’s influence on Einstein 
is discussed and the convoluted history 
of Λ throughout the last 90 years is 
coherently presented.
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Feb.  
1917

Einstein adds a “cosmological term” to his field equations. He does so because (a) this allows a static universe 
solution to his equations and (b) he believes that by doing so he guarantees Mach’s principle is not violated. 
Einstein does not consider the cosmological constant to be part of the stress-energy term and his form for the 
field equations is Gμν − Λgμν = 8πGTμν. This suggests that Λ is a property of space itself.

Λ = 4πGρM  
where ρM is mass density

March  
1917

De Sitter finds an apparently static solution to the modified field equations with ρM = 0, i.e. zero matter, so 
Λgμν does not prevent the occurrence of inertia relative to space. The principle of the relativity of inertia is 
undermined.

Λ = 3H2  
where H is the Hubble 
parameter

1912– 
1917

Slipher painstakingly records the spectra of 25 galaxies (then mysterious “spiral nebulae”) and finds that all but 
four of them are redshifted, i.e they are receding. The receding galaxies are concentrated toward Virgo and he 
thinks that in the opposite direction the spiral nebulae may be found to be approaching. 

1922 Friedmann shows that the field equations without Λ admit nonstatic solutions with isotropic, homogeneous 
matter distributions corresponding to an expanding universe. However, the significance of this paper is largely 
ignored until 1930.

Λ = 0

1923 Weyl points out that de Sitter’s model would exhibit a redshift such as Slipher observed, increasing with 
distance, because although the metric in de Sitter’s coordinate system is time independent, test bodies are not 
at rest. He and Eddington find that test particles recede from each other in the de Sitter universe.

May ’23 Einstein writes in a letter to Weyl: “If there is no quasi-static world, then away with the cosmological term.” 

1924 Hubble finds faint Cepheid variables in the Andromeda nebula and realizes that spiral nebulae are distant 
galaxies, i.e. clusters of stars far outside our own galaxy.

1927 Lemaitre makes the connection between Slipher’s redshifts and a homogeneous, matter-filled, expanding 
relativistic model. Like Friedmann’s work, this paper is largely overlooked by a community that still believes 
(due to the observed small relative velocities of the stars) that the universe is static.

Λ > 0

1929 Hubble and Humason publish a claim that the radial velocities of galaxies are proportional to their distance, i.e. 
the universe is expanding. In fact, Hubble originally interpreted his data in the framework of the de Sitter model.

1930 Eddington points out (Eddington 1933) that Einstein’s Λ > 0 static universe is unstable although he later 
recognizes that Lemaitre had already shown this in 1927. “Einstein’s universe is delicately poised so that the 
slightest disturbance will cause it to topple into a state of ever-increasing expansion or of ever-increasing 
contraction.” Einstein has mistaken equilibrium for stability.
Unlike Einstein, Eddington believes that Λ is an essential and irremovable foundation for cosmology because 
it provides a length scale against which all other lengths can be measured.  In response to the instablility he 
develops the Eddington-Lemaitre universe, a cosmological model in which a positive Λ allows an arbitrary long 
initial phase that is identical to the Einstein static universe, after which the universe begins to expand. 

1931 Einstein (1931) formally abandons Λ, calling it “theoretically unsatisfactory anyway”. Gamow (1970) recalled: 
“When I was discussing cosmological problems with Einstein, he remarked that the introduction of the 
cosmological term was the biggest blunder he ever made in his life.” It is debatable whether Einstein really 
thought this, as he never made such a strong statement in his published work and letters.

1932 Einstein–de Sitter model: p ≈ 0, Ωk = 0, ρM = ρc= 3H2/8πG. This predicts that the universe exploded from a highly 
condensed state and will expand monotonically forever, but at an ever-decreasing rate. The density parameter 
Ωi is the ratio of the density to the critical density: Ωi = ρi/ρc.

ΩΛ = 0 
ΩM = 1

1933 Lemaitre (1933) identifies Λ as equivalent to a fluid with pressure p and energy density −ρΛ. p = −ρΛ, Λ = 4πGρΛ

1934 Milne and McCrea (1934) reveal a close correspondence between Newtonian dynamics and Einstein theory, 
with the scale factor of the expansion satisfying the same equation in both theories, so long as pressure is 
negligible.

