Further mathematics for economists

Exercise Sheet 7 - Second-Order Differential Equations

1. Find the specific solution of the differential equation

$$
\frac{d^{2} y}{d t^{2}}+5 \frac{d y}{d t}+6 y=0
$$

so that $y(0)=0$ and $d y / d t=1$ when $t=0$
2. Find the specific solution of the differential equation

$$
\frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}+10 y=0
$$

so that $y(0)=0$ and $y(\pi / 2)=1$. Discuss this solution qualitatively (Hint: note that $\sin u=\frac{1}{2 i}\left(e^{i u}-e^{-i u}\right)$)
3. Find the specific solution of the differential equation

$$
\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+4 y=0
$$

so that $y(0)=1$ and $y(1)=0$
4. Find the general solution of the following second-order differential equations:
(a)

$$
\frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}+5 y=3 e^{t}+5
$$

(Hint: use $y_{p}=a e^{t}+b$)
(b)

$$
\frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}+5 y=3 e^{-t}
$$

(Hint: use $y_{p}=a t e^{-t}$)
(c)

$$
\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+13 y=26 t+21
$$

