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Abstract In this paper we briefly review the current state of models for computing elec-
trical conduction in nanoscale devices, highlighting the progress made, but also
some limitations still present. We then summarise our recent novel theory that
allows the simultaneous evolution of the electronic and ionic degrees of free-
dom to be modelled within the Ehrenfest approximation in the presence of open
boundaries. We describe our practical implementation using tight binding and
use this theory to investigate steady-state conduction through an atomic scale
device. We then use the model to investigate two systems not accessible with
other contemporary techniques: the response of a nano-device to a rapidly vary-
ing external field, and non-adiabatic molecular dynamics in the presence of a
current.

1. Introduction

Advances in experimental techniques mean that it is now possible to mea-
sure the current flowing through individual molecules, atomic-scale wires and
other systems where carriers have a quantum mechanically coherent history
through the sample. When modelling such systems it is conventional to con-
sider the system (or device) to be in contact with two macroscopic reservoirs,
with some thermal equilibrium population of carriers deep within them. The
connection between the device and the reservoirs is made by some form of
tapering lead.

The theory and calculation of conductance for such nanoscale and meso-
scopic systems was transformed by two key observations due to Landauer:
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The potential drop across a conductor can be viewed as arising from the
self-consistent build-up of carriers, rather than the current arising from
the applied electric field [1] (this paper has been reprinted in a more
accessible journal [2])

The conductance of a device can be calculated from the electron trans-
mission through it [3]

A brief overview of these ideas and their development is given in a review [4].
If we have a device with a number of transverse eigenstates, then the con-

ductance (G) can be found using:

G =
2e2

h
Tr
(
tt†
)
, (1)

wheret is the transmission matrix for the device. This formula can be de-
rived by taking the zero-frequency limit of the Kubo formula [5], though more
generally, it can be derived for systems with interacting (or non-interacting)
electrons using the non-equilibrium Keldysh formalism [6]. One important
effect on transmission and the calculation of conductance considered is the
narrowing of the leads [7, 8] which has a significant effect on the scattering
states.

This formalism has been developed and extended in many more directions
than can be addressed here. Here we just note one extension that we consider
particularly important: it has been generalised to multi-terminal samples [9].

The accurate calculation of the transmission matrix is perhaps the key prob-
lem. It can be found in terms of Green’s functions and terms coupling the leads
to the device [6]:

Tr
(
tt†
)

= Tr [ΓLG
rΓRG

a] , (2)

whereΓR(L) is the coupling to the right (left) lead andGr(a) is the retarded
(advanced) Green’s function for the device.

Various electronic structure techniques have been applied to the calculation
of the Green’s functions, the transmission coefficients and the current in the
system. They include tight binding methods [10–18], some of which have
been extended to include the important effects of self-consistency [13, 17–20].
There are now increasing numbers of calculations based on density functional
theory (DFT) techniques [21–29] exploiting different basis functions.

Using these formalisms it is possible to calculate some of the effects of the
current on the device, notably current-induced forces which can be found from
tight binding [30] and DFT [31]. However, any molecular dynamics carried
out on the atoms under the influence of these forces is necessarily adiabatic.
There have been some initial attempts to model the effect of current-induced
heating [32, 33], though these are perturbative in nature. The charging and
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deformation of molecules (including formation of defects such as solitons) has
been considered to some extent [17, 18]. However, these are all adiabatic solu-
tions, following the Born-Oppenheimer approximation. There are also recent
theories which address the fundamental questions of how electronic structure
is modified in the presence of a current [34, 35].

There are, however, problems with the present modelling techniques. There
is good evidence that charged defects will have important roles in charge trans-
port for conjugated polymers [18, 36] and solid state wires [37, 38], which in-
volve highly non-linear effects due to electron-phonon coupling. These require
a method that can handle the electrons and ions on an equal footing. A problem
with wider implications is that first principles methods based onstaticDFT are
challenged by the well-documented errors that it introduces for excited states.
It is still an open question, but it is entirely possible the current carrying states
may not be correctly modelled. A technique based on time-dependent density
functional theory would have the advantage of standing on solid foundations.