Mid-
1930s 
–1950s

After Einstein rejects Λ, other cosmologists, including Eddington, retain it. One major reason was that at the 
time the Hubble parameter was thought to be H0 = 500 km s–1 Mpc–1, giving a corresponding age of the universe 
of less than 2 billion years. This made the universe younger than the geologists’ predicted age of the Earth.  
The Lemaitre “hesitation universe” model is revived, in which space is positively curved (k = +1) and more matter 
is present than in a static Einstein model. If k  = 1 there is a critical value of Λ, Λc, such that ä = 0 and ȧ = 0 can both 
be satisfied simultaneously. One feature of this model is that its age can greatly exceed H0

–1.

Λ = Λc(1 + ε)  
ε  << 1

1948 Casimir (Casimir and Polder 1948) shows that quantum vacuum fluctuations can produce measurable effects 
and calculates a force per unit area acting between two conducting plates.  
Bondi, Gold and Hoyle develop a steady-state cosmology, partly motivated by the age problem (Bondi and Gold 
1948, Hoyle 1948). In place of Λ, Hoyle introduces a C term into the field equations, which allows a universe 
similar to the de Sitter model (1917) except that ρM is non-zero. The discovery of the CMB in 1965 was a final 
blow to this theory, indicating that the universe was much hotter in the past.

ρΛ > 0  
ρM  ≈  0

1951 McCrea (1951)  shows that the steady state theory doesn’t need to be viewed as a new theory of gravity with a 
completely new form of matter in it. He shows that Hoyle’s C term is just a perfect fluid with an appropriate 
equation of state and so can be accommodated on the RHS of the Einstein field equations as part of the stress 
tensor of general relativity.

1952 Baade (1952) discovers that there are two types of Cepheid variables with different period–luminosity relations 
and this leads to a revised Hubble parameter of only 200 km s–1 Mpc–1. The Hubble distance scale is increased by 
a factor of about 2.6 and the Λ term again becomes unnecessary.

Λ = 0

Table 1: Dark energy since 1917
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1967 Petrosian et al. (1967) revive Λ to explain why quasars appear to have redshifts concentrated near the value z = 2. 
In the Lemaitre loitering model, radiation emitted during the hesitation era would be received by us with almost 
the same redshift, so quasars born at this time could be at greatly different distances. However, with more 
observational evidence this explanation is thought to be inadequate.

Λ = Λc(1 + ε) 
ε  << 1

1968 Zeldovich (1967) relates the cosmological constant to vacuum energy density and shows that quantum vacuum 
fluctuations must have a Lorentz invariant form pvac = −ρvac. So the vacuum energy-momentum tensor has the 
form Tμν  = ρΛ gμν. This means that the cosmological constant contributes a term ρΛ = Λ/8πG to the total effective 
vacuum energy. This interpretation is not new, but Zeldovich’s paper is the first to convince the majority of the 
scientific community. The major problem is that the various unrelated contributions to the vacuum energy 
predict a value up to 10120 greater than the observational bound.

ρΛ(theory) ≈ 2 × 1071 GeV4 
ρΛ(obs) ≈ 10–47 GeV4

1975 Gunn and Tinsley (1975) propose a non-zero cosmological constant on the basis of a Hubble diagram of 
elliptical galaxies extending to redshifts of z ~ 0.5 , but acknowledge many uncertainties in their conclusions.

Λ > 0

late  
1970s 

Electroweak theory of Weinberg, Salam and Glashow is accepted and observationally verified. This boosts 
interest in the cosmological constant problem. The electroweak theory is an example of a gauge theory with 
spontaneous symmetry breaking.

1980 The development of spontaneously broken gauge theories and the standard model of particle physics in the 
1970s leads Alan Guth and others to the concept of inflation, which can explain several cosmological problems, 
including why apparently causally unconnected parts of space look so similar. If the early universe were 
dominated by the energy density of a relatively flat real scalar field (inflaton) potential V(φ) that acts like Λ, the 
particle horizon could spread beyond the the observable universe. This would mean that light from opposite 
regions of the sky was once in thermal equilibrium, which could explain the observed large-scale homogeneity.  

