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Abstract

Experimental observations of heteroepitaxial growth of Ge on Si (001) show a(2 × n)
reconstruction for sub-monolayer coverages, with dimer rows crossed by missing-dimer
trenches. We present first-principles density-functional calculations designed to elucidate
the energetics and relaxed geometries associated with this reconstruction. We also address
the problem of how the formation energies of reconstructions having different stoichiome-
tries should be compared. The calculations reveal a strong dependence of the formation
energy of the missing-dimer trenches on spacingn, and demonstrate that this dependence
stems almost entirely from elastic relaxation. The results provide a natural explanation for
the experimentally observed spacings in the region ofn ' 8.
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1 Introduction

Understanding the heteroepitaxial growth of Ge on Si(001) is vitally important
for two reasons: first, it is a prototypical system for strained, Stranski-Krastanow
growth; second, it has great potential for growing new semiconductor devices while
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Fig. 1. Geometry of the(2 × n) reconstruction of Ge on Si(001) for the casen = 6,
with light and dark coloured spheres representing Si and Ge. Dimer rows, missing-dimer
trenches and normal to the surface lie along mutually perpendicular x, y and z directions.

remaining compatible with existing Group IV technology. We present here a first-
principles investigation of the energetics of the(2 × n) reconstruction observed at
low Ge coverage, with the aim of explaining why the periodicityn has the val-
ues observed experimentally; we also present an interpretation of the energetics in
terms of the relaxed atomic geometries.

The clean Si (001) surface shows the well-known reconstruction due to the forma-
tion of rows of Si dimers. During the early stages of solid-source molecular beam
epitaxy (SSMBE) of Ge on Si (001), the growth is remarkably similar to that of Si
itself, with rows of dimers forming on the surface. As the coverage approaches one
monolayer, however, the system shows the effects of strain due to the mismatch of
the Si and Ge lattice parameters, and trenches of missing dimers appear (see Fig. 1).
These trenches are oriented at right angles to the axis of the dimer rows, and there
is a fairly regular spacingn between trenches [1–6]. This is the(2×n) reconstruc-
tion, withn observed to be about 8, though the distribution ofn is fairly broad and
somewhat dependent on growth conditions, with values up to 12 being reported. A
similar reconstruction is observed during gas-source MBE (GSMBE) [7–9], though
there are small differences due to the presence of hydrogen on the surface.

As further Ge is deposited (both in SSMBE and GSMBE), a series of further recon-
structions are seen, which vary depending on growth conditions. The temperature at
which growth occurs, the deposition rate of Ge and the presence of hydrogen all af-
fect the growth [7]. However, the next stage observed after the formation of(2×n)
is generally the(m× n) reconstruction [1,7,8]. This forms when a further layer of
Ge grows on a(2× n) surface, and does not fill in the trenches in the surface. The
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increased strain in the new layer generally means that the new periodicity (m) is
less than the old (n). On Si (001), there are two step types: parallel to the dimer
rows (A-type, generally smooth) and perpendicular to the dimer rows (B-type, gen-
erally rough) [10,11]. After one or two monolayers of Ge have been deposited,
this roughness is seen to first equalise and then reverse [7,12]. Finally, large scale
features form along the elastically soft (100) and (010) directions: “hut” pits and
clusters [1,7,8,13]. Although the work reported here focuses only on the(2 × n)
reconstruction, it provides the foundation for investigating the other more compli-
cated reconstructions. In particular, we will report elsewhere [14] on tight-binding
investigations of the(m× n) reconstruction, which use the present first-principles
calculations to validate a tight-binding parameterisation of the Si/Ge system for this
kind of application.

The calculations to be presented are based on density-functional theory (DFT) in
the generalized-gradient approximation (GGA), implemented with pseudopoten-
tials and plane-wave basis sets. Starting from the perfect Ge monolayer as point
of reference, we have calculated the formation energy and relaxed structure of
missing-dimer trenches having spacingsn ranging from 4 to 12. By calculating the
trench formation energy both with and without atomic relaxation, we shall show
that the strong dependence of formation energy onn arises almost entirely from re-
laxation effects. We shall also show that, in a sense that is appropriate to the usual
experimental conditions, this formation energy is a minimum for a value ofn in the
experimentally observed range.