To overcome the limitations of current methods, a different approach is re-
quired in which the ions and electrons evolve together in time in a consistent
matter. Moving into the time domain allows us to exploit the benefits of time-
dependent DFT for describing excited states and transient effects, and to in-
troduce non-adiabatic terms which make possible modelling of heating of the
ions as a result of the current flow.

There are a number of possible approaches to modelling non-adiabatic ef-
fects of widely varying complexity [39–41]. Here we consider the simplest in
which the ions move along unique classical trajectories on which the atomic
forces are determined by the Hellmann-Feynman [31] forces (the Ehrenfest, or
mean field, approximation). That is, we neglect all quantum contributions to
ionic motion.

The Ehrenfest method for closed systems has a long history, but we have
extended it to open systems to allow an electric current to flow [42]. Below we
describe a time-dependent formalism that is suitable for tight binding models
implemented using density matrices. We have focused on tight binding be-
cause it is the simplest quantum mechanical model of electron motion that can
deliver quantitative results [43]. We favour density matrices over wave func-
tions and Green’s functions because they provide a very compact description of
the state of all the electrons [44, 45], and have proven very useful in the static
description of materials in the context of linear scaling methods [46]. How-
ever, it is important to note that they have one particular limitation, namely
that those parts of the density matrix treated explicitly must have a finite range
if they are to be used in practical calculations. This is elaborated on below.
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Figure 1. This circuit is the paradigm used to and build a model to describe the creation of an
electric current. The capacitor represents the non-equilibrium source of charge, and the resistor
the device through which we wish to drive the current.

2. Physical Model

The paradigmatic system that we use to construct a model of current flow
is shown in Fig. 1. It consists of a capacitor in series with a resistor, forming
a complete circuit. For timest < 0, an external potential is applied to the
left-hand side of the circuit so that there is an excess of electrons on this side
and a deficit on the right-hand side. Most of the net charge will appear on the
capacitor so as to minimise the total energy. Formally, this applied external
potential arises from a chemical potential for the electrons that differs on the
left and right of the system. This can be shown simply by minimising the total
energy subject to the constraint that there are more electrons on the left than
on the right.

At time t = 0, the external potential is removed and the charge is now
free to move, and in the process will attempt to remove the imbalance in the
charge. This leads to a current flow through the resistor, witch in turn produces
a potential drop across it. Let us defineΨ0 to be the many-body wave function
for time t ≤ 0 and let the many-body Hamiltonian fort ≥ 0 beĤ. The wave
function fort ≥ 0 (Ψ(t)) is then given byΨ(t) = exp(Ĥt/ih̄)Ψ0, providedĤ
does not depend on time. Note that this Hamiltonian includes both ionic and
electronic degrees of freedom, and so is able to describe the full response of
the ions to the electronic current.

In the absence of dissipation we will obtain oscillatory solutions whose
frequency spectrum is governed by the energy spectrum of the Hamiltonian.
However, ifRC >> t >> h̄/W (whereW is the range of eigenvalues of̂H
contributing toΨ0), there will be a quasi-steady-state. It is this time range in
which we are interested.

We now make the following important observation which allows us to per-
form practical calculations. In the quasi-steady-state regime, the potential in
the wires does not vary strongly, and most of the potential drop therefore oc-
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curs across the resistor. This allows us to focus on the resistor alone, and to
treat the capacitor and most of the wire as an external charge source or sink,
which can be modelled by open boundary conditions. This is very similar in
spirit to the Landauer approach in which only the transmission coefficient for
thedeviceneeds to be evaluated.

The above formalism cannot be implemented directly because of the huge
computational cost associated with such a many-body problem. The first sim-
plifying step is to reduce the many-body electron problem to a single parti-
cle one. Provided we are willing to treat the ions in a mean field approach,
which we are in this case, then we are free to describe the electrons using time-
dependent density functional theory [47]. The key equations that we need are:

n(~r, t) =
∑
n

fn|ψn(~r, t)|2

Ĥksψn(~r, t) = ih̄
∂

∂t
ψn(~r, t)

Ĥks = T̂ + V̂eI + V̂Ha[n] + V̂xc[n]

MI
d2 ~RI

dt2
= −~∇IVII −

∫
d~r n(~r, t)~∇IVeI (3)