Inflation: huge early value 
of Λ-like term
 
a ∝ e√​

√

__
 ​ Λ __ 3 ​  t ​

1982 Guth’s model is modified by Linde, Albrecht and Steinhardt and quickly gains acceptance. The theory holds that 
inflation blew up quantum fluctuations in energy density from subatomic to cosmic size. This event produced 
the slightly inhomogeneous distribution of matter that led to the variations seen in the CMB and to the observed 
structures in the universe today.

early  
1980s 

Classification of Type Ia supernovae. When their spectra are studied in detail it gradually becomes apparent 
that they are amazingly uniform and would make excellent standard candles.

1984 Peebles (1984) and Turner, Steigman and Krauss (1984) show that inflation implies vanishing curvature, Ωk = 0. 
Blumenthal et al. (1984) argue that the hypothesis that dark matter is cold (i.e. has negligible thermal velocity 
with respect to the Hubble flow) provides the best fit to current observations. 

ΩM +  ΩΛ = 1

c1985 Standard cosmology is the Einstein–de Sitter model, but observations disfavour the high mass density of this 
model unless the mass is more smoothly distributed than the visible matter. Kaiser (1984) and Davis et al. (1985) 
show that the biased distribution of visible galaxies relative to the distribution of all of the mass can follow in 
a natural way in the cold dark matter (CDM) theory. Another alternative is mixed dark matter (MDM), in which 
cold dark matter is mixed with hot dark matter (massive neutrinos).

ΩM = 1 
ΩΛ = 0 
h = 0.5

1986–
1989

Barrow and Tipler (1986) and Weinberg (1989, 1987) determine that the anthropic principle limits Λ to a value 
small enough to allow the formation of sufficiently large gravitational condensations to enable life to form. “The 
anthropic principle has it that the world is the way it is, at least in part, because otherwise there would be no-
one to ask why it is the way it is,” (Weinberg 1987).

ρΛ ≤ (1 + zmax)3 × ρM0

1990 Efstathiou et al. (1990) show that the standard CDM model, with ΩM = 1, a Harrison–Zeldovich primordial 
fluctuations spectrum and a simple prescription for biasing, predicts substantially less large-scale structure 
than observations indicate. A remedy is to go to a universe with small ΩM, either with Λ = 0 and Ωk< 0 (spatially 
open)or Ωk= 0 and a non-zero cosmological constant. The latter becomes known as ΛCDM.

ΩM  ≈  0.2 
ΩΛ = 1 – ΩM ≈ 0.8

1993–
1995

Fundamental observables, from the age of the universe, to the baryon content in galaxy clusters (White et al. 
1993), and the nature of large-scale structure, all independently point to ΩM  ≈  0.2−0.3. The case for adding a 
non-zero cosmological constant is becoming stronger (Ostriker and Steinhardt 1995).

ΩM  ≈  0.2−0.3

1997 Martel, Shapiro and Weinberg use anthropic reasoning and Bayesian probability to estimate the value of the 
dark energy density. The observed value turns out to be within their probability distribution, but they must 
assume that our universe is only one subuniverse in a multiverse.

ρΛ =1.5ρM  – 2.3ρM

1998–
1999

Two teams studying Type Ia supernovae publish data implying an accelerating cosmic expansion (Riess et al. 
1998, Perlmutter et al. 1999). The simplest model to explain this is the reintroduction of Λ to the field equations. 
Assuming a flat universe, the best fit implies that, in the present epoch, the vacuum energy density ρΛ is larger 
than the mass density.

ΩΛ =    ​ 
ρΛ ___ ρc

 ​     ≈  0.7   

ΩM  ≈  0.3

1999 Turner coins the term “dark energy” to describe the density ρΛ that manifests itself as an effective version 
of Einstein’s cosmological constant, but one that may vary slowly with time and position (Huterer and Turner 
1999). It was thought that Λ might be described by a scalar field, slowly rolling toward zero over a very long 
time.

The equation of state:  
pi = wρi

2003–
2006

The conclusion that most of the energy density of the universe is a vacuum energy like the cosmological 
constant, causing an accelerating expansion of the universe, is greatly strengthened by temperature anisotropy 
data provided by the Wilkinson Microwave Anistropy Probe (WMAP), combined with other cosmological 
probes, in particular the 2dF and SDSS galaxy redshift surveys.

ΩM = 0.27 ± 0.04 
ΩΛ = 0.72 ± 0.05  
w = –1 ± 6%

2007 Efforts to explain dark energy continue, including work on theories of modified gravity. Ambitious new ground-
based surveys and space missions are planned.

