Foundations of Numerical Methods $(2^{nd} \text{ term } 2005)$

Exercise Sheet 2 - Root finding

- 1. Let $f(x) = (x+2)(x+1)x(x-1)^3(x-2)$. To which zero of f does the bisection method converge when applied to the following intervals?
 - $\begin{array}{l} (a)[-3,2.5] \\ (b)[-2.5,3] \\ (c)[-1.75,1.5] \\ (d)[-1.5,1.75] \end{array}$
- 2. The polynomial $f(x) = (x-1)^3(x-2)(x-3)$ has three zeros: x = 1 (multiplicity 3), x = 2 (multiplicity 1) and x = 3 (multiplicity 1). If a_0 and b_0 are two real numbers so that $a_0 < 1$ and $b_0 > 3$ then $f(a_0).f(b_0) < 0$. Thus, on the interval $[a_0, b_0]$ the bisection method will converge to one of the three zeros. If a_0 and b_0 are selected such that $c_n = (a_n + b_n)/2$ is **not** equal to 1,2,3 for any $n \ge 1$ then the bisection method will **never** converge to which zero?Why?
- 3. Consider the function $f(x) = xe^{-x}$
 - (a) Find the Newton-Raphson formula $p_k = g(p_{k-1})$
 - (b) If $p_0 = 0.2$, then find p_1, p_2 and p_3 . What is $\lim_{k\to\infty} p_k$?
 - (c) If $p_0 = 20$, then find p_1, p_2 and p_3 . What is $\lim_{k \to \infty} p_k$?
 - (d) Discuss the results found