Foundations of Numerical Methods (2 $2^{\text {nd }}$ term 2005)

Exercise Sheet 2 - Root finding

1. Let $f(x)=(x+2)(x+1) x(x-1)^{3}(x-2)$. To which zero of f does the bisection method converge when applied to the following intervals?
(a) $[-3,2.5]$
(b) $[-2.5,3]$
(c) $[-1.75,1.5]$
(d) $[-1.5,1.75]$
2. The polynomial $f(x)=(x-1)^{3}(x-2)(x-3)$ has three zeros: $x=1$ (multiplicity 3), $x=2$ (multiplicity 1) and $x=3$ (multiplicity 1). If a_{0} and b_{0} are two real numbers so that $a_{0}<1$ and $b_{0}>3$ then $f\left(a_{0}\right) \cdot f\left(b_{0}\right)<0$. Thus, on the interval $\left[a_{0}, b_{0}\right]$ the bisection method will converge to one of the three zeros. If a_{0} and b_{0} are selected such that $c_{n}=\left(a_{n}+b_{n}\right) / 2$ is not equal to $1,2,3$ for any $n \geq 1$ then the bisection method will never converge to which zero? Why?
3. Consider the function $f(x)=x e^{-x}$
(a) Find the Newton-Raphson formula $p_{k}=g\left(p_{k-1}\right)$
(b) If $p_{0}=0.2$, then find p_{1}, p_{2} and p_{3}. What is $\lim _{k \rightarrow \infty} p_{k}$?
(c) If $p_{0}=20$, then find p_{1}, p_{2} and p_{3}. What is $\lim _{k \rightarrow \infty} p_{k}$?
(d) Discuss the results found