Table 1 (continued)
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force with which two spheres attract each other 
is as the distance between the centres of the 
spheres” (Newton 1687, Proposition 77, Theo-
rem 37). He comments in the Scholium:

“I have now explained the two principal 
cases of attractions: when the centripetal 
forces decrease as the square of the ratio 
of the distances, or increase in a simple 
ratio of the distances, causing the bodies 
in both cases to revolve in conic sections, 
and composing spherical bodies whose 
centripetal forces observe the same law 
of increase or decrease in the recess from 
the centre as the forces of the particles 
themselves do; which is very remarkable.”
Subrahmanyan Chandrasekhar, who rewrote 

a large part of Books I and III of the Principia 
in a style more accessible to contemporary sci-
entists, notes that this is the only place where 
Newton allows himself an expression of sur-
prise (Chandrasekhar 2003).

As far as we know, Newton did not con-
sider  the superposition of the two forces, but a 
straightforward conjecture would be to consider 
the full force law dues to mass M as: 

                         ​ F __ m ​ = ̈r = – ​ GM ____ 
r2

  ​ + CMr� (2)

where G is the gravitational constant and C is 
an arbitrary constant. We relate below CM to 
the cosmological constant. 

It is possible that Newton came to this con-
clusion partly due to the influence of Robert 
Hooke (1635–1694), a brilliant but perhaps 
now somewhat overlooked scientist, seven years 
older than Newton. Newton was not, according 
to contemporary accounts, an easy man to get 
along with, and he began a lifelong feud with 
Hooke when Hooke criticized his writings on 
optics in the early 1670s. The extra term in 
the force equation is of the same form as the 
law of elasticity that Hooke had discovered 
in 1660, which states that the extension pro-
duced in a spring is proportional to the load, 
i.e. F = kx. Most likely Newton’s interest in force 
laws and orbits was further developed from a 
debate between him and Hooke on the path of 
a heavy body falling in the Earth, which New-
ton claimed initially would spiral to the centre. 
Hooke’s public announcement of Newton’s mis-
take and his letter to Newton did nothing to 
improve the relationship between the two men. 
When the manuscript of Principia was first pre-
sented to the Royal Society in 1686, Edmond 
Halley wrote to Newton telling him: “Hooke 
had some pretensions to the invention of the rule 
for the decrease of gravity being reciprocally as 
the squares of the distances from the centre,” 
(letter from Halley to Hooke, 22 May 1686). 
Hooke expected Newton to acknowledge his 
contribution in the preface, but Newton wrote 
a curt letter back to Halley claiming that he 
had come to his conclusions independently and 
that Hooke was of no consequence. Whatever 

the truth of the matter, the dispute with Hooke 
undoubtedly revived Newton’s interest in gravi-
tational attraction and planetary motions.

In Book III of the Principia, “The System of 
the World”, Newton discusses real astronomical 
observations and here he abandons the linear 
force term, presumably because there is no dis-
cernable evidence for it, and concludes simply: 
“The force of gravity towards the several equal 
particles of any body is inversely as the square of 
the distances of places from the particles.”

The idea that the force decreases as the inverse-
square of the distance had in fact originated 
some time earlier. Johannus Scotus Erigena 
(c.800–c.877) guessed that heaviness and light-
ness vary with distance from the Earth, and this 
theory was taken up by Adelard of Bath (12th 
century), while the first recorded suggestion of 
an inverse-square law was made about 1640 by 
Ismael Bullialdus (1605–1694). Newton, how-
ever, was almost certainly the first, as early as 
1665 or 1666, to deduce the inverse-square law 
observationally. It seems that he put off pub-
lishing the calculations for 20 years because he 
didn’t know how to justify the fact that he had 
treated the Earth as if its whole mass were con-
centrated at its centre. In a letter to Halley on 
20 June 1686 he wrote:

“I never extended the duplicate proportion 
lower than to the superficies of the earth, 
and before a certain demonstration I 
found last year, have suspected it did not 
reach accurately enough down so low; and 
therefore in the doctrines of projectiles 
never used it nor considered the motions of 
heavens.”
Chandrasekhar holds the view that New-

ton’s reluctance (even after 1679) to pursue his 
dynamical investigations arose from his dis-

satisfaction at not being able conclusively to 
prove or disprove this proposition, on which 
the exactitude of his entire theory rests.