There has been previous modelling of the Si/Ge(2×n) reconstruction, but only us-
ing empirical potentials, such as the Stillinger-Weber and modified Keating forms [2,3,5].
These also studied atomic relaxation and strain effects, relating these to the period-
icity of the reconstruction, and found results in broad agreement with experiment.
Our calculations provide support for the physical mechanisms that emerged from
these empirical studies. One problem addressed in the earlier work, but in our opin-
ion not fully resolved, was that of comparing the energies of surface structures
having different stoichiometries. This problem necessarily arises if one wishes to
compare the energies of(2 × n) reconstructions having differentn values, since
removal or addition of Ge is needed to go from one to the other. The solution to
this problem is equivalent to assigning an appropriate chemical potential to Ge, and
different ways of doing this have been proposed. Since the predicted equilibrium
value ofn depends on the choice of chemical potential, it is essential to identify the
choice that corresponds to the real experimental conditions. We shall outline here
what we believe to be the correct procedure. We note that during the experimen-
tal growth process there may be some intermixing of Ge and Si [6,9], though this
can be suppressed by surfactants such as As or H. The likely effect is a reduction
of surface strain, and hence an increase in the value ofn[6]; for the growth of the
first monolayer, such effects are expected to be small, and we neglect them in the
present work.
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Technical details of our calculations are summarised in the next Section. We then
present (Sec. 3.1) our results for energetics and relaxed geometry, first of the per-
fect Ge monolayer, and then of the missing-dimer trenches, including our analysis
of the trench formation energy into electronic and relaxation contributions. Sec. 3.2
outlines our arguments about the correct Ge chemical potential to use in determin-
ing the equilibrium inter-trench spacing, and gives our numerical result for this,
which is close to the experimental valuen ' 8. The paper ends with a summary of
our conclusions.

2 Computational Methods

The fundamental ideas of DFT [15,16] have been extensively reviewed (see e.g.
Refs. [17,18]), as have the pseudopotential and plane-wave techniques [18]. The
present calculations were performed using the VASP code [19], and employ the
standard ultra-soft pseudopotentials [20] that form part of the code. The approxi-
mation we use for exchange-correlation energy is the generalised-gradient approxi-
mation (GGA) due to Perdew and Wang (PW91) [21,22]. The choice of GGA rather
than the local-density approximation (LDA) is deliberate. Since the energetics that
interests us here depends quite sensitively on bonding and rebonding effects, and
since the errors in bond energies are generally much larger with LDA than with
GGA (LDA generally overbinds significantly), we regard the use of GGA as essen-
tial in this work.

DFT/pseudopotential/plane-wave calculations are most easily performed in peri-
odic boundary conditions, and we therefore adopt the periodic slab geometry usu-
ally employed for surface-science work. The scientific issues we are addressing
require the accurate treatment of quite small energy differences (typically on the
order of 100 meV), and we have made efforts to ensure that the calculations are
fully converged with respect to the thickness of the slabs and the width of the vac-
uum layer separating neighbouring slabs. For an eight layer(2 × 1) reconstructed
slab, we found that the total energy was converged to better than 1 meV for a vac-
uum layer of 5Å (compared to 8Å). For this vacuum width, we found that the
change in surface energy in going from an eight layer slab to a twelve layer slab
was less than 1 meV per dimer. (Both tests were conducted with a plane-wave cut-
off energyEcut of 225 eV and a4 × 4 × 1 Monkhorst-Packk-point mesh[23].)
Given the results of these tests, we chose to perform all the main Si/Ge calculations
with eight-layer slabs, the top layer being Ge. Both top and bottom surfaces of the
slab are reconstructed to form dimers, as further specified below. The width of the
vacuum gap was taken to be 5Å. Careful attention to basis-set completeness and
Brillouin-zone sampling is also essential. In general,Ecut was chosen to be 225 eV,
andk-point sampling was performed using the4 × 4 × 1 Monkhorst-Pack mesh,
but detailed evidence will be presented below about the convergence of our results
with respect to these parameters.
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3 Results

3.1 Energetics and geometries

We begin by summarising the structure and energetics of the system having a per-
fect Ge monolayer in thep(2 × 2) reconstruction (Fig. 2(a)). For the fully relaxed
system, we find the following structural parameters (results from Refs. [24–28]
in parentheses): Ge-Ge bond length 2.55Å (2.38 − 2.44 Å); Ge-dimer tilt angle
19.2◦ (14.2 − 18.5◦); up and down Ge-Si bond lengths 2.48 and 2.39Å (2.42 and
2.34Å). We note that the methods used to obtain the earlier results compared with
here differ from ours in two significant ways: first, they used LDA rather than GGA;
second, they used the(2× 1) rather than thep(2× 2) reconstruction. Both of these
factors may have an appreciable effect on the structure of the monolayer; we note
particularly that use of the(2 × 1) reconstruction may well prevent the favourable
relaxations along the dimer row allowed byp(2 × 2). Given these differences, we
regard the agreement with previous results as reasonable.