Here, n(~r, t) is the charge density,fn is the orbital occupancy,ψn(~r, t) is
an eigenfunction of the Kohn-Sham hamiltonianĤks, T̂ is the kinetic energy
operator,V̂eI is the electron-ion interaction,̂VHa is the Hartree (electrostatic)
interaction,V̂xc is the exchange and correlation potential,V̂II is the ion-ion
repulsion,MI is the mass of ionI and ~RI is its position. Note that̂Vxc is
nonlocal in time. It is certainly possible to work directly with these equations
(once suitable approximations for̂Vxc have been made). However, we prefer
to work with the single particle density matrixρ(~r, ~r′), where

ρ(~r, ~r′) =
∑
n

ψn(~r)fnψ
∗
n(~r′). (4)

It is straightforward to write down the equation of motion for the density ma-
trices using Eqs (3) and (4)and to recast the equation of motion for the ions:

ih̄
∂ρ̂

∂t
= [Ĥks, ρ̂] (5)

MI
d2 ~RI

dt2
= −~∇IVII − Tr{ρ̂~∇IĤks} (6)

where we have moved to operator notation.
Continuing in the spirit of reducing complexity to increase computational

efficiency, we approximate DFT by tight binding. Further, if we use orthogonal
tight binding we can replace operators in our previous equations with matrices.
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We will thus continue to use the operator notation with the new understanding
that the operators will be represented by tight binding matrices.

As we indicated earlier on, we would like to concentrate our calculations
only on the device and treat the environment in an implicit manner. To do this
we separate the system into the device and the environment, which means we
must divide Eq. (5) into components corresponding to device (designated by
the subscript D), environment (designated by the subscript E) and the coupling
between the two. We also introduce a damping term for the environment which
makes it behave as a nearly equilibrium bath of electrons. This produces the
following equations:

ih̄
∂ρ̂D

∂t
= [ĤD, ρ̂D] + (ĤDE ρ̂ED − ρ̂DEĤED)

ih̄
∂ρ̂DE

∂t
= ĤDρ̂DE − ρ̂DĤDE + ĤDE ρ̂E − ρ̂DEĤE

ih̄
∂ρ̂E

∂t
= [ĤE , ρ̂E ] + (ĤEDρ̂DE − ρ̂EDĤDE)

− 2ih̄Γ(ρ̂E − ρ̂ref ). (7)

There is a closed form solution for the density matrix for the environment.
If we assume that̂HE is independent of time and define the driver termsĜE

andĜ(0)
E by ih̄ĜE = (ĤEDρ̂DE−ρ̂EDĤDE) and0 = [ĤE , ρ̂E(0)]+ih̄Ĝ(0)

E −
2ih̄Γ(ρ̂E(0)− ρ̂ref ), we find the following solution for Eq. (7) for the environ-
ment:

ρ̂E(t) = ρ̂E(0) +
∫ t

0
dx Ô(x)

(
ĜE(t− x)− Ĝ

(0)
E

)
Ô†(x) (8)

whereÔ(t) = e−ΓteĤEt/ih̄. For the parts of the density matrix belonging
to the device and its coupling to the environment we treat the time evolution
explicitly.

As a testbed for this formalism we now develop a very simple model system.
It consists of two semi-infinite leads attached to a device. The lead on the left
is at a different potential from that on the right. Each lead is represented by
a linear chain of atoms with one orbital per atom. There are therefore two
parameters that characterise the Hamiltonian for each lead: the on-site energy
(a) and hopping integral between the nearest neighbour sites (b). We takeb
to be the same on the left and on the right. The bias is applied through the
difference in onsite energies on the two sides:aL − aR.

The non-locality in time of Eq. (8) adds considerably to the cost of per-
forming a calculation. However, from Fig. 2 we see that the evolution operator
decays rapidly with time. We could thus approximate this by a function the
goes strictly to zero outside some cut-off time. This is consistent with keeping
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the damping term in Eq. (7). If the evolution operator is truncated in time, it
becomes truncated in space as well. This corresponds to the fact that a wave
packet can travel only a limited distance in a finite time.