Although Newton’s gravitational theory was 
highly successful, it appeared to be unable 
to explain certain “anomalies” of planetary 
motion, such as the precession of the perihelion 
of Mercury and, furthermore, many people felt 
a philosophical uneasiness at the idea of action 
at a distance. In the century after his death 
several “laws of gravitation” were formulated 
to rival Newton’s, but North (1965) believes 
it likely that few of these theories were meant 
as more than a mathematical exercise. Pierre-
Simon Laplace was the first to explicitly write 
down the general force law F = Ar + B/r2.

In the Scholium following Proposition 78 of 
the Principia, Newton remarks that both the 
inverse-square force and the linear force cause 
the bodies to revolve in conic sections. In Propo-
sition 10 he proves that “a particle will describe 
an ellipse about its centre under a centripetal 
attraction proportional to the distance…or 
perhaps in a circle into which the ellipse may 
degenerate”. In fact, F ∝ r–2 and F ∝ r are the 
only two cases that allow stable planetary orbits 
or classical atomic orbits, which is surprising. 
But whereas the force inside a spherical shell 
is zero in the case of the inverse-square law, it 
varies smoothly across the boundary for the lin-
ear force term. In table 2 we contrast the prop-
erties of these two forces and their sum, for a 
point mass m at a distance r from the centre of a 
spherical shell of mass Ms and radius R.

It is uncertain to what extent Einstein owed 
a debt to previous theories of gravitation, but 
there is a remarkable similarity between Ein-
stein’s introduction of his cosmological con-
stant, Λ, and the extra term in Newton’s force 

This artwork of Sir Isaac Newton was the 
frontispiece portrait for the third edition (1726) 
of his Principia Mathematica. (RAS/Science 
Photolibrary)

A page from Newton’s Principia Mathematica 
(first published in 1687), in which he stated his 
universal laws of motion and defined his law of 
universal gravitation.
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law that was later ignored. If Λ is included in the 
field equations, such that Gµν – Λgµν = 8πGTµν, the 
Friedmann solution in the limit of weak gravity 
is written (assuming p = 0)

                             ​ ä __ a ​ =    – ​ 
4πGρ _______ 
3
  ​ + ​ Λ __ 

3
 ​� (3)

where a is the scale factor. When applied to a 
sphere of radius r and mass M, because density 
is mass/volume, we have

                               ̈r = – ​ GM ____ 
r2

  ​ + ​ Λ __ 3 ​ r� (4)

This equation has exactly the same form as 
equation 2 (above). 

Einstein and Mach
In 1917 it was generally believed that the entire 
universe consisted of the Milky Way; the idea 
that it was static and unchanging was taken for 
granted. When Einstein introduced the cosmo-
logical constant in a paper entitled “Cosmo-
logical considerations on the General Theory 
of Relativity” he wrote in his conclusion that 
it was “for the purpose of making possible a 
quasi-static distribution of matter, as required 
by the fact of the small velocities of the stars”, 
(Einstein 1917). The paper makes no explicit 
mention of Ernst Mach, but it is clear that Ein-
stein’s conception of the universe, and thus his 
introduction of Λ, is strongly influenced not only 
by the status quo, but also by Machian ideas.

Mach’s major work was The Science of 
Mechanics, first published in 1883, and it made 
a “deep and persisting impression” on Einstein 
when he first read it as a student. The book was 
best known for its discussion of Principia and 
in particular a critique of Newton’s concepts of 
absolute space and absolute motion. Mach ana-
lysed Newton’s famous rotating bucket experi-
ment and stated: “For me, only relative motions 

exist and I can see, in this regard, no distinction 
between rotation and translation.” His ultimate 
aim was to eliminate all metaphysical ideas from 
science, believing that “nothing is real except 
the perceptions, and all natural science is ulti-
mately an economic adaptation of our ideas to 
our perceptions”.

Whereas Newton defined a group of so-called 
“inertial frames” that were at rest or in a state of 
uniform motion with respect to absolute space, 
Mach’s inertial frames were determined relative 
to the fixed stars. He wondered: “What would 
become of the law of inertia if the whole of the 
heavens began to move and the stars swarmed in 
confusion? How would we apply it then? How 
would it be expressed then? … Only in the case 
of the universe [do] we learn that all bodies [his 
italics] each with its share are of importance in 
the law of inertia,” (Mach 1911).

