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1.1 Introduction

Atoms exposed to intense laser fields may be multiply ionized. Along the
simplest pathway, this happens step by step. However, already more than
twenty years ago, evidence was mounting for the contribution of a different
pathway whereby two electrons are freed in one coherent process [1]. Clearly,
this requires that the participating two electrons be correlated. Regardless of
the detailed mechanism, this process is referred to as nonsequential double
ionization (NSDI); for reviews, see [2].

The information provided by the highly differential cross sections that
have been obtained with the help of the reaction-microscope technique [3–5]
has largely terminated the debate about the physical mechanism responsi-
ble for NDSI: For the situation explored in most experiments, that is, high-
intensity low-frequency lasers typified by the titanium-sapphire laser (λ ≈ 800
nm) at 1014 to 1015 Wcm−2, consensus has developed that NSDI is caused by
the rescattering mechanism: an electron that is freed by tunneling ionization
is driven by the laser field into a recollision with its parent ion. This is the
same mechanism that is responsible, for example, for high-order harmonic
generation and high-order above-threshold ionization [6]. Exactly how the
up to the recollision inactive electron is freed is less clear and appears to
depend, moreover, on the specific atom: the rare gases neon on the one hand
and helium and argon on the other display distinctly different behavior [2].

The fact that the recollision pathway appears to be the first stage of
NSDI will make possible future investigations that will explore the temporal
evolution of the ionization dynamics. These rely on the fact that the time
interval within the laser cycle during which the first electron is driven into
the recollision is rather narrow. It is revealed by the momentum of the doubly
charged ion, which is measured by the reaction microscope [7]. This technique,
referred to as “streaking”, has already been employed to elucidate various
features of the single-ionization dynamics [8].

Various theoretical approaches have tried to advance the understanding
of NSDI. The solution of the time-dependent Schrödinger equation in one
spatial dimension has provided a great deal of insight [9], but in three spatial
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dimensions it is extremely demanding and, in any event, its applicability is
restricted to the simplest rare-gas atom, viz. helium [10]. Classical-trajectory
methods that pursue electrons injected into the continuum by tunneling ion-
ization have successfully reproduced many features of the data [11]. It is also
possible, for a given scenario of how NSDI evolves, to identify the leading
Feynman diagrams that contribute to the transition amplitude [12] (this work
is reviewed in [13]) and to compute them by various methods [14–17]. This
review is concerned with the latter approach, which is fully quantum mechan-
ical from the outset, but suggests a straightforward classical limit, which is
very easy to compute. The latter has been shown to reproduce the quantum
results with high accuracy provided the laser intensity is high enough [18].

In section 1.2 we introduce the basic rescattering–impact-ionization S-
matrix element whose detailed investigation is at the focus of this review.
In subsection 1.2.1 we sketch its evaluation with saddle-point methods. This
leads to a discussion of the classical kinematics underlying the S-matrix de-
scription. Various classical concepts related to the “simple-man model” are
also briefly reviewed in this section. We also draw attention to the fact that
the S-matrix element depends on the gauge used in coupling the charged par-
ticles to the laser field. In subsections 1.2.3 and 1.2.4 we briefly discuss other
scenarios for NSDI. The consequences of the choice of the crucial electron-
electron interaction by which the returning electron ejects the bound electron
is reviewed in section 1.3. Further possible refinements of the theory include
the exact introduction of electron-electron repulsion in the final state (section
1.4) and the detailed consideration of the initial bound states (section 1.5).
The classical limit of the S-matrix element considered is discussed and com-
pared with the fully quantum-mechanical results in section 1.6. We then make
use of the classical description in the discussion of NSDI by few-cycle pulses
(section 1.7) and nonsequential multiple ionization (section 1.8). Throughout
the paper, we make frequent contact with experimental results.

1.2 The S-matrix element of the

rescattering–impact-ionization scenario

In the rescattering scenario, NSDI is initiated by one electron tunneling to
freedom through the potential barrier created by the binding potential and
the scalar potential of the intense laser field. When the electron is driven back
to its parent ion by the oscillating laser field, it may in the recollision process
dislodge another electron (or several electrons). The Feynman diagram that
describes the simplest such mechanism is shown in panel (a) of figure 1.1:
the returning electron frees the bound electron through a single interaction
mediated by the potential V12. The corresponding transition amplitude is
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Fig. 1.1. Feynman diagrams corresponding to the transition amplitude (1.1), (a)
without and (b) with electron-electron repulsion between the two electrons in the
final state. The vertical wavy line and the dots in (b) indicate the Coulomb in-
teraction, which is exactly accounted for by the two-electron Volkov solution. The
dashed vertical line represents the electron-electron interaction V12 by which the
second electron is set free

Mp1p2
= −

∫ ∞

−∞

dt
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−∞
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(t)|V12U
(V)
1 (t, t′)V1U

(0)
2 (t, t′)|ψ0(t

′)〉,
(1.1)

where V1 and U
(V)
1 (t, t′) denote the atomic binding potential and the Volkov

time-evolution operator acting on the first electron, U
(0)
2 (t, t′) is the field-free

propagator acting on the second electron, and V12 is the electron-electron in-
teraction through which the second electron is freed by the first. For the

initial bound state |ψ0(t
′)〉, a product of one-electron states |ψ(n)

0 (t′)〉 =

ei|E0n|t′ |ψ(n)
0 〉 with ionization potentials |E0n| is adopted. In this section,

the final electron state with asymptotic momenta p1 and p2 is taken as the
symmetrized4 product state of one-electron Volkov states5,

〈r|ψ(V)
p (t)〉 = (2π)−3/2 exp{i[p + A(t)] · r} exp

(−i

2

∫ t

dτ [p + A(τ)]2
)

.

(1.2)
We use the length gauge and employ atomic units throughout. Below, we
will also consider a two-electron Volkov state, which exactly incorporates the
Coulomb repulsion between the two electrons [22]. The physical assumptions
underlying the amplitude (1.1) correspond to the so-called strong-field ap-
proximation (SFA), which was developed for strong-field ionization [23, 24]
and high-order harmonic generation [25]. Briefly, for atomic bound states
their interaction with the laser field is neglected, and for continuum states
their interaction with the atomic (or ionic) binding potential. A systematic
derivation of the amplitude (1.1) can be found in [12].

