Foundations of Numerical Methods $(2^{nd} \text{ term } 2005)$

Exercise Sheet 4 - Systems of linear equations

1. Factorize the matrix below using the LU factorization algorithm with $l_{ii} = 1$ for all *i*.

	2	1	0	0
4	-1	3	3	0
A =	-2	-2	1	4
	-2	2	2	5

2. Find the permutation matrix for the matrices below so that PA can be factorized into the product LU, where L is lower triangular with 1s on its main diagonal and L is upper triangular.

(a)
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 4 & 0 \\ 0 & 1 & -1 \end{bmatrix}$$

(b) $A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & -2 & -1 \\ 1 & -1 & 1 \end{bmatrix}$

3. Solve the linear system

Γ	1	0	0	$\begin{bmatrix} 2 \end{bmatrix}$	3	-1	$\begin{bmatrix} x_1 \end{bmatrix}$		[-1]
	2	1	0	0	-2	1	x_2	=	3
L	-1	0	1 _	0	0	3 _	x_3		0

4. Solve the linear system below using the LU factorization algorithm

$2x_1$	$-x_2$	$+x_3$	= -1
$3x_1$	$+3x_{2}$	$+9x_{3}$	= 0
$3x_1$	$+3x_{2}$	$+5x_{3}$	=4