At the time, Einstein believed so strongly in 
the relativity of inertia that in 1918 he called 
it “Mach’s principle” and said it was a funda-
mental requirement of any satisfactory theory 
of gravitation (Einstein 1918). The principle 
required that inertia should be fully and exclu-
sively determined by matter and since the metric 
gµν in the field equations determine the inertial 
action, they should be impossible to determine 
in the complete absence of matter. “There can 
be no inertia relative to ‘space’, but only an 
inertia of masses relative to one another,” (Ein-
stein 1917). He defined his new fundamental 
constant Λ in terms of the mass density ρ of 
the universe, so that if Λ is non-zero then the 
density must be non-zero. If ρ = 0 and there is 
no matter then there is no inertia because, it 
seemed, there could be no solution to the modi-
fied field equations. Unfortunately, just after the 
paper was published, Willem de Sitter did find 

a solution to the modified field equations with 
ρ = 0, i.e. no matter in the universe at all. Then 
Alexander Friedmann and Georges Lemai-
tre found dynamic solutions to the original 
unmodified field equations. The final blow came 
when Edwin Hubble and Milton L Humason 
discovered a rough proportionality of galaxy 
distances with their redshifts, which was inter-
preted as evidence of an expanding universe. In 
1954 Einstein wrote to a colleague, “as a matter 
of fact, one should no longer speak of Mach’s 
principle at all”, (Einstein 1954).

Problems with Newtonian cosmology
There is a problem with Newton’s inverse-
square law if it is applied to an infinite universe 
with a nearly homogeneous (uniform) mat-
ter distribution. In a Newtonian universe the 
gravitational force on a test body of unit mass 
is the resultant of the forces exerted by all the 
masses in the universe. Unfortunately, when this 
force is computed by an integration over all the 
masses, the integral fails to converge. It is per-
haps surprising that Newton, a brilliant math-
ematician, did not see this, but perhaps he did 
not consider that the distribution of mass (i.e. 
stars) extended to infinity even though the space 
might. Newton probably viewed the universe as 
a finite system of stars and planets surrounded 
by an infinite empty space. To explain the stabil-
ity of the fixed stars he wrote in the Principia: 
“And lest the system of the fixed stars should, by 
their gravity, fall on each other, he [God] hath 
placed those systems at immense distances from 
one another.” 

Hugo von Seeliger’s papers of 1895 and 1896 
investigated the difficulty in some depth and he 
came to the conclusion that it could be avoided 
by adding a tiny correction term to the inverse-

Einstein’s portrait, painted by Harm Kamerlingh 
Onnes when Einstein became extraordinary 
professor at the University of Leiden in 1920. 
(Academic Historic Museum, Leiden)

F/m = –GM / r2 F/m = CMr F/m = –GM / r2 + CMr
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spherical shell

0 CMsr CMsr

potential inside a 
spherical shell
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shape of orbit 
caused by force

any conic section ellipse or circle rosette

The potential-force pairs F = −∇φ are per unit mass m and the shell is characterized by mass Ms and 
radius R. C is an arbitrary constant.  Note that the solutions for orbit shape are only exact using 
Newtonian mechanics. If we use general relativity to define the forces, the orbits will gradually 
precess.

Table 2: Contrasting 1/r2 and r forces
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square law, whose effect would only become 
apparent at extremely large – cosmic – dis-
tances. The problem then was there were infi-
nitely many possible modifications to Newton’s 
law that would cause the integrals to converge, 
while still remaining compatible with observa-
tion, and there was no way to choose between 
them. Carl Neumann (1896) was able to come 
up with a unique modification of Newton’s law, 
while August Föppl (1897) and Lord Kelvin 
proposed refuting Newton’s assumption of the 
universality of gravitation.

Given the attention Seeliger had brought to the 
matter, it is understandable that Einstein begins 
his paper of 1917 with a re-analysis of the dif-
ficulties with Newtonian theory. His ultimate 
aim, however, was to justify his modification of 
the field equations. He argued, as Seeliger had 
done, that Newtonian theory 

“requires that the universe should have a 
kind of centre in which the density of the 
stars is a maximum, and that as we proceed 
outwards from this centre the group-density 
of the stars should diminish, until finally, at 
great distances, it is succeeded by an infinite 
region of emptiness. The stellar universe 
ought to be a finite island in the infinite 
ocean of space,” (Einstein 1917).
But Einstein went further and argued that 

even this island of stars would not be stable. 
Boltzmann’s law of distribution for gas mol-
ecules would hold equally well for a cluster of 
stars, and this required that the cluster would 
gradually evaporate: “A vanishing of the density 
at infinity thus implies a vanishing of the density 
at the centre,” (Einstein 1917). Moreover, an 
island universe in flat spacetime violates Mach’s 
idea of the relativity of inertia, which would 
require the universe to be homogenous and 
isotropic, with no arbitrarily isolated particles 
moving off to infinity. 

