Further mathematics for economists
 Exercise Sheet 6 - Complex numbers

1. Consider the complex numbers $z_{1}=1+2 i$ and $z_{2}=2-i$ and compute
(a) $z_{1} z_{2}$
(b) z_{1} / z_{2}
(c) $z_{1} z_{2}^{*}$
2. Write the algebraic and trigonometric forms for the following points in an Argand diagram
(a) $(1, \sqrt{3})$
(b) $(-1,-\sqrt{3})$
(c) $(1,-\sqrt{3})$
3. Compute $(1 / 2+i \sqrt{3} / 2)^{20}+(1 / 2-i \sqrt{3} / 2)^{20}$ using de Moivre's theorem
4. Find all the roots of $z^{4}=(8 \sqrt{3}+8 i)$
5. Solve the quadratic equation $z^{2}-4 z+4=1-i$ (hint: factorize the LHS and compute a square root)
6. Compute $\int e^{-x} \cos (2 x) d x$ (hint: note that $\cos (u)=\frac{1}{2}\left(e^{i u}+e^{-i u}\right)$)
7. Prove that, if the coefficients $a_{k}(k=1,2)$ in $z^{2}+a_{1} z+a_{2}=0$ are real, then the roots of this equation are a conjugate pair.
Hints:

- Factorize the equation as $\left(z-z_{1}\right)\left(z-z_{2}\right)=z^{2}-\left(z_{1}+z_{2}\right) z+z_{1} z_{2}$, where $z_{1} z_{2}$ are the roots of the equation
- Use $z_{1}=\left|z_{1}\right| e^{i \theta_{1}}$ and $z_{2}=\left|z_{2}\right| e^{i \theta_{2}}$
- Show that $a_{1}=-\left(z_{1}+z_{2}\right)$ and $a_{2}=z_{1} z_{2}$ can only be real if $\left|z_{1}\right|=\left|z_{2}\right|$ and if $\theta_{2}=-\theta_{1}+2 n \pi$, for arbitrary θ (you will need the Euler formula $e^{i \theta}=\cos \theta+i \sin \theta$, and the conditions $\operatorname{Im}\left[a_{1}\right]=0$ and $\operatorname{Im}\left[a_{2}\right]=0$)
- Note that $e^{i n \pi}=(-1)^{n}$.