For the computation of the amplitude (1.1), the Volkov time-evolution
operator is usually expanded in terms of the Volkov states (1.2),

4For a discussion of symmetry vs. antisymmetry if spin is included, see [19,20].
5A Volkov state is obtained from the solution of the time-dependent Schrödinger

equation for a free particle in an external plane-wave laser field. Such states were
first derived by Volkov, in a relativistic context [21].
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U (V)(t, t′) =

∫

d3k|ψ(V)
k (t)〉〈ψ(V)

k (t′)|. (1.3)

As a result, the amplitude (1.1) has the form

Mp = −
∫ ∞

−∞

dt

∫ t

−∞

dt′
∫

d3kVpkVk0 exp[iSp(t, t′,k)], (1.4)

with the action

Sp(t, t′,k) = −1

2

[

2
∑

n=1

∫ ∞

t

dτ [pn + A(τ)]2 +

∫ t

t′
dτ [k + A(τ)]2

]

+|E01|t′ + |E02|t. (1.5)

Here A(t) denotes the vector potential of the laser field, p ≡ (p1,p2) the final
electron momenta, and k the drift momentum of the first electron in between
ionization and recollision. The binding potential V1 of the first electron and
the electron-electron interaction V12 enter (1.4) through their form factors

Vpk = 〈p2 + A(t),p1 + A(t)|V12|k + A(t), ψ
(2)
0 〉 (1.6)

and
Vk0 = 〈k + A(t′)|V1|ψ(1)

0 〉. (1.7)

Various choices have been made for the binding potential V1 (and the cor-
responding wave functions) and the interaction V12, which will be discussed
below. If the former is described by a regularized zero-range potential so
that V1(r) ∼ δ(r)(∂/∂r)r and the latter by a three-body contact potential
V (r1, r2) ∼ δ(r1 − r2)δ(r2), then the amplitude (1.1) can be reduced to
a one-dimensional quadrature involving Bessel functions [26]. Most of the
time, for the binding potential V1 a Coulomb potential and for the wave

functions ψ
(i)
0 (r) ground-state hydrogenic wave functions have been adopted,

while different forms of the interaction V12 have been investigated. This will
be discussed in section 1.3.

1.2.1 Saddle-point approximations and basic concepts

For arbitrary potentials, given the low frequencies and high intensities em-
ployed in current experiments, for the numerical evaluation of the amplitude
(1.1) in the form (1.4) the method of steepest descent [also known as the
saddle-point approximation (SPA)] is the method of choice. Thus, we must
determine the values of k, t′, and t for which the action Sp(t, t′,k) is sta-
tionary, so that its partial derivatives with respect to these variables vanish.
This condition gives the equations
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[k + A(t′)]
2

= −2|E01|, (1.8a)
2
∑

n=1

[pn + A(t)]2 = [k + A(t)]2 − 2|E02|, (1.8b)

∫ t

t′
dτ [k + A(τ)] = 0. (1.8c)

Equations (1.8a) and (1.8b) express energy conservation at the ionization
and rescattering times, respectively, while (1.8c) determines the intermediate
momentum of the first electron so that it returns to the ion. Obviously, the
solutions t′s (s = 1, 2, . . . ) of (1.8a) cannot be real. Hence, ts and ks are
complex, too.

In the standard SPA, the action (1.5) in the matrix element (1.4) is ex-
panded to second order about the solutions to the saddle-point equations
(1.8), whereupon the integrations can be carried out with the result

M (SPA) =
∑

s

As exp(iSs), (1.9a)

Ss = Sp(ts, t
′
s,ks), (1.9b)

As = (2πi)5/2 Vpks
Vks0

√

detS′′
p(t, t′,k)|s

. (1.9c)

Here the index s runs over the relevant saddle points, those that are visited by
an appropriate deformation of the real integration contour, which is the real
five-dimensional (t, t′,k) space, to complex values, and S ′′

p(t, t′,k)|s denotes
the five-dimensional matrix of the second derivatives of the action (1.5) with
respect to t, t′ and k, evaluated at the saddle points. The time dependence of
the form factors (1.6) and (1.7) is considered as slow, unless stated otherwise
(see section 1.5 and [27]).

The SPA requires that the various saddle points be well separated. This
is not always satisfied in the present case nor in intense-laser atom problems,
in general. In order to see this, we must have a closer look at the solutions of
the saddle-point equations (1.8).

The classically allowed regime

Equation (1.8b) describes energy conservation in the rescattering process.
From the point of view of the first electron, rescattering is inelastic, since
it donates energy to the second electron. Let us ignore, for the moment, the
ionization potential |E01| and consider linear polarization. Then, k = −A(t′),
and k and t′ are real. For given t′, (1.8a) and (1.8c) then yield the rescattering
time t and the momentum k. In the space of the final momenta p = (p1,p2),
(1.8b) is the equation of the surface of a six-dimensional sphere with its
center at (−A(t),−A(t)) and its squared radius given by [k+A(t)]2−2|E02|.
We only consider times t′ such that the latter is positive. Then all possible
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electron momenta p that are classically accessible in the process where the
first electron is ionized at the time t′ are located on the surface of this sphere.

The union of all these spheres upon variation of the ionization time t′

contains all final electron momenta that are in this sense classically accessi-
ble. Below, we will frequently refer to it as the “classically allowed region”.
Leaving this region along any path in the (p1,p2) space, the NSDI yield expe-
riences a sharp “cutoff”. Quantum mechanics allows a nonzero yield outside
the classically allowed region, which, however, decreases exponentially with
increasing distance from its boundary. Formally, this is accomplished by the
fact that the exact solutions of the saddle-point equations (1.8), which are
always complex, exhibit rapidly increasing imaginary parts [28].

Saddle-point solutions come in pairs

Since the saddle-point equations (1.8) are real, for any given solution its com-
plex conjugate is a solution as well. Let us consider a laser field represented
by an infinitely extended monochromatic plane wave. For given p1 and p2

and for the rescattering time Re t restricted to some period of the field, say
nT < Re t ≤ (n + 1)T , there are infinitely many solutions whose ionization
times Re t′ extend further and further into the past (Re t′ < Re t). A general
classification of these solutions and their significance for ATI and NSDI can be
found in [29]. The solutions generally come in pairs (plus their complex con-
jugates); for a general discussion of this issue, see [30]. Here, we will consider
the pair of solutions ts, t

′
s,ks (s = i, j) having the shortest “travel times”

Re (ts − t′s). Let us suppose that the solutions s = i, j (rather than their
complex conjugates) are the relevant solutions as defined above inside the
classical region so that they have to be included into the sum (1.9a). Usually
(but not always [29]), the contributions of the other pairs can be neglected.
Outside the classical region, with increasing distance from its boundary both
solutions of the pair develop quickly increasing imaginary parts, and one or
the other must be discarded from the sum lest it explode exponentially [30].
This transition occurs very rapidly. It is illustrated in figure 1.2, which shows
that the two saddle points approach each other very closely near the classical
cutoff. Actually, figure 1.2 is for the closely related but simpler case of ATI.
Corresponding illustrations for NSDI are discussed in [28]. The procedure of
discarding one solution at some point is to some extent arbitrary and may
lead to the artifact of a spike in the yield. This is due to the fact that the
SPA is not applicable when two solutions approach each other too closely.