If, however, Newton’s inverse-square law, 
written in the field form of Poisson’s equation, 
is modified by the addition of an extra term, Λφ, 
then the solution would correspond to an infinite 
extension of static space filled uniformly with 
matter. Here φ is the gravitational potential and 
“Λ denotes a universal constant”; the modifica-
tion is of the same form as Neumann’s. Both the 
mean potential and mean density would remain 
constant to infinity. 

Einstein writes that the addition of the cosmo-
logical constant “is perfectly analogous to the 
extension of Poisson’s equation”, thus implying 
that his introduction of Λ into the field equa-
tions of GR has its roots in the failings, as he 
saw them, of Newtonian theory. In fact, it seems 
that he was motivated mainly by his wish to 
find a solution to his field equations that was 
in accordance with Mach’s principle and the 
prevalent orthodoxy of a static universe.

Interestingly, John Norton (1999) has pointed 
out that Einstein’s argument for the introduc-

tion of an extra term was based on a slightly 
flawed analysis of Newtonian cosmology. Franz 
Selety (1922) showed that an island of stars in a 
flat, infinite universe would remain stable and 
not evaporate if its density diluted as 1/r2. It 
is interesting that Einstein, equally as brilliant 
a scientist as Newton, also neglected to think 
through the problems of the gravitational prop-
erties of an infinite matter distribution. Andrzej 
Trautman (1965) is the first to show that Ein-
stein’s addition to the Poisson equation is not the 
correct non-relativistic limit of general relativity 
with the cosmological term. The extra term is in 
fact simply Λ, such that
                                ∇2φ = 4πGρ – Λ� (5)
Barrow and Tipler (1986) also remark on this. 
The potential is then 

φ = – ​ GM ____ r  ​  –  ​ Λ __ 
6
 ​ r2

where Λ = 8πGρΛ. 

Is Λ related to the total mass of the 
universe?
Considering Λ as a Newtonian concept has a 
remarkable consequence which becomes clear 
if we compare equations 2 and 4. Identifying 
corresponding constants gives us CM = Λ/3. 
Using Gauss’s Law, which describes the flux of 
a vector field through a surface, it can be shown 
that in the case of the linear force only, the mass 
corresponds to the mass of the entire universe 
(Wilkins 1986). The inverse-square law due to a 
spherical distribution depends only on the mass 
within the spherical shell, which acts as if it is 
concentrated at the centre. But the linear force, 
due to any distribution whatsoever, will act as 
if the total mass of the universe is concentrated 
at its centre of mass. This is illustrated for the 
mass shell in table 2. Thus we have
                                       Λ ∝ Mtot� (6)
In this interpretation Λ is truly cosmological 
because all the mass in the universe contributes 
to it, if we consider a finite universe. Thus Λ 
remains important even if the linear force is 
dominated by the inverse-square force, as it 
would be in the vicinity of Earth, where the 
average density is far greater than that of the 
observable universe as a whole. Finding the 
value of Λ could then perhaps lead us to an esti-
mate of the universe’s total mass. The relation 
could also possibly shed some light on the seem-
ingly bizarre coincidence that the dark energy 
density ρΛ is presently of the same order of mag-
nitude as the mass density ρM. If Λ is related to 
the mass of the entire universe, then maybe these 
two quantities are fundamentally connected.

Given all the current furore over dark energy, 
it is interesting that, 320 years ago, Newton dis-
covered a term that might be related to it. He 
must have realized the implications of the Λ-like 
term and could not imagine, as Einstein could 
not, that the universe was expanding, or that 
the effects of the additional term would only 

become apparent at vast distances. It would be 
ironic if, after all the speculation and compli-
cations and theoretical ingenuity, observations 
show that Newton’s original classical equations 
held the answer. ●
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