0 2 4 6
Time (fs)

0

0.5

1

O
00

Figure 2. The solid line is the variation with time of the matrix element of the time evolution
operator corresponding to the first atom in the environment. There is no damping (Γ = 0). The
decay corresponds to the propagation of a wavepacket down the wire. The dashed line is the
exponential damping factor withΓ = 1.0fs−1.

The final quantities that we need to define in order to completely charac-
terise the environment are the initial and reference density matrices (ρ̂E(0) and
ρ̂ref ), both of which we take to be equal to the density matrix for the infinite
wire (with the device present) in its ground state in the absence of a bias.

To complete our model system we need to introduce a device. The simplest
device consists of only one atom. If we give this atom a high on-site energy it
behaves as a barrier to current flow. The one-dimensional potential profile for
this system is given in Fig. 3.

Device

a

a

a

R

L

D

Left lead

Right lead

Energy

Figure 3. The energy profile for the model system. The energy axis on the left shows the
positions of the onsite energies in the left lead (aL), the right lead (aR) and the device (aD).

3. Results

As a check on the method described here, we can compute the conductivity
of this system using the Landauer method. For this we need the transmission
coefficient which can be found straightforwardly from Schrödinger’s equation.
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Figure 4. The variation of current into the device as a function of time. Note that it reaches a
stable steady state. For the first 30 fs no bias was applied. The bias of -0.1V was then turned on
over a period of 10 fs.

In our tight binding formalism, the wave function on the left-hand side has
the formψn = eikn + Re−ikn, whereψn is the wave function evaluated at
site n. On the right it has the formψn = T eiqn. Applying Schrödinger’s
equation (

∑
j Hijψj = εψi) to the left and right leads and the device gives

T = 2 sin(k)/(sin(q) + sin(k) + i(aR + aL − 2aD)/2b) whereaL andaR are
the on-site matrix elements on the left and right respectively, andaD is that for
the device atom. For the special case of a half filled band and infinitessimal
bias we get the following conductivity

g =
2e2

h

(
1 +

[
aD − aL

2b

]2)−1

. (9)

If we have a bias of 0.1V, and the hopping and barrier height are both 1eV, we
get a current of about 6.2µA.

The time dependence of the current is shown in Fig. 4. We see that our time
dependent scheme leads to stable steady currents.

One class of phenomena that our time-dependent formalism allows us to
study is transient effects in the presence of rapidly changing external potentials.
In Fig. 5 we show the effect of applying a voltage to the device atom, rather
like the gate voltage in a field-effect transistor. The current responds smoothly
and is reduced when the voltage is applied.

The transient effects seen in the current are proportional to the first deriva-
tive of the gate voltage. This is easy to understand by considering a hydrody-
namic analogy. If you had some kind of large piston at the base of a canal full
of water, then the rising gate voltage would correspond to the piston moving
upwards from the base of the canal. This will displace water, with the amount
being displaced per second being proportional to the rate at which the piston
rises. Locally the displaced water will look like a current.
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Figure 5. The current into (solid line) and out of (dashed line) the device while a gate-like
voltage is applied. The voltage is turned on at 40 fs, over 5 fs, held for 50 fs, and then turned
off, again over 5 fs. (a) Voltage applied. (b) Current.

To investigate heating effects, once a steady-state current has been achieved
we perform molecular dynamics on the device atom. The position of the atom
is allowed to evolve according to Eq. (6). To monitor the heating we follow
the evolution of the kinetic energy of the device atom with time. In Fig. 6 we
show the effects of two different applied biases. Fig. 6(a) shows that with a
bias of -0.1V, we have cooling, while Fig. 6(b) shows that a bias of -1.0V gives
gradual heating of the system. These heating results will be discussed in more
detail in future work.

Figure 6. Plots showing kinetic energy of single atom device over time with bias (a) -0.1V
(b) -1.0V. Molecular dynamics was started after a steady-state current was achieved, at 60 fs.

In conclusion, we have presented a time-dependent technique which allows
evolution of electronic and ionic degrees of freedom for an open system. It
offers a number of possible improvements over static methods. These include
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the ability to study transient behaviour and non-adiabatic processes, as well as
possibly providing a framework for an improved density functional description
of current carrying electrons. We have implemented the method using tight
binding, and demonstrated transient behaviour, and both heating and cooling
for a one dimensional metallic wire.
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