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Time profile of harmonic generation
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Information about the time-behavior of high-harmonic generation from a single atom in a strong laser field
is obtained through a time-frequency analysis. The solution from the full numerical solution of the time-
dependent Schdinger equation is compared with a widely used two-step semiclassical model of harmonic
generation. As a test case, we consider a one-dimensional model “atom” with a short-range potential. The two
results are in qualitative agreement only if in the two-step model the initial and@ipalle) interaction matrix
elements are suitably chosd®1050-294{@7)05605-9

PACS numbd(s): 32.80.Rm, 42.65.Ky

The current paradigm of high-harmonic generation inw, =0.05, whose amplitude is turned on linearly from O to
atomic systems involves the physical picture of an electrorf,=0.08 over two cycle§5]. The numerical solution is per-
wave packet being drawn out and away from the atom by théormed in the velocity gauge using standard finite-difference
laser field and then driven back hard towards the vicinity ofspace-grid method].
the nucleus, where a strong nonlinear interaction can take The two-step model considers only a single bound state of
place, generating harmonic radiation of the driving funda-the atom, which is correct for our test case, and it neglects
mental laser frequency. This is the key idea in the two-stefhe influence of the atomic potential on the trajectory of the
semiclassical mod€]1] in which the emission and return electron driven by the laser field, which again is true as soon
interaction steps are modeled by effective dipole couplingsas the electron is outside the range of the potential. We have
and the semiclassical phase of the intermediate evolution iperformed a semiclassical calculation similar{4g for our
the field is taken into account. The harmonic response of thene-dimensional (1D) case. We computed the time-
atom is always calculated starting from the time-dependependent dipole from the formula]
dent atomic dipolex(t), the absolute magnitude squared

of the Fourier transform of the dipole acceleration, a[l' de 12
im T

o

| PTTX(1)]1(Q)|2, being proportional to the atomic emission X(1)=2R Tiz2] OxIPs(t ) —AM)]
spectrum[2]. To obtain additional temporal information
about the production of harmonics, the Fourier transform
must be convoluted with a temporally restricted envelope. Xd,[ pst,7) —A(t—7)]E(t— T)eX[I[—iSst(t,T)]J

Such a time-frequency or “wavelet” analysis has been
recently used to analyze the time profile of harmonic emis- 2)
sion during a short intense laser pu[§d. The form of the
(Gaboj analyzing wavelet mainly used and also consideredyithin the stationary phase approximation, which leads to the
here has a Gaussian window and is given by stationary action

0

e—0

W(t,tg,Q)=exd — (t—tg)%/ o?]exdiQt]. (1) r 1 [t
S«(t,7)=1|Eq —Epit(t,r)wL Ef dt'A%t"), (3
Usually, the envelope widthr of the wavelet is chosen larger e
than the laser period=2m/w, . The usual Fourier trans-
form, in which all temporal information is lost, is obtained
for o—o. When investigating harmonic frequencies <
Q=Nw,_ of the atomic response to the laser, one can, how- pst(t,r)zTO[sin(th)—sin(th— w, 7] (4)
ever, choose an envelope even narrower than the fundamen- L7
tal period(as long asr>2#/Q) [3].

In order to test the validity of the two-step semiclassicalThus, in Eqg.(2) the dipole at timet receives contributions
model of high-harmonic generatigt,4], we have chosen a from all trajectories that started at the origin a timeatrlier,
test case that is both expedient to solve fully numericallypicked up the actiorSg;, and returned to the origin dt
(being one dimensionahnd that should be favorable to the which for a free classical evolution is possible only for a
application of the two-step approximation. We have thusdefinite average momenturpg. The quantityd,(p) repre-
solved the time-dependent ScHilnger equation for a one- sents the interaction with the bound state and is usually taken
dimensional model “atom” bound by a Gaussian binding as some approximation to the dipole matrix element between
potential(in a.u), V(x) = —0.76expx?/1.76), which in the the ground state and the continuum state at energy
absence of the laser supports a single bound state, denotEg=p2/2.
|0), at energyEy= —0.401. This atom is driven by an exter-  In order to compute the wavelet transform of the dipole
nal field &(t)=—&ysin(w t)=—A(t) of angular frequency acceleration fronx(t), one must use the formula

while the stationary momentum is given by
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sical return” peak(denoted byr;) is composed of many