For comparison, we note the corresponding parameters for thep(2× 2) reconstruc-
tion on the clean Si (001) surface, obtained using the same GGA, and with the
GGA lattice parameter for Si (a0 = 5.45 Å, corresponding to a bulk bond length
of 2.36Å): dimer Si-Si bond length 2.36̊A; dimer-second layer up and down bond
lengths 2.40 and 2.34̊A. The Ge-Ge dimer bond is elongated (actually beyond the
bulk bond length, which we found to be 2.49Å), with the extra freedom to relax
allowing the substrate to take on more bulk-like lengths and angles.

We also report here the Ge monolayer formation energy per Ge dimer, denoted
by Em, since it will be needed later. We define this to be the energy change per
Ge dimer when we start with the perfect relaxed Si (001)2 × 2 surface and bring
isolated Ge atoms from infinity to form the perfect relaxed2×2 Ge monolayer. We
find the valueEm = −9.64 eV, and we have checked that this is converged within
0.01 eV with respect to slab thickness, plane-wave cut-off andk-point sampling.

We now turn to the energetics of formation of missing-dimer trenches. The results
come from a series of calculations in which the periodically repeated cell contains a
single missing-dimer trench, with spacingsn = 4, 6, 8, 10 and 12 between trenches.
In all cases, the repeating cell is orthorhombic. Referring to Fig. 1 and denoting the
lengths of the three cell edges byX (along the dimer rows),Y (along the missing-
dimer trenches) andZ (normal to the surface), these lengths are:X = (n/

√
2)a0,

Y =
√

2a0, andZ = 15.88 Å, wherea0 = 5.44 Å. The value ofZ is appropriate
to the eight-layer slab with vacuum width of 5.0Å used in all the calculations (see
Sec. 2).

We first report values for the fully relaxed missing-dimer formation energyEf(n),
defined as the energy per removed Ge-dimer needed to form an array of missing-
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Fig. 2. Calculated structures for (a) (top) a perfect Ge monolayer and (b) (bottom) a relaxed
Ge layer with the spacingn = 8 between missing-dimer trenches. In both structures, darker
atoms (top surface) are Ge and all other atoms are Si.

dimer trenches with spacingn. In this process, we start from Si (001) with a non-
defective monolayer of Ge, and the removed Ge atoms are taken to infinity, where
they are isolated atoms in free space. In computational terms, we expressEf(n) as
the differenceEfin − Einit of the fully relaxed energies per repeating cell of two
systems, both having the same orthorhombic cell of dimensions(X,Y, Z). The
initial system (energyEinit) is the slab with a single non-defective monolayer of
Ge on one face. The final system (energyEfin) is formed from the initial system
by removing one Ge-dimer from each repeating cell to create an array of infinite
missing-dimer trenches with spacingn. We use exactly the same orthorhombic
cells for the two systems, with the same plane-wave cut-off andk-point sampling,
because this aids cancellation of errors.

We report in Table 1 our values forEf(n) for the series ofn values. All the results
were obtained for the eight-layer slab with the vacuum gap of 5Å chosen for the
reasons explained in Sec. 2. To show that our results are converged with respect
to basis-set completeness andk-point sampling, we report values ofEf(n) for a
moderate (150 eV) and a large (225 eV) plane-wave cut-off energyEcut and for
two k-point sets (4 × 4 × 1 and8 × 8 × 1). It is clear thatEf(n) is converged to
within a few meV with respect tok-point sampling and plane-wave cut-off when
we use a4× 4× 1 k-point mesh and a plane-wave cut-off of 225 eV. We note that
Ef(n) is a monotonically decreasing function ofn, which attains a plateau value
for n > 8. Its overall variation withn is very substantial, since it is nearly 1 eV
higher forn = 4 than forn = 12. This effective repulsion between missing-dimer
trenches for spacings belown ∼ 8 has been found before in calculations based
on empirical models [2,3,5]. Its consequence is that for a given overall density of
trenches they will tend to become equally spaced.
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Table 1
Calculated values (eV units) of the fully relaxed missing-dimer trench formation energy
Ef(n) as a function of inter-trench spacingn (see text for detailed definition). Results
are given for different values of plane-wave cut-off energyEcut and for differentk-point
sampling meshes.

n Ecut=150 eV,4× 4× 1 Ecut=225 eV,4× 4× 1 Ecut=225 eV,8× 8× 1

4 9.819 9.882 9.881

6 9.378 9.449 9.448

8 9.179 9.232 9.234

10 9.150 9.206 9.208

12 9.081 9.182 9.185

Previous work [2,3,5] suggests that the effective repulsion between trenches stems
from the elastic relaxation field surrounding each missing dimer. To test this, we
have repeated the calculations ofEf(n), but without relaxation (we denote the un-
relaxed value byE0

f (n)). As before, we start from the fully relaxed initial system,
but when the Ge atoms are removed, all atoms are held fixed in their initial posi-
tions. The resultingE0

f (n) values are reported as a function ofn in Fig. 3, and we
see that their variation withn is extremely small. This means that all the variation
in the fully relaxedEf(n) values comes from the relaxation of the final system with
respect to the initial system. The relaxation energyEf − E0

f has a magnitude of
nearly 2 eV for widely spaced missing dimers.

We show our calculated relaxed structure of the trench system in Fig. 2(b) for the
spacingn = 8. The key feature to notice is the large inward relaxation towards
the trench, leading to Si–Si rebonding across the trench. Quantitatively, the relaxed
Si–Si distance across the trench is 2.54Å, to be compared with the bond length of
2.36Å in the Si perfect crystal at ambient pressure. This is an elongation of∼ 8%,
showing the strain that the system is under. It is interesting to compare this result
with the single missing dimer in Si(001), which has an identical structure, apart
from the Ge in the top layer. There, the bonds across the trench have a length of
2.56Å [29,30]; the similarity suggests that the limiting factor on the relaxation in
both cases is the Si-Si distance. The Ge dimers neighbouring the trench show an
inward relaxation of 0.65̊A from their positions in the perfect monolayer. The up
and down Si–Ge bond lengths neighbouring the trench are 2.58 and 2.45Å, so that
there is a significant lengthening compared with the perfect Ge monolayer. As ex-
pected, for smaller values ofn, the relaxation around the trench is less pronounced.
For example, in then = 4 case, the Si–Si separation across the trench is 2.63Å,
and the inward relaxation of the Ge dimers neighbouring the trench is 0.48Å. The
suppression of relaxation for small spacings is clearly responsible for the strong
n-dependence ofEf(n), corresponding to the effective repulsion between trenches.
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Fig. 3. Calculated values of relaxed (circles, solid line) and unrelaxed (squares, dashed line)
formation energiesEf andE0

f of missing-dimer trenches in a Ge monolayer on Si(001).

3.2 The experimental missing-dimer trench spacing

We now want to use our results forEf(n) to clarify why the missing-dimer trenches
adopt the spacingsn in the range8− 12 observed in experiments. We explain first
the statistical-mechanical basis for the arguments to be used. We assume that the
surface is in thermal equilibrium, so that, for a given number of Ge atoms on the
surface, the probability of finding any particular arrangementγ of these atoms is
proportional toexp(−Eγ/kBT ), whereEγ is the energy ofγ. (Strictly speaking,Eγ
should be a non-configurationalfreeenergy, but here we take it to be the equilib-
rium energy ofγ.) Our thermal equilibrium assumption means that we are ignoring
kinetic effects. We will discuss the validity of this assumption in Sec. 4.

Since our approach is to discuss the arrangements that will be seen in thermal equi-
librium for agivennumber of Ge atoms on the surface, and we need only know how
Eγ varies as we go from one arrangement of these atoms to another, the energy zero
chosen forEγ is irrelevant. However, it will be convenient to relateEγ values to
the energy of one particular arrangement of Ge, which we call the ‘reference’ ar-
rangement, whose energy isEref . We choose this to be the arrangement in which all
Ge atoms form perfect dimers, which are arranged to make a non-defective mono-
layer covering a certain area of the surface. The shape of the boundary of this area
does not make any difference, but the following arguments become simpler if it is
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rectangular.

We now consider the energies of arrangements created from the reference arrange-
ment by the formation of missing-dimer trenches. For definiteness, let there beL
dimer rows each containingP dimers in the reference arrangement. We formQ
equally spaced missing-dimer trenches by removingQL dimers, replacing them at
the boundary of the monolayer, and allowing the whole system to relax. It is con-
venient to divide this process into two parts: (i) the prior fetching of2QLGe atoms
from infinity and their deposition at the boundary of the reference system, in such
a way that each dimer row is increased in length fromP dimers toP + Q dimers,
the number of dimer rows remaining the same; (ii) the subsequent formation of the
missing-dimer trenches by the removal ofQL Ge dimers and their separation to
infinity. We write the energy in process (i) asQLEp, whereEp is a constant energy
that will be discussed further below. The energy change in process (ii) isQLEf(n),
whereEf(n) is the trench formation energy defined above, with the spacingn given
by n = (P +Q)/Q. The total energy change∆E is therefore:

∆E = QL(Ef(n) + Ep) =
LP

n− 1
(Ef(n) + Ep) = LPζ(n) , (1)

whereζ(n) = (Ef(n) + Ep)/(n− 1). The energetically most favorable value ofn
is therefore obtained by minimizingζ(n) with respect ton

In fact, the energyEp of process (i) is the same as the monolayer formation energy
Em already discussed in Sec. 3.1. The reason is that the energy change on forming
a certain amount of monolayer cannot depend on whether this is accomplished by
placing Ge atoms on the clean Si surface, or by bringing Ge atoms to the boundary
of a pre-existing piece of monolayer. (This assumes, of course, that we ignore edge
effects, which is an appropriate approximation here.)

We now use our calculatedEm = −9.64 eV/dimer (see above, Sec. 3.1) to obtain
numerical values forζ(n), which we present in Fig. 4. We note thatζ(n) is negative
for largen, so that it is energetically favourable to form widely spaced missing
dimers. However, the repulsion between rows causesζ(n) to increase at smalln,
and it has a minimum atn ' 8. This optimumn value corresponds well to the
typical spacing observed experimentally.

4 Discussion and conclusions

A number of key points have emerged from our first-principles calculations on the
(2× n) reconstruction of sub-monolayer Ge on Si (001). First, we have shown that
the non-defective Ge monolayer is energetically unstable with respect to formation
of widely spaced (n → ∞) missing-dimer trenches. Second, there is a substantial
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inter-trench spacingn, with Ef(n) the formation energy of missing-dimer defect trenches
andEm the Ge monolayer formation energy (see Eq. 1 and text).

effective repulsion between trenches, so that their formation becomes energetically
unfavourable for smalln. This means that in thermal equilibrium there is an optimal
value ofn, for which our calculations yield the estimaten ' 8, in respectable
agreement with the typical values observed experimentally. Third, we have shown
that the effective repulsion is entirely due to elastic relaxation effects: the energy
lowering due to relaxation is greatest when the strain fields of different trenches
do not overlap, and decreases asn decreases. Fourth, we have seen that for largen
there is significant rebonding between Si atoms in the trench, and this is probably
essential in making trench formation energetically favourable.

The picture we have established is not entirely new. The work based on empirical
models[2,3,5] referred to in Sec. 1 came to essentially the same conclusion about
the important role of elastic effects. The more fundamentally based first-principles
calculations presented here therefore provide support for the earlier models. How-
ever, we have emphasised that a correct identification of the appropriate Ge chemi-
cal potential is crucial in understanding the energetic stabilisation that results from
trench formation, as well as the equilibrium value ofn. In earlier work, it was
suggested that this chemical potential should be identified with the energy of bulk
unstrained Ge (for large, fully relaxed islands), or else Ge biaxially strained to the
Si lattice constant (for wide, coherent islands) [2]. We have argued here that the
formation energy of the perfect Ge monolayer provides the experimentally relevant
point of reference in fixing this chemical potential.
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Our reasoning is based on the assumption of full thermal equilibrium, and we have
not attempted to account for kinetic effects. Since we are only trying to investigate
the observed spacingn of the reconstruction, this is reasonable. Although a variety
of kinetic effects are observed during the formation of the(2 × n) reconstruction
(including the “displacive incorporation” growth model) [31], once the complete
layer is formed it is stable, and kinetic effects are unlikely to play a role. We can
also consider the limit of slow growth conditions, where thermal equilibrium will be
a valid assumption [2]. The observed range ofn is rather broad (roughly from 8 to
12), in part depending upon growth conditions; this is perfectly consistent with our
results, which show only a weak increase in formation energy beyond the spacing
n = 8 at which it is a minimum. We also expect the temperature at which the
growth occurs and the growth source to have an effect. We have also deliberately
ignored intermixing between Ge and Si layers. There is MEIS evidence showing
that for 1ML coverage (i.e. equivalent to the(2 × n) surface we are modelling) at
low temperatures (up to 500◦C) there is little intermixing [31,32], though recent
measurements and calculations [33] indicate intermixing starting at about 500◦C.
Nevertheless, the simplest model is one without intermixing, and this is where we
have started. Intermixing will reduce the surface strain, thus increasing the value of
n, as seen in experiment. Our value could thus be considered a lower limit, taken
for thermal equilibrium and segregated Si and Ge layers.
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