A convenient solution to this problem is provided by a certain uniform
approximation [30], which is designed to deal with pairs of solutions and
automatically takes care of the “discarding”. The result requires the same
input as (1.9), namely the action and its second derivatives at the saddle
points, and is hardly more complicated. Within the classically allowed region,
it is
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Fig. 1.2. Complex saddle points t′s (left panel), ts (middle panel, and kxs (s = i, j)
(right panel) for the pair of solutions having the shortest travel times as discussed in
the text. The figure is for ATI, for a Keldysh parameter of γ = 0.975, and emission
parallel to the laser field. The panels present the paths in the complex plane that
are followed by the saddle points as a function of the final energy of the electron
at the detector, which is indicated by the numbers (in multiples of Up). The figure
shows how the saddle points of a pair approach each other very closely near the
classical cutoff at 10 Up, which is the classical cutoff of the ATI energy spectrum.
The contribution of the orbit that is drawn dashed has to be dropped after the
cutoff. From [30]

Mi+j =
√

2π∆S/3 exp(iS̄ + iπ/4)
{

Ā[J1/3(∆S) + J−1/3(∆S)]

+∆A[J2/3(∆S) − J−2/3(∆S)]
}

, (1.10)

∆S = (Si − Sj)/2, S̄ = (Si + Sj)/2,

∆A = (Ai − iAj)/2, Ā = (iAi −Aj)/2.

The noninteger Bessel functions have to be analytically continued when the
parameters move into the nonclassical region. For details we refer to [30].

Classical cutoffs

If in (1.8a) the first ionization potential E01 is neglected, the electron starts its
orbit in the continuum with an initial velocity v(t′) ≡ k+A(t′) = 0 and t, t′,
and k are all real inside the classically allowed region. The classical boundary
then is characterized by the fact that the two solutions of the afore-mentioned
pair merge. (There are no such real solutions outside the classically allowed
region). This can be exploited to obtain (approximate) closed formulas for the
cutoffs (corresponding to the well known cutoff |E0| + 3.17Up for high-order
harmonic generation); see [31].

Electron kinematics in the laser field: the “simple-man model”

An electron released at the time t with zero velocity in a laser field with vector
potential A(t), such that outside the laser pulse A(−∞) = A(∞) = 0, will
reach the detector (outside the pulse) with momentum
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p = −A(t). (1.11)

This simple relation follows from the fact that in a laser field that only de-
pends on time the electron velocity is given by v(t) ≡ p+A(t) with constant
p. If the temporal average of the vector potential vanishes, 〈A〉t = 0, then
p is the drift momentum of the electron, which is conserved when the laser
pulse leaves the electron behind. The relation (1.11) sets the benchmarks
for the electron and ion spectra observed in NSDI. For tunneling ioniza-
tion, it implies that the electron’s momentum at the detector is bound by
|p| ≤ maxt |A(t)| = 2

√

Up. For NSDI, higher momenta are classically possi-
ble, since the returning electron generally has some energy left after it dis-
lodged the bound electron and may share it with the latter. The situation
easiest to analyze is when the energy of the returning electron is just sufficient
to remove the bound electron. In this case, both electrons will be released
into the continuum with zero kinetic energy near a zero crossing of the elec-
tric field (since an electron returning around this time has maximal energy).
Both electrons then will reach the detector with momenta near 2

√

Up. If
the momentum of the laser photons is small enough that it can be ignored,
momentum conservation implies

Pmax = 4
√

Up (1.12)

for the momentum of the doubly ionized ion. For higher intensities, such
that the energy of the returning electron is amply sufficient to accomplish
the second ionization, the above values roughly predict the centers of the
electron and the ion momentum distributions, as will be seen below.

The choice of gauge

The strong-field approximation, on which the present formalism relies, is not
gauge invariant; see. e.g. [32]. This problem has been present not only for
NSDI, but for all strong-field phenomena, such as above-threshold ionization
and high-order harmonic generation, when they are treated via the SFA. In
the nonrelativistic regime where the long-wavelength approximation can be
used, the laser-matter interaction operator is r · E(t) in length gauge and
p̂ · A(t) + 1

2A2(t) in velocity gauge. Of the seminal papers, [23] employed
length gauge while [24] used velocity gauge. In NSDI S-matrix calculations,
references [14] rely on velocity gauge and [16, 17] on length gauge. Only for
contact potentials are identical results obtained in different gauges. For an
electron bound by a short-range potential (as is the case for a negative ion),
comparison of the SFA with the numerical solution of the time-dependent
Schrödinger equation has shown that in this case the length gauge yields
superior results [32, 33].

For the S-matrix calculations of NSDI, the question of which gauge to
use within the SFA is open. The difference between the two gauges enters via
the spatial part of the Volkov solution (1.2), which is exp{i[p + A(t)] · r)}
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Fig. 1.3. Linear-scale density plot of the distribution of the ion momentum P =
(P‖, P⊥) in nonsequential double ionization of neon at 8 × 1014 W/cm2 and h̄ω =
1.55 eV. From [26]

in length gauge versus exp{ip · r} in velocity gauge. Thus, in length gauge,
the form factors (1.6) and (1.7) depend on the instantaneous momenta at the
time of rescattering and ionization while in velocity gauge they depend on the
drift momenta. Specifically, in (1.6), the A(t)’s are absent in velocity gauge,
which invalidates the mechanism described below equation (1.21). This leads
to momentum distributions that, in comparison with length gauge, are more
concentrated near the diagonal p1‖ = p2‖ and the origin p1‖ = p2‖ = 0 [14].

1.2.2 Ion-momentum distributions

The reaction-microscope technique is capable of measuring a fully (sixfold)
differential cross section, by detecting the three-dimensional momenta of two
particles of opposite charge, viz. the ion and one electron. Such a fully dif-
ferential measurement was recently accomplished [7]. However, the very first
experiments were content with recording the NSDI yield as a function of two
momentum components of the ion, one parallel (P‖) and one transverse (P⊥)
to the linearly polarized laser field, while the second transverse component
(P⊥,2) was integrated over. In terms of the amplitude (1.1), this corresponds
to the momentum distribution

F (P‖, P⊥) =

∫

dP⊥,2

∫

d3p1d
3p2δ(P − p1 − p2)|Mp1p2

|2. (1.13)

Figure 1.3 shows such a distribution evaluated for the conditions of [4]. In the
calculation, all potentials were taken as contact potentials. As expected from
(1.12), the ion-momentum distribution peaks near Pmax = 5.3 a.u., P⊥ = 0.
Electrons can acquire momenta higher than allowed by (1.11) for two reasons:
(i) they can start with a nonzero velocity, and (ii) quantum mechanics allows
momenta in excess of (1.11). By overall momentum conservation, the ion
momentum then may also exceed the bound (1.12) and, indeed, figure 1.3
shows that it does.

Figure 1.4 exhibits distributions of the longitudinal component of the ion
momentum for argon, helium, and neon, calculated under the same conditions
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Fig. 1.4. Distribution of P‖ for P ⊥ = 0 for He, Ne, and Ar, h̄ω = 1.55 eV, and
various intensities characterized by the corresponding ponderomotive potential Up.
Because of symmetry, the distribution is only shown for P‖ > 0. Each curve has
been normalized to a maximum of unity; the number given in parentheses for each
curve specifies the respective normalization factor. The vertical arrows mark the
position of 4

p

Up; cf. equation (1.12). From [15]

as figure 1.3 for various laser intensities. It illustrates a general tendency of
the amplitude (1.1), namely, for decreasing intensity and increasing ionization
potential (that means, towards the classical boundary and beyond) the ion-
momentum distribution concentrates more and more near the value (1.12).
At the same time, the yield drops steeply. Both features, the narrowing and
the steeply decreasing yield, are present in the data, but to a lesser degree.
Indeed, the widths of the two humps stay almost the same when due to
decreasing intensity the process moves out of the classical region [34].

1.2.3 Rescattering-excitation scenario

The measured ion-momentum distributions of neon on the one hand and he-
lium and argon on the other [and also the electron momentum correlations
to be considered below, cf. (1.20)] are very different. For neon, in contrast to
helium and argon, the region about P‖ = 0 is largely depopulated. This be-
comes even more pronounced when the distribution of the electron momenta
pi‖ (i = 1, 2) parallel to the laser-field polarization is plotted [cf. equation
(1.20) below]. For neon, it concentrates in the first and third quadrant [4,35].
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Fig. 1.5. Log-scale distribution of the total momentum in double ionization of he-
lium for Up = 14 eV based on the assumption that the returning electron promotes
the bound electron into an excited state with energy E∗

02 = −0.5, −0.22, −0.125
a.u., for curves (1), (2), and (3), respectively. The calculation is in one dimension
only. The curves (4) display, for comparison, the distribution generated by the direct
rescattering scenario of equation (1.1) for contact interactions; (4b) was calculated
in three dimensions and (4a) in one. The spiky structures of curves (4a) and (1a)
are due to channel closings, which have a more pronounced effect in one than in
three dimensions. Curves (1b), (2), and (3) are smoothed so as to suppress these
effects, curve (1a) is not. The inset redraws curves (1b), (2), and (3) on a linear
scale for easier comparison with the data [3]. From [15]

This is not observed for helium and argon, which exhibit a sizable popula-
tion in the second and fourth quadrant [3]. Consensus has developed that
for the latter rare gases another mechanism significantly contributes [5]: the
recolliding electron promotes the bound electron to some excited state from
which it tunnels out at a later time, usually near a maximum of the laser field
so that its drift momentum will be low [cf. (1.11)]. Indeed, this mechanism
has been confirmed by a calculation of the cross section for impact ionization
and impact excitation in electron-ion collisions [36]. The latter was found
to be exceptionally low for neon. The basic features of recollision excitation
follow from an amplitude such as (1.1) with, however, integration over one
additional time: the first electron tunnels out at the time t′′, recollides, pro-
motes the bound electron into an excited state with energy E∗

02 > E02, and
leaves the interaction region at the time t′ > t′′, while the bound electron
only becomes free at the later time t > t′. Figure 1.5 exhibits the results of
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such a model. Indeed, for a sufficiently high-lying excited state, the region
around zero ion momentum is filled in.

1.2.4 Other scenarios

Before the advent of the reaction microscope established the strong domi-
nance of the recollision pathway, various other scenarios had been discussed.
While none of them seems to be relevant for the recent experiments with rare
gases and high-intensity Ti:Sa lasers, they might well turn out to contribute
in other regimes, such as provided by high-frequency free-electron lasers.
One mechanism that originally was expected to contribute is the so-called
shake-off where the ion rearranges itself after one electron has been suddenly
removed and ejects a second electron in the process; see, e.g., [2]. This is
closely related to the so-called two-step-one process where the first electron
on its way out shares energy with a second still bound electron enabling the
latter to become free as well. Finally, double tunneling is a fascinating sce-
nario [37], which is all but certain to play a role in systems such as H− where
a very large disparity exists between the detachment energy of 0.75 eV of the
first electron and the binding energy of 13.6 eV of the subsequent hydrogen
atom. Simple estimates using the quasistatic tunneling rate (1.26) show that
it is much more favorable for the two electrons to tunnel out in one joint ef-
fort than sequentially one at a time, and this is confirmed by more elaborate
calculations [38]. The big impediment for an experimental verification is the
fact that laser pulses with extremely high contrast are required in order that
a sufficient number of H− ions survive into the peak of the pulse.

1.3 The electron-electron interaction V12

More recent experiments have recorded the distribution of the longitudinal
momenta p1‖ and p2‖ of the two electrons, with the remaining transverse
components either entirely integrated over or restricted to certain intervals
[35,39]. These “correlation” distributions carry much more information about
the NSDI dynamics than the ion-momentum distributions discussed above.
For example, it is easy to envision identical ion-momentum distributions that
correspond to very different correlations. In particular, the correlations very
clearly display the consequences of the choice of the crucial electron-electron
interaction V12 in the transition amplitude (1.1). We will review the effects
of four different choices of this interaction, namely

V (r1, r2) ∼ |r1 − r2|−1, (1.14a)

V (r1, r2) ∼ δ(r1 − r2)δ(r2), (1.14b)

V (r1, r2) ∼ |r1 − r2|−1δ(r2), (1.14c)

V (r1, r2) ∼ δ(r1 − r2). (1.14d)
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Of these, the pure electron-electron Coulomb interaction (1.14a) appears to
be the obvious choice and, indeed has been widely used [12, 14, 16]. The
electron-electron contact interaction (1.14b) which only acts if both electrons
are at the position of the ion (in effect, a three-body contact interaction) has
also been frequently employed [15]. Both interactions have been compared in
various regards in [17,18,40]. More recently, the Coulomb interaction (1.14c),
which is only effective if the second (bound) electron is located at the position
of the ion, and the electron-electron contact interaction (1.14d), which is
not restricted to the position of the ion, have also been studied [27]. The
interactions (1.14b) and (1.14c) are effective three-body interactions, which
attempt to take into account that the effective electron-electron interaction
will depend on the positions of the electrons relative to the ion. An alternative
interpretation, which formally leads to the same results, is to consider a two-

body interaction V12 in (1.17) and a wave function 〈r|ψ(2)
0 〉 in (1.18) that is

extremely strongly localized at the position of the ion; for details, see [27].
We may write

V (r1, r2) = Vrel(r1 − r2)U(r2), (1.15)

where U(r) is constant unless we allow for an effective interaction. The form
factor (1.6) then is the product of two Fourier transforms:

Vpk = [v(p1 − k) + v(p2 − k)]u(p̃), (1.16)

where

v(p1 − k) =

∫

d3rei(p1−k)·rVrel(r), (1.17)

u(p̃) =

∫

d3reip̃·rU(r)ψ
(2)
0 (r), (1.18)

and p̃ = p1 + p2 − k + A(t) as above. Unless U(r) is a contact interaction
[as it is for (1.14b) and (1.14c)], the form factor will depend via (1.18) on
the initial state of the second electron; see section 1.5. The Fourier transform
(1.17) of the relative interaction between the two electrons depends on the
momentum transfer k + A(t) − [p1 + A(t)] = k − p1 from the returning
electron to the bound electron. If this interaction has Coulomb form, then

v(p1 − k) ∼ (p1 − k)−2, (1.19)

is the well-known Coulomb form factor. If, on the other hand, it has contact
form, then v(p1 − k) = const.

We shall calculate and discuss integrals of the type

D(p1‖, p2‖) =

∫

d2p1⊥d2p2⊥|Mi+j |2, (1.20)

where the integration extends over a certain range of the final transverse
momenta, i.e. of their magnitudes and/or their relative orientation, and Mi+j

is computed by the uniform approximation (1.10).
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Fig. 1.6. Left-hand panels: Momentum correlation function (1.20) of the electron
momenta parallel to the laser field for nonsequential double ionization computed
with the uniform approximation using the contact interaction (1.14b). The field
frequency is ω = 0.0551 a.u. and the ponderomotive energy UP = 1.2 a.u., which
corresponds to an intensity of 5.5× 1014W/cm2. The first two ionization potentials
are |E01| = 0.79 a.u. and |E02| = 1.51 a.u. corresponding to neon. Panel (a) shows
the yield for the case where the transverse momenta pn⊥ (n = 1, 2) are completely
integrated over, whereas in the remaining panels they are restricted to certain
intervals. In panels (b) and (c), p2⊥ is integrated, while 0 < p1⊥/[Up]1/2 < 0.1 and
0.4 < p1⊥/[Up]1/2 < 0.5, respectively. In panels (d), (e), and (f), both transverse
momenta are confined to the intervals 0 < pn⊥/[Up]1/2 < 0.5, 0.5 < pn⊥/[Up]1/2 <
1, and 1 < pn⊥/[Up]1/2 < 1.5, respectively. Right-hand panels: same as left panels,
but for the Coulomb interaction (1.14a). From [17]

Figure 1.6 exhibits some representative results. The two left-hand panels
are for the three-body contact interaction (1.14b), the two right-hand panels
for the Coulomb interaction (1.14a). A detailed discussion of the results can
be found in [17, 18]. In panels (a) the transverse momenta are entirely inte-
grated over, in the remaining panels only partly as specified in the caption.
For the Coulomb interaction, we observe its characteristic footprint: one mo-
mentum is large while the other one is small. This is a consequence of the
form factor of the Coulomb interaction, which is

Vpk ∼ 1

(p1 − k)2[2|E02| + (p1 + p2 − k + A(t))2]2
+ (p1 ↔ p2). (1.21)

Physically, recall that the drift momentum k of the first electron is small
[cf. equation (1.11)]. In most cases, since the Coulomb interaction is of long
range, it will interact with the bound electron at large distance, so that it
will transfer as little momentum as possible to the bound electron. Therefore,
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Fig. 1.7. The two left-hand panels: Comparison of the double-ionization correla-
tion densities (1.20) without (left-hand column: panels (a), (c), and (e)) and with
(right-hand column: panels (b), (d), and (f)) electron-electron repulsion in the final
state. The interaction V12 is specified by the three-body contact interaction (1.14b).
Parameters are for argon (E01 = 0.58 a.u., E02 = 1.015 a.u.), the laser frequency is
ω = 0.057 a.u. (Ti:Sa). Panels (a) and (b): I = 2.5 × 1014 Wcm−2 (Up = 0.54 a.u),
|p

1⊥| ≥ 0.5 a.u.; Ref. [35]; (c) and (d): as before, but with |p
1⊥| ≤ 0.5 a.u.; (e) and

(f): I = 4.7 × 1014 Wcm−2 (Up = 1.0 a.u), |p
1⊥| or |p

2⊥| ≤ 0.1 a.u., Ref. [39]. The
two right-hand panels: same as the left-hand panels, but with V12 specified by the
Coulomb interaction (1.14a). From [18]

its drift momentum, which agrees with the momentum outside the field, will
remain low. The second electron, on the other hand, is dislodged into the con-
tinuum near a zero of the electric field with low initial momentum. Hence, it
will undergo maximal acceleration to a momentum near 2

√

Up. This physical
argument is reflected in the form factor (1.21). In passing, we mention that
the left-hand panel (d) rather well delineates the classically allowed regime
discussed above.

1.4 Final-state interaction

The Coulomb attraction of the electrons in the intermediate state and in
the final Volkov states by the ion, as well as the Coulomb repulsion between
the two final electrons are missing from the theory developed thus far. A
rigorous treatment of the first issue has so far resisted any efforts. It is much
easier to deal with the Coulomb repulsion of the two electrons in the final
state, depicted in the right-hand panel of figure 1.1, since the product of
two Volkov states (1.2) can be extended exactly to incorporate the Coulomb
repulsion [22]. This is possible because in the long-wavelength approximation
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the laser couples to the sum r1 +r2 of the two electron coordinates while the
Coulomb repulsion affects their difference r = r1−r2 just like in the absence
of the laser field. The state reads [22]

|ψ(V)
p1p2

(t)〉 = |ψ(V)
p1

(t)〉 ⊗ |ψ(V)
p2

(t)〉
×1F1(−iζ, 1; i(|p||r| − p · r))e−πζ/2Γ (1 + iζ), (1.22)

where p = (p1 −p2)/2, ζ = |p1−p2|−1 and 1F1(a; b; z) denotes the confluent
hypergeometric function.

Typical results obtained with this state are reproduced in figure 1.7, where
the parameters have been chosen so as to allow comparison with published ex-
perimental data. As expected, the final-state repulsion causes a suppression of
the yield along the diagonal p1‖ = p2‖. Remarkably, the very simplest model,
the three-body contact interaction (1.14b) without final-state Coulomb re-
pulsion (leftmost column), yields the best description of the data [18].

The correlation of the transverse momenta including or not including the
final-state repulsion is investigated theoretically and compared with data for
argon in [41]. Including the final-state repulsion yields a good description of
the electron-electron correlation, but the electron-ion correlation is outside
of the model.

1.5 Effect of the initial electron bound states

Another ingredient that can be taken into account in our S-matrix theory are
the initial states in which both electrons are bound. If the electron-electron
interaction V12 is a pure two-body interaction as in (1.14a) or in (1.14d), then

the initial bound state |ψ(2)
0 〉 of the second electron will enter the form factor

Vpk via its Fourier transform, cf. equation (1.18). If, on the other hand, we
adopt an effective three-body interaction as in (1.14b) or (1.14d), then Vpk

is independent of the form of the bound state |ψ(2)
0 〉. The bound state |ψ(1)

0 〉
enters via the form factor (1.7), but its effect is generally small. Since most
experiments employ neon and argon as targets, whose outer-shell electrons
are bound in 2p or 3p states, respectively, one would expect that p states
yield a more realistic description of the two active electrons for these atoms.

Initial bound states |ψ(2)
0 〉 given by hydrogenic states with quantum num-

bers n and l affect the form factor Vpk via the function [cf. (1.18)].

u(nl)(p̃) ∼ ρnl(p,k)

[2|E02| + p̃2]
n+1 + (p1 ↔ p2) (1.23)

where ρ1s = 1, ρ2p = p̃, and ρ3p = p̃(p̃2−2|E02|), with p̃ = p1+p2−k+A(t).
In figure 1.8 the effect of the initial-state wave functions is explored, for the

case where the crucial electron-electron interaction is the two-body Coulomb
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Fig. 1.8. Electron momentum-correlation distributions (1.20) and their dependence
on the initial bound state. The left-hand panels (a)-(c) are for the interaction (1.14d)
and the right-hand panels (a)-(c) for the interaction (1.14a), for initial 1s, 2p, and
3p states for both electrons. Panels (d) are for the three-body effective interactions
(1.14b) (left) and (1.14c) (right) with the first electron in a 1s state. In all situations
(even for the 3p - state case), the atomic species was taken to be neon (|E01| = 0.79
a.u. and |E02| = 1.51 a.u.), in order to facilitate a clear assessment of the effects
caused by the different initial states. From [27]

interaction (1.14a) and for the case where this interaction is the two-body
contact interaction (1.14d), which is not restricted to the position of the
ion. In both cases, the form factor includes the function (1.23), which favors
momenta such that p1‖ + p2‖ is large. This is clearly visible for the contact
interaction (1.14d) and less so for the Coulomb interaction (1.14a) whose form
factor also includes the factor (1.19), which favors p1‖ = 0 (or p2‖ = 0). We
conclude that (i) the effect of the specific bound state of the second electron
is marginal and (ii) that a pure two-body interaction, be it of Coulomb type
as in (1.14a) or contact type as in (1.14d), yields a rather poor description
of the data. A three-body effective interaction, which only acts if the second
electron is positioned at the ion, provides superior results, notably the three-
body contact interaction (1.14b), cf. the left-hand panel (d). This points
to the significance of the interaction of the electrons with the ion, which
so far has not been incorporated into the S-matrix theory beyond the very
approximate description via effective three-body interactions such as (1.14b)
or (1.14c).

The alternative interpretation [27] mentioned above in section 1.3 assumes
that the wave function of the second bound electron is extremely localized
near the position of the ion. The labels “localized” in figures 1.8 and 1.10 are
motivated by this interpretation.

For exponentially decaying bound states, the form factors Vk0 are of the
form
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Fig. 1.9. The left-hand panels are identical with the left-hand panels of figure 1.6
where the pertinent parameters are given. They are to be compared with the right-
hand panels, which were calculated under the same conditions but from the classical
model (1.27) for the contact interaction. Equation (1.29) underlies panel (a)

Vk0 ∼ f(k +A(t′))
(

[k + A(t′)]
2

+ 2|E01|
)n , (1.24)

where n is an integer number. According to the saddle-point equation (1.8a),
the denominator vanishes, so that such form factors are singular. In order to
overcome the problem with the bound-state singularity, we take the modified
action

S̃(t, t′,pj ,k) = S(t, t′,pj ,k) − i ln [Vk0] (1.25)

in the transition amplitude (1.4). This leads to modifications in the saddle-
point equations (1.8a), and (1.8c) which, physically, determine the tunneling
and the return condition. Such modifications depend on the initial bound
state of the first electron. We found, however, that they only lead to a minor
suppression in the yield, in the region of small parallel momenta (for details
cf. [27]).

1.6 The classical limit

The model investigated so far is a coherent three-step model, which comprises
field-induced tunneling of the first electron out of its binding potential, prop-
agation of this electron in the presence of the laser field, and recollision with
the ion leading to second ionization. Of these, only the first step is genuinely
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quantum mechanical, while the other two proceed largely classically. The
tunneling process is governed by a tunneling rate that is well approximated
by the quasi-static limit [42]

R(t′) ∼ |E(t′)|−1 exp
[

−2(2|E01|)3/2/(3|E(t′)|)
]

. (1.26)

Ignoring quantum-mechanical features such as spreading and interference,
the essential classical physics then are described by the electron-momentum
distribution function [17]

F (p1,p2) =

∫

dt′R(t′)δ

(

1

2

2
∑

i=1

[pi + A(t)]2 + |E02| −Eret(t)

)

|Vpk|2

=

∫

dt′R(t′)δ

(

1

2
(p2

1⊥ + p2
2⊥) −∆E

)

|Vpk|2 (1.27)

with

∆E ≡ ∆E(p1‖, p2‖, t) ≡ Eret(t) − |E02| −
1

2

2
∑

i=1

[pi‖ +A(t)]2. (1.28)

This is an integral over the ionization time t′. The rescattering time t, which
is a function of t′, must be calculated via classical mechanics assuming that
the first electron is set free with zero velocity at the time t. The distribution
function (1.27) corresponds to a rate (not an amplitude), which incorporates
the three steps incoherently (multiplicatively): Tunneling is specified by the
rate (1.26), and propagation from the ionization time t′ to the rescattering
time t determines the kinetic energy Eret(t). Finally, inelastic rescattering is
subject to energy conservation (expressed by the δ function) and the momenta
are distributed according to the square of the form factor (1.6).

Usually, not all six momentum components p1 and p2 are observed. Those
that are not can be integrated over. This is very easily carried out analyt-
ically [17] provided the form factor is constant as it is for the three-body
contact interaction (1.14b). For example, if only the longitudinal components
are observed, the pertinent distribution with the transverse components com-
pletely integrated over is

∫

d2p1⊥d2p2⊥F (p1,p2) = 4π2

∫

dt′R(t′)(∆E)+ (1.29)

where x+ = xθ(x) with θ(x) the unit step function, and

∆E ≡ ∆E(p1‖, p2‖, t) ≡ Eret(t) − |E02| −
1

2

2
∑

i=1

[pi‖ +A(t)]2. (1.30)

The outcome of (1.29) along with its quantum-mechanical counterpart are
displayed in panels (a) of figure 1.9 for the three-body contact interaction
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Fig. 1.10. Electron momentum distributions for neon (|E01| = 0.79 a.u. and
|E02| = 1.51 a.u.) subject to a linearly polarized monochromatic field with fre-
quency ω = 0.057 a.u. and intensity I = 3.0 × 1014W/cm2, as functions of the
electron momentum components parallel to the laser-field polarization. The left
and the right panels correspond to the classical and to the quantum-mechanical
model, respectively. The upper and lower panels have been computed for a contact
and Coulomb-type interaction V12, respectively. In panels (a) and (d), and (b) and
(e), the second electron is taken to be initially in a 1s, and in a 2p state, respec-
tively, whereas in panels (c) and (f) the spatial extension of the bound-state wave
function has been neglected. The transverse momenta have been integrated over

(1.14b). Both distributions are very similar, apart from minor differences near
the boundary of the classically allowed region. This is also true for other forms
of the electron-electron interaction V12 and initial bound states. In the other
panels (b) – (f), the transverse momenta are restricted to certain intervals.
Formulas analogous to (1.29) for these situations can be found in [17].

As the intensity decreases, the classical version (1.27) becomes an increas-
ingly poor approximation. Ultimately, at and below the “threshold intensity”,
when the kinetic energy of the returning electron no longer suffices to free
the second electron (i.e., the argument of the δ function never vanishes), the
classical distribution becomes identically zero. Figure 1.10 shows an example,
for an intensity of roughly 30% above the threshold. Already in this case, the
quantum-mechanical distributions are far broader than their classical counter
parts. This is due to the fact that the classical model underestimates the
yield already near the boundary (and, of course, outside) of the classically
allowed regime, which was defined in section 1.2.1. Experiments in this in-
tensity region [34] do not exhibit any significant qualitative change in the
ion-momentum distributions when the intensity approaches and passes the
threshold intensity. In contrast, the quantum-mechanical ion-momentum dis-
tributions decrease quickly in magnitude and become narrowly concentrated
about the value (1.12); see figure 1.4.

The S-matrix element (1.1) does not take into account the fact that owing
to the presence of the field E(t) the second electron can escape over the
saddle formed by the Coulomb field and the scalar potential zE(t) of the
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Fig. 1.11. One-electron energy spectra derived in coincidence with double ioniza-
tion derived from (1.31) for various noble gases. Solid line: He at laser intensity
I = 8 × 1014W/cm2, dashed line: Ne at I = 6 × 1014W/cm2, dotted line: Ar at
I = 2.5× 1014W/cm2. The parameters correspond to the experimental data of [51]

laser field [20]. In effect, this lowers the binding energy of the second electron
to the value E02(t) = |E02| − 2

√

2|E(t)|. This value can be introduced by
hand into the classical distribution (1.27), which thereupon becomes again
applicable down to a much lower intensity. This way, fair agreement with the
data has been reached [34]. Further discussion of this issue is given in [43].

So long as, however, the driving-field intensity is far above the threshold,
the S-matrix amplitude (1.1) and its classical limit (1.27) yield practically
identical results. This shows that, in this regime, NSDI is (apart from its
initiation via tunneling) an essentially classical phenomenon. This provides
a physical justification for extending the classical model to more complex
scenarios, such as, for instance, more than two electrons (section 1.8).

The classical model can also be employed to derive one-electron spectra
in coincidence with NSDI. For constant form factors (three-body contact
interaction), the corresponding expression is [43]

∫

d3p2F (p1,p2) = 4π
√

2

∫

dt′R(t′) (∆E1)
1/2
+ (1.31)

with ∆E1 ≡ Eret(t)−|E02|− 1
2 [p1 +A(t)]2. An example is presented in figure

1.11.

1.7 NSDI by few-cycle laser pulses

In the results discussed so far, the external laser field has been approximated
by a monochromatic plane wave. This is a reasonable approximation for pulses
with a length down to, say, eight cycles, which covers most NSDI experiments.
Recently, however, laser pulses of only a few cycles’ length have become the
tools of choice in laser-atom physics [44].
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A few-cycle (n-cycle) pulse can be described by the vector potential

A(t) = A0F (t) sin(ωt+ φ)ex, (1.32)

where the positive definite envelope F (t) (0 ≤ F (t) ≤ 1) is zero outside the
interval 0 ≤ t ≤ nT (T = 2π/ω) and assumes its maximum at t = nT/2.
The specific pulse shape is determined by the carrier-envelope (CE) phase φ,
which specifies the offset between the envelope of the pulse and its “carrier
wave” with frequency ω. Below, for the explicit results, we will use F (t) =
exp[−4(ωt− πn)2/(πn)2].

When a few-cycle pulse interacts with matter, the resulting effects strongly
depend on the value of the CE phase. For example, above-threshold ionization
spectra lose the backward-forward symmetry (p → −p), which they obey for
monochromatic fields. This is particularly pronounced in their high-energy
part, which is caused by rescattering [45]. Indeed, this effect is being utilized
for the measurement of the CE phase. NSDI, to the extent that is due to
rescattering, can be expected also to react very sensitively to any change in
the CE phase. Indeed, it has been shown that the momentum correlation
distribution of NSDI can exhibit dramatic changes upon a small variation of
the CE phase [46, 47].

Figure 1.12 exhibits NSDI electron-momentum-correlation distributions
calculated for a 4-cycle pulse having the shape (1.32). Unlike the corre-
sponding distributions for a long pulse shown in figures 1.6 – 1.10, which are
without exception symmetric with respect to the antidiagonal [(p1‖, p2‖) →
−(p1‖, p2‖)], the distributions of figure 1.12 are, in general, unequally concen-
trated in the regions of either positive or negative momenta. Upon a critical
value of the CE phase, the distributions shift from one region to the other
and, for increasing intensity, the CE phase for which the distribution starts to
spill over from the first to the third quadrant, moves to smaller values. This
behavior is obtained both from the quantum-mechanical S-matrix amplitude
(1.1) (left-hand panels), and from its classical limit (1.27) (right-hand pan-
els). (Due to its very good agreement with the experiments in the long-pulse
case, we employed the three-body-contact interaction (1.14b) in both calcula-
tions.) Minor differences are only observed at the boundary of the classically
allowed region, or at the CE phases for which the momenta start to change
sign. As observed before, the agreement between the quantum-mechanical
and the classical calculations improves for increasing intensity.

The dependence of the yields on the absolute phase can be explained by a
change in the dominant set of orbits of the first-ionized electron rescattering
inelastically off its parent ion. For an orbit to make an important contribu-
tion, two conditions must be satisfied: first, the probability that the electron
tunnel out at a time t′ must not be too small6 and, second, the subsequent

6In the classical and quantum-mechanical frameworks, this probability is related
to the quasi-static rate R(t′) or to the imaginary part Im t′, respectively. For details
cf. [47].



1 S-matrix theory of nonsequential double ionization 23

Fig. 1.12. Electron momentum distributions computed for neon (|E01| = 0.79
a.u. and |E02| = 1.51 a.u.) subject to a four-cycle pulse (n = 4) of frequency
ω = 0.057 a.u, for various intensities and CE phases. The four left-hand panels and
the four right panels correspond to the quantum-mechanical and to the classical
computation, respectively. The upper, middle, and lower rows are for I = 4 ×
1014W/cm2(Up = 0.879 a.u), I = 5.5 × 1014W/cm2(Up = 1.2 a.u), and I = 8 ×
1014W/cm2(Up = 1.758 a.u), respectively. The CE phases are given as follows:
Panels (a), (e) and (i): φ = 0.8π; panels (b), (f) and (j): φ = 0.9π; panels (c), (g)
and (k): φ = 1.0π; and panels (d), (h) and (l): φ = 1.1π. From [47]

acceleration must be strong enough that the electron return to the ion (at the
time t) with sufficient kinetic energy Eret(t). These two conditions reduce the
significance of start times within the trailing part of the pulse (t′ ≥ nT/2).

Both in the quantum-mechanical and in the classical calculations, only
the first return of the electron to the ion has been considered. Due to wave
function spreading, the contributions of the longer orbits are suppressed.
The most remarkable result of these investigations is the surprisingly high
sensitivity of the (p1‖, p2‖)-momentum distribution to variations of the CE
phase. In principle, this lends itself to a very precise determination and control
of this parameter.

The features discussed above have been observed in recent NSDI exper-
iments, for argon irradiated by few-cycle pulses. The experimental findings
exhibit very good agreement with the theory. In particular, the shift of the
(p1‖, p2‖) distribution from the first to the third quadrant takes place around
the predicted critical phases [48].

1.8 Nonsequential multiple ionization

If the kinetic energy Eret(t) of the returning electron is sufficiently high, it
may as well free more than one bound electron in a single nonsequential
coherent process. The signature of such a recollision–impact nonsequential
multiple ionization (NSMI) process will be a large momentum of the multi-
ply charged ion, around the value (1.12) with the factor of 4 replaced by 2N
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for N -fold NSMI. The underlying argument is in complete analogy with the
one given above in connection with (1.12). Indeed, NS3I of neon was observed
several years ago [4], and extensive measurements of NS3I and NS4I of neon
and argon were published recently [49]. The data for neon do display the char-
acteristic hump in the distribution of the ion-momentum component parallel
to the laser field at a value compatible with the afore-mentioned estimate.

An ab-initio description of NSMI appears to be all but impossible. In the
S-matrix context, the single Feynman diagram of figure 1.1(a) is replaced by
a large number of more complicated diagrams: to establish contact between
N electrons requires a minimum of N − 1 two-particle interactions, and this
entails N −2 internal electron propagators (for NSDI there was none). More-
over, based on the experience gained from NSDI, it appears likely that some
interaction with the ion has to be included for a realistic description, which
increases the number of diagrams as well as their complexity. Hence, while
an extension of the quantum-mechanical amplitude (1.1) to triple and higher
nonsequential ionization, maintaining two-body electron-electron interactions
to be responsible for the energy exchange, appears not to be practically feasi-
ble, an extension of the classical distribution function (1.27) is near at hand.
We consider a statistical description where the first-ionized electron returning
to its parent ion at time t shares its energy with N −1 up to this time bound
and inactive electrons merely according to the available phase space, without
any dynamical bias. We do not attempt to model how this is accomplished,
presumably through many repeated electron-electron and electron-ion inter-
actions. We do assume, however, that this energy-sharing process requires
some time so that the electrons are freed at the time t+∆t rather than the
return time t. Comparable statistical models have been used in many areas of
physics whenever the detailed dynamics were unknown or too complicated;
see, e.g. [50].

Then, the distribution of the final electron momenta pn (n = 1, ..., N) is
given by [52]

F (p1, . . . ,pN ) =

∫

dt′R(t′)δ

(

E
(N)
0 −Eret(t) +

1

2

N
∑

n=1

[pn + A(t+∆t)]2

)

,

(1.33)

where E
(N)
0 =

∑N
n=2 |E0n| is the total energy necessary to remove the N − 1

bound electrons. Compared with (1.27), the time delay∆t is a new feature. It
is the sum of a “thermalization time” – the time it takes for the N electrons
to reach an energy distribution governed only by phase space, without any
memory of the distribution at the time t when the returning electron had
all the energy – and a possible additional “dwell time” before all electrons
start leaving the vicinity of the ion. The corresponding distribution for the
parallel ion momentum P‖ can be obtained from (1.33) in analogy with (1.13),
cf. also [52]. It is
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Fion(P‖) ≡
∫

d2p⊥Fion(p) ∼
∫

dt′R(t′)
(

∆Eion‖

)
3N

2
− 3

2

+
, (1.34)

where ∆Eion‖ ≡ Eret(t) −E
(N)
0 − 1

2N [P‖ −NA(t+∆t)]2.

Fig. 1.13. Left Panels: Distribution of the longitudinal ion momentum for triple
(upper panel) and quadruple (lower panel) nonsequential ionization of neon at
2 PWcm−2 calculated from Eq. (1.34) for various delays ∆t as indicated in the lower
panel. Note that in the upper panel the curves for ∆t = 0 and ∆t = 0.1T almost
completely overlap. Right panels: Distribution of the longitudinal momentum of
nonsequential triple ionization of neon at 1.5 PWcm−2 (upper panel), 2.0 PWcm−2

(middle panel), and of nonsequential quadruple ionization of Ne at 2.0 PWcm−2

(lower panel). The rugged (black) curves represent the data of Fig. 2 of Ref. [49].
The outermost smooth (red) curve and the innermost smooth (green) curve are
calculated from (1.34) for ∆t = 0 and ∆t = 0.17T . From [52]

In figure 1.13, we display such distributions for Ne3+ and Ne4+ and
compare with the experimental data [49]. The time delay ∆t between the
recollision of the first electron and the time when all N electrons leave the
ion influences both the width and the peaks of the momentum distributions.
This is expected since, by introducing a time delay, one is shifting the cen-
ter of the hypersphere in the (p1, ...,pN ) space, which delimits the region
for which nonsequential multiple ionization is energetically allowed. Specifi-
cally, for longer delays, the distributions broaden considerably, and the peak
momenta are displaced towards lower values. Optimal results regarding the
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widths and centers of the momentum distributions are obtained if the time
delay is ∆t ' 0.17T , where T is the driving-field cycle. For a Ti:Sa laser with
T ≈ 2.7 fs, this yields an upper bound for the thermalization time of roughly
460 as.

This simple statistical model is compatible, for the case of neon, with
the data available thus far. Moreover, it allows one to infer a value of the
thermalization time. This value comes out to be in the attosecond regime.
In principle, such bounds can be made even tighter by reducing the widths
of the electron-momentum distributions. This can be done by limiting the
temporal range of return times for the first electron using, for instance, an
additional perpendicularly polarized driving wave at twice the frequency.

1.9 Conclusions

The fully differential cross sections currently recorded with the help of the
reaction microscope pose an enormous challenge to theory. Calculations from
first principles are only possible for helium, if at all. In this paper, we have sur-
veyed S-matrix methods that implement the rescattering–impact-ionization
scenario in the two-electron context, strictly speaking for helium only. Even in
this simplest case, the electron interaction with the ion is neglected. We have
then discussed attempts, making a virtue out of necessity, at re-interpreting
the two-particle electron-electron interaction as an effective interaction that
includes the presence of the ion. The fact that, at least in the case of neon,
a three-body contact interaction yields a fair description of the existing data
(and also agrees well with classical-trajectory simulations [11]) remains a
puzzle that calls for an explanation.

Nonsequential double and multiple ionization are to a large part classi-
cal phenomena. Indeed, the S-matrix approach suggests a pertinent classi-
cal limit. We have summarized evidence that the latter reproduces the fully
quantum-mechanical results very well in parameter regions where this can
be expected. Finally, we have extended such classical avenues to a statitical
description of nonsequential triple and quadruple ionization. For reasons not
currently understood, again this yields a fair description of the data available
for neon. While a more microscopic description of these extremely involved
phenomena lies in the future, we believe that the simple models summarized
in this paper will remain valuable as benchmark results.
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