FIG. 1. Wavelet analysis of the time-dependent dipole acceleraSUbpeaks since many harmonics are included. In fact, the
tion over one cycle of the driving laser fielth) N=49, c=0.1 T;  shorter return time varies more rapidly with harmonic en-
(b) N=45, 7=0.055 T;(c), (d) N=37, 7=0.024 T. Solid line: full  ergy. The return peak, is prominent in both sets of results.
time-dependent solution; dashed line: two-step mdded] with  This is comparable to the case consideref4i Fig. 2.
Gaussian dipole approximation, dotted lif@ly in (c)]: two-step Our results show that the semiclassical model contains the
model with exact dipole. The solid line i) is for a projection of  agsential physics leading to high-harmonic generation in a
the fully time-dependent dipole onto the unperturbed bound State-linearly polarized laser field. The multiple peak structure of
[4] is reproduced in qualitatively similar fashion in both re-
sults, with peaks at similar positions and of similar magni-
tude.
_ o _ However, the agreement is good only for a special choice
where the func_norW(t) is in our case _the analy2|r21g W{;\velet of the “atomic dipole” function d,(p), namely, d(p)
W(t, 1, (2) 2V\12Ith second ‘.jef"’a“"e. (=200 )+.['Q. ~ pe“”"2 , With =1, shown as the short-dashed line in Fig.
—2(t—1o)/o"]FW(L,to,€2). This is obtained by partial in-, “r. o w54 ssian dipole” approximation to the dipole ma-
tegration, noting thatVv and its derivatives vanish at the in- . P bp . P
tegration endpoints. trix e_Iem_ent co_r_responds to a Gaussian groun_d-state wave

Figure 1 presents the results from the time—frequenC)IunCt!on in position-space and plane—wa\{e contmugm wave

unctions. If we take fod,(p) the exact dipole matrix ele-

analysis over one cycle; we show the square of the magnf— )
tude of the quantity5) for t, varying from 5.7 to 6.7 T. The ment between the bound state and the continuum state at

dashed lines in the figure correspond to the resuilts obtaine2N€rgyp?/2 (given as the dotted line in Fig) &ve obtain the
using the two-step modélL], while the solid lines are the dotted line in Fig. 1c), exhibiting a strong spurious peak
results of the full time-dependent solution. nearé=&,. This spurious peak appears generally in the sta-
Peaks in the harmonic time-frequency spectrum ariséionary phase approximation when the width p spacg of
from classical trajectories returning to the origin, leading tody(p) is made so small that the contribution near the “zero-
strong nonlinear response within the range of the potentiatime” trajectory is strongly peaked: physically this would
These classical return time peaks are clearly visible in theorrespond to contributions near the origin from parts of the
harmonic response centered on the cutoff harmonicsvave function that are being “accelerated” by the field
(Q=49w,, 0=0.1 T), for both the fully time-dependent within the range of the potential. It is evident from the full
and the semiclassical calculation, shown in gart This has time-dependent solutiofsolid line) that this is not an impor-
been observed before [8]. When more plateau harmonics tant mechanism of harmonic generation in the present case.
are included, as in Fig.(h), (Q=45w,, 0=0.055 T) the  Furthermore, for such a peakeg(p), the stationary phase
single peak splits into two, whose temporal positions correapproximation starts to become invalid.
spond approximately to the tw@em) classical shortest re- In the actual physical process of high-harmonic genera-
turn times, 7, and 7, (see Fig. 3 in[4]). It is, however, tion at low laser frequency the “rescattering” wave packet
apparent that the two peaks are farther apart for the full soappears through a tunnel ionization process and thus it is not
lution than for the two-step model. Furthermore, thepeak  astonishing that the modeling through a dipole matrix ele-
has gained additional substructure in the full solution. ment is not adequate. On the other hand, for the second in-
When most of the plateau harmonics are included, in Figteraction in Eq.(2), which “generates the harmonics,” the
1(c), there are still two dominant peaks; the “shortest clas-dipole matrix element should be quite appropriate.

fdtsk(t)W(t)z—f dtx(t)W(t), (5)
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Finally, in Fig. Ad) we consider the time-dependent di- cluding, the general plateau harmonic generation spectra are
pole including the projectiofi6] onto the bound statf0), reproduced by a wide variety of models. The classical return
namely, Xo(t) = (#(t)|0)(0| x| (t)) [7]. This projection re- cutoff [5] is reproduced by all models including a
tains only contributions from bound-to-continuum dipole “quasifree” returning electron. But the time dependence of
“transitions.” Although the harmonic spectrum resulting the harmonic generation is a much more differential and thus
from this projection is very close to the harmonic spectrumsensitive measure, in which not simply the magnitudes but
from the full solution, the time dependenpesing Eq.(5)]  the relative phases of all contributing harmonics are in-
shown in Fig. 1d) is different from the exact onsolid line ~ Yolved. When only cutoff harmonics are involved, as shown
in Fig. 1(c)], being closer to the one from the “Gaussian IN Fig- 1@, the time of harmonic generation is just 0.45 and
ipole” twoStep modeldashe e i Fig. ), i prtc- 0 " UntS o 1 laer period, hat s st before the peak
lar with respect to the broader, peak and the minima at ) ; "
125,97 and 6.47. For the group of peaks,th same peaks 10025 ey pediel i prase of ol harmonice
are observed, but the ones corres.ponding to earlier ret“r§hperpos:ed, a much more complex time behavior emerges.
times appear strongly“supp'ressed n the' two-step m.qdel',,lfrom the full time-dependent solution, it is clear that the
thus appears that the “continuum-to-continuum transitions” g e micjassical picture that predicts two dominant shortest re-

play an important though not decisive role in explaining they ., yjime peaks is qualitatively correct, as shown by the solid
difference between the full solution and the two-step modefine with the peaksr; and 7, in Figs. 1b) and Xc). The

[8]- exact shapes and substructure of these peaks are, however,

It must be noted that in our one-dimensional case th}g guantitatively reproduced by the two-step model. First,

transverse spreading of the wave pa<_:k_et is not present and, ) nd that a spurious peak can appeaf(&}= &, when
:gubsetr:eenr?la%t::izoi;derrorg;ubriﬁy;[/z tﬁ:\/grgr']n;(t later ttIT/GZS _te_n «(p) is chosen too peaked in the two-step model. Second,
prob ponen """ the shortest return time; peak splits into several peaks with
stead of .the usual 3/2 in Em)].' In both models effects of comparable magnitude. The two-step model indicates that
propagation and phase matchifd were not included. Our one of these is dominant, which is not the case in the full

gmn?mrgt?s:leurzzjoer? ;hsehi;tugfs(;) gjt_'l_on_r;]si’s?glileagpsr?nxé??:‘e%rsolution. Third, the longer return time, peak is narrower in
y N the full solution. A projection xq(t) involving only

fully ime-dependent case there is sirong ionization and thu8ontinuum-to-bound transitions from the full time-dependent

th_e_dmo!e moment decays in time, in addition to other €X"Solution leads for ther, peak to closer agreement with the
plicitly time-dependent effects. Finally, although we are

probing the harmonic response over times shorter than thtWO'Step model. This, peak appears stably is_olated in all
laser field period, the harmonic generation process must hat(:f‘-m:“('J cases and should thus be a better candidate for propa-
! o .~ lgative selectioi4] than the strongly model-dependent series

pen over several cycles of the laser field in a quasiperiodi f K
fashion[9]. of 71 peaks.

Obviously, the Fourier transform of any harmonic comb  C.F.M.F. was supported by the DAAD and M.D. was
frequency spectrum leads to a temporally peaked time spesupported by the Deutsche Forschungs-Gemeinschaft.
trum, but only the particular phases inherent to harmonicC.F.M.F. is grateful to A. Fring and to A. Lohr for useful

generation will lead to the present peak distribution. Con-discussions.
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