Foundations of Numerical Methods (2nd term 2005)

Exercise Sheet 7 - Partial Differential Equations

1. Use the finite difference method to approximate the solution to

$$
\frac{\partial^{2} u(x, y)}{\partial x^{2}}+\frac{\partial^{2} u(x, y)}{\partial y^{2}}=4, \quad 0<x<1,0<y<2
$$

with the boundary conditions

$$
\begin{array}{ll}
u(x, 0)=x^{2}, u(x, 2)=(x-2)^{2}, & 0 \leq x \leq 1 \\
u(0, y)=y^{2}, u(1, y)=(y-1)^{2}, & 0 \leq y \leq 2
\end{array}
$$

Use $\Delta x=\Delta y=1 / 2$ and compare the results with the actual solution $u(x, y)=(x-y)^{2}$.

Solution:

i	j	x_{i}	y_{j}	$w_{i, j}$	$u\left(x_{i}, y_{j}\right)$
1	1	0.5	0.5	0.0	0
1	2	0.5	1.0	0.25	0.25
1	3	0.5	1.5	1.0	1

2. Approximate the solution to the following partial differential equation using the Crank-Nicolson method

$$
\begin{aligned}
\frac{\partial u(x, t)}{\partial t}-\frac{1}{16} \frac{\partial^{2} u(x, t)}{\partial x^{2}} & =0, \quad 0<x<1, \quad t>0 \\
u(0, t) & =u(1, t)=0, \quad t>0, \quad u(x, 0)=2 \sin (2 \pi x), \quad 0 \leq x \leq 1
\end{aligned}
$$

Use $m=3, T_{\max }=0.1$ and compare your results with the actual solution $u(x, t)=2 \exp \left[-\pi^{2} / 4 t\right] \sin (2 \pi x)$

Solution:

i	j	x_{i}	t_{j}	$w_{i j}$
1	1	0.5	0.05	0.628848
2	1	1.0	0.05	0.889326
3	1	1.5	0.05	0.628848
1	2	0.5	0.1	0.559251
2	2	1.0	0.1	0.790901
3	2	1.5	0.1	0.559252

3. Suppose we wish to solve the parabolic equation

$$
\frac{\partial u(x, t)}{\partial t}-\frac{\partial^{2} u(x, t)}{\partial x^{2}}=h(x)
$$

Derive the explicit forward difference equation, the backward implicit difference equation and the semi-implicit (within the Crank Nicolson scheme) difference equation for this situation.

