Further mathematics for economists Exercise Sheet 6 - Complex numbers

- 1. Consider the complex numbers $z_1 = 1 + 2i$ and $z_2 = 2 i$ and compute
 - (a) $z_1 z_2$
 - (b) z_1/z_2
 - (c) $z_1 z_2^*$
- 2. Write the algebraic and trigonometric forms for the following points in an Argand diagram
 - (a) $(1,\sqrt{3})$
 - (b) $(-1, -\sqrt{3})$
 - (c) $(1, -\sqrt{3})$
- 3. Compute $(1/2 + i\sqrt{3}/2)^{20} + (1/2 i\sqrt{3}/2)^{20}$ using de Moivre's theorem
- 4. Find all the roots of $z^4 = (8\sqrt{3} + 8i)$
- 5. Solve the quadratic equation $z^2 4z + 4 = 1 i$ (hint: factorize the LHS and compute a square root)
- 6. Compute $\int e^{-x} \cos(2x) dx$ (hint: note that $\cos(u) = \frac{1}{2}(e^{iu} + e^{-iu})$)
- 7. Prove that, if the coefficients $a_k(k = 1, 2)$ in $z^2 + a_1 z + a_2 = 0$ are real, then the roots of this equation are a conjugate pair. Hints:
 - Factorize the equation as $(z z_1)(z z_2) = z^2 (z_1 + z_2)z + z_1z_2$, where z_1z_2 are the roots of the equation
 - Use $z_1 = |z_1|e^{i\theta_1}$ and $z_2 = |z_2|e^{i\theta_2}$
 - Show that $a_1 = -(z_1+z_2)$ and $a_2 = z_1z_2$ can only be real if $|z_1| = |z_2|$ and if $\theta_2 = -\theta_1 + 2n\pi$, for arbitrary θ (you will need the Euler formula $e^{i\theta} = \cos \theta + i \sin \theta$, and the conditions $\text{Im}[a_1] = 0$ and $\text{Im}[a_2] = 0$)
 - Note that $e^{in\pi} = (-1)^n$.