Foundations of Numerical Methods $(2^{nd} \text{ term } 2005)$

Exercise Sheet 1 - Control structures, error analysis and root finding

1. Construct a flow chart, an algorithm and a MatLab code to compute the function

$$f(x) = \begin{cases} x, x < -2 \\ -2, -2 \le x \le 0 \\ x - 2, 0 < x \le 2 \\ x^2 - 4, x > 2 \end{cases}$$

- Hint: you will have to use nested if statements
- 2. Construct a flow chart, an algorithm and a MatLab code to perform the following double sum

$$\sum_{n=1}^{N} \sum_{m=1}^{M} (n-1)^m n$$

- Hint: you will have to use two nested do loops
- 3. Construct a flow chart, an algorithm and a MatLab code to compute the sum

$$\sum_{n=1}^{N} \frac{(-1)^n}{n}, N \text{ large}$$

so that the relative error with respect to $\sum_{n=1}^{\infty}\frac{(-1)^n}{n}=-\ln(2)$ is smaller than 10^{-3}

- Hints:
 - You will have to use a do loop and if statements
 - Note that even numbers are divisible by two
- How does the sum converge to this limit?
- 4. Suppose two points (x_0, y_0) and (x_1, y_1) are on a straight line with $y_1 \neq y_0$. Two formulae are available to compute the x-intercept of the line:

$$x = \frac{x_0 y_1 - x_1 y_0}{y_1 - y_0}$$
 and $x = x_0 - \frac{(x_1 - x_0) y_0}{y_1 - y_0}$

(a) Show that both formulae are equivalent

- (b) Use the data $(x_0, y_0) = (1.31, 3.24)$ and $(x_1, y_1) = (1.93, 4.76)$ and three-digit rounding arithmetic to compute the intercept in both ways (the true three-digit value is x = -0.0116). Which formula is better and why?
- 5. The formulae below introduce loss of significance in a code, due to the fact that they involve a subtraction of nearly equal numbers. Find equivalent formulae which avoid this problem
 - (a) $\ln(x+1) \ln(x)$, x large
 - (b) $\sqrt{x^2 + 1} x$, x large
 - (c) $\cos^2 x \sin^2 x, x \simeq \pi/4$
- 6. Write a flow chart to find an approximation to $\sqrt{2}$ up to 3 significant digits using the bisection method (Hint: Consider $f(x) = x^2 2$ and take an interval for which the root is positive). Try to write a MatLab code for that.

Elements of MatLab syntax

• Do loops:

```
for index=start:increment:end
statements
end
Example:
   for i=2:6
      sum=sum+1
   end
(Please note: 1 is the default increment)
• If statements:
```

```
if (logical expression)
statements
else
statements
end
Nested ifs:
if (logical expression)
```

```
statements
elseif (logical expression)
else
statements
end
statements
end
Example:
```

If rem(a,2)==0 disp('a is even') else disp('a is odd') end

- Comparison operators:
 - == equal to ~= not equal to < less than <= less than or equal to > greater than >= greater than or equal to
- Printing something on the screen: disp('something')
- Defining a function (with if's inbetween):

- Check if a number is divisible by 2: If rem(a,2)==0
- Arithmetic operators:
 - + addition - subtraction * multiplication / division ^ power