Foundations of Numerical Methods ($2^{\text {nd }}$ term 2005)

Exercise Sheet 1 - Control structures, error analysis and root finding

1. Construct a flow chart, an algorithm and a MatLab code to compute the function

$$
f(x)=\left\{\begin{array}{c}
x, x<-2 \\
-2,-2 \leq x \leq 0 \\
x-2,0<x \leq 2 \\
x^{2}-4, x>2
\end{array}\right.
$$

- Hint: you will have to use nested if statements

2. Construct a flow chart, an algorithm and a MatLab code to perform the following double sum

$$
\sum_{n=1}^{N} \sum_{m=1}^{M}(n-1)^{m} n
$$

- Hint: you will have to use two nested do loops

3. Construct a flow chart, an algorithm and a MatLab code to compute the sum

$$
\sum_{n=1}^{N} \frac{(-1)^{n}}{n}, N \text { large }
$$

so that the relative error with respect to $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}=-\ln (2)$ is smaller than 10^{-3}

- Hints:
- You will have to use a do loop and if statements
- Note that even numbers are divisible by two
- How does the sum converge to this limit?

4. Suppose two points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ are on a straight line with $y_{1} \neq y_{0}$. Two formulae are available to compute the x -intercept of the line:

$$
x=\frac{x_{0} y_{1}-x_{1} y_{0}}{y_{1}-y_{0}} \text { and } x=x_{0}-\frac{\left(x_{1}-x_{0}\right) y_{0}}{y_{1}-y_{0}}
$$

(a) Show that both formulae are equivalent
(b) Use the data $\left(x_{0}, y_{0}\right)=(1.31,3.24)$ and $\left(x_{1}, y_{1}\right)=(1.93,4.76)$ and three-digit rounding arithmetic to compute the intercept in both ways (the true three-digit value is $x=-0.0116$). Which formula is better and why?
5. The formulae below introduce loss of significance in a code, due to the fact that they involve a subtraction of nearly equal numbers. Find equivalent formulae which avoid this problem
(a) $\ln (x+1)-\ln (x), x$ large
(b) $\sqrt{x^{2}+1}-x, x$ large
(c) $\cos ^{2} x-\sin ^{2} x, x \simeq \pi / 4$
6. Write a flow chart to find an approximation to $\sqrt{2}$ up to 3 significant digits using the bisection method (Hint: Consider $f(x)=x^{2}-2$ and take an interval for which the root is positive). Try to write a MatLab code for that.

Elements of MatLab syntax

- Do loops:
for index=start:increment:end
statements
end
Example:
for $\mathrm{i}=2: 6$
sum=sum +1
end
(Please note: 1 is the default increment)
- If statements:
if (logical expression)
statements
else
statements
end
Nested ifs:
if (logical expression)
statements
elseif (logical expression)
else
statements
end
statements
end
Example:

```
If rem(a,2)==0
    disp('a is even')
else
    disp('a is odd')
end
```

- Comparison operators:

$$
\begin{aligned}
& ==\text { equal to } \\
& \sim=\text { not equal to } \\
& <\text { less than } \\
& <=\text { less than or equal to } \\
& >\text { greater than } \\
& >=\text { greater than or equal to }
\end{aligned}
$$

- Printing something on the screen: disp('something')
- Defining a function (with if's inbetween):
function $\mathrm{y}=\mathrm{f}(\mathrm{x})$
if (logical expression)
$\mathrm{y}=$ this
else
$y=$ that
end
- Check if a number is divisible by 2 : If $\operatorname{rem}(\mathrm{a}, 2)==0$
- Arithmetic operators:
+ addition
- subtraction
* multiplication
/ division
power

