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Time profile of harmonic generation
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Max-Born-Institut, D-12474 Berlin, Germany

~Received 20 December 1996!

Information about the time-behavior of high-harmonic generation from a single atom in a strong laser field
is obtained through a time-frequency analysis. The solution from the full numerical solution of the time-
dependent Schro¨dinger equation is compared with a widely used two-step semiclassical model of harmonic
generation. As a test case, we consider a one-dimensional model ‘‘atom’’ with a short-range potential. The two
results are in qualitative agreement only if in the two-step model the initial and final~dipole! interaction matrix
elements are suitably chosen.@S1050-2947~97!05605-9#

PACS number~s!: 32.80.Rm, 42.65.Ky
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The current paradigm of high-harmonic generation
atomic systems involves the physical picture of an elect
wave packet being drawn out and away from the atom by
laser field and then driven back hard towards the vicinity
the nucleus, where a strong nonlinear interaction can t
place, generating harmonic radiation of the driving fund
mental laser frequency. This is the key idea in the two-s
semiclassical model@1# in which the emission and retur
interaction steps are modeled by effective dipole coupli
and the semiclassical phase of the intermediate evolutio
the field is taken into account. The harmonic response of
atom is always calculated starting from the time-dep
dent atomic dipole,x(t), the absolute magnitude square
of the Fourier transform of the dipole acceleratio
uFT @ ẍ(t)#(V)u2, being proportional to the atomic emissio
spectrum @2#. To obtain additional temporal informatio
about the production of harmonics, the Fourier transfo
must be convoluted with a temporally restricted envelope

Such a time-frequency or ‘‘wavelet’’ analysis has be
recently used to analyze the time profile of harmonic em
sion during a short intense laser pulse@3#. The form of the
~Gabor! analyzing wavelet mainly used and also conside
here has a Gaussian window and is given by

W~ t,t0 ,V!5exp@2~ t2t0!
2/s2#exp@ iVt#. ~1!

Usually, the envelope widths of the wavelet is chosen large
than the laser periodT52p/vL . The usual Fourier trans
form, in which all temporal information is lost, is obtaine
for s→`. When investigating harmonic frequencie
V5NvL of the atomic response to the laser, one can, h
ever, choose an envelope even narrower than the funda
tal period~as long ass.2p/V) @3#.

In order to test the validity of the two-step semiclassi
model of high-harmonic generation@1,4#, we have chosen a
test case that is both expedient to solve fully numerica
~being one dimensional! and that should be favorable to th
application of the two-step approximation. We have th
solved the time-dependent Schro¨dinger equation for a one
dimensional model ‘‘atom’’ bound by a Gaussian bindi
potential~in a.u.!, V(x)520.76exp(2x2/1.76), which in the
absence of the laser supports a single bound state, den
u0&, at energyE0520.401. This atom is driven by an exte
nal field E(t)52E0sin(vLt)52A(t) of angular frequency
551050-2947/97/55~5!/3961~3!/$10.00
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vL50.05, whose amplitude is turned on linearly from 0
E050.08 over two cycles@5#. The numerical solution is per
formed in the velocity gauge using standard finite-differen
space-grid methods@2#.

The two-step model considers only a single bound stat
the atom, which is correct for our test case, and it negle
the influence of the atomic potential on the trajectory of t
electron driven by the laser field, which again is true as so
as the electron is outside the range of the potential. We h
performed a semiclassical calculation similar to@4# for our
one-dimensional ~1D! case. We computed the time
dependent dipole from the formula@1#

x~ t !52ReH lim
e→0

E
0

1`

dtS p

e1 it/2D 1/2dx* @pst~ t,t!2A~ t !#

3dx@pst~ t,t!2A~ t2t!#E~ t2t!exp@2 iSst~ t,t!#J
~2!

within the stationary phase approximation, which leads to
stationary action

Sst~ t,t!5tuE0u2
t

2
pst
2~ t,t!1

1

2Et2t

t

dt8A2~ t8!, ~3!

while the stationary momentum is given by

pst~ t,t!5
E0

vL
2t

@sin~vLt !2sin~vLt2vLt!#. ~4!

Thus, in Eq.~2! the dipole at timet receives contributions
from all trajectories that started at the origin a timet earlier,
picked up the actionSst, and returned to the origin att,
which for a free classical evolution is possible only for
definite average momentum,pst. The quantitydx(p) repre-
sents the interaction with the bound state and is usually ta
as some approximation to the dipole matrix element betw
the ground state and the continuum state at ene
Ep5p2/2.

In order to compute the wavelet transform of the dipo
acceleration fromx(t), one must use the formula
3961 © 1997 The American Physical Society
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E dt ẍ~ t !W~ t !52E dt x~ t !Ẅ~ t !, ~5!

where the functionW(t) is in our case the analyzing wavel
W(t,t0 ,V) with second derivative $(22/s2)1@ iV
22(t2t0)/s

2#2%W(t,t0 ,V). This is obtained by partial in-
tegration, noting thatW and its derivatives vanish at the in
tegration endpoints.

Figure 1 presents the results from the time-freque
analysis over one cycle; we show the square of the ma
tude of the quantity~5! for t0 varying from 5.7 to 6.7 T. The
dashed lines in the figure correspond to the results obta
using the two-step model@1#, while the solid lines are the
results of the full time-dependent solution.

Peaks in the harmonic time-frequency spectrum a
from classical trajectories returning to the origin, leading
strong nonlinear response within the range of the poten
These classical return time peaks are clearly visible in
harmonic response centered on the cutoff harmon
(V549vL , s50.1 T!, for both the fully time-dependen
and the semiclassical calculation, shown in part~a!. This has
been observed before in@3#. When more plateau harmonic
are included, as in Fig. 1~b!, (V545vL , s50.055 T! the
single peak splits into two, whose temporal positions cor
spond approximately to the two~semi! classical shortest re
turn times,t1 and t2 ~see Fig. 3 in@4#!. It is, however,
apparent that the two peaks are farther apart for the full
lution than for the two-step model. Furthermore, thet1 peak
has gained additional substructure in the full solution.

When most of the plateau harmonics are included, in F
1~c!, there are still two dominant peaks; the ‘‘shortest cla

FIG. 1. Wavelet analysis of the time-dependent dipole accel
tion over one cycle of the driving laser field.~a! N549,s50.1 T;
~b! N545, t50.055 T;~c!, ~d! N537, t50.024 T. Solid line: full
time-dependent solution; dashed line: two-step model@1,4# with
Gaussian dipole approximation, dotted line@only in ~c!#: two-step
model with exact dipole. The solid line in~d! is for a projection of
the fully time-dependent dipole onto the unperturbed bound sta
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sical return’’ peak~denoted byt1) is composed of many
subpeaks since many harmonics are included. In fact,
shorter return time varies more rapidly with harmonic e
ergy. The return peakt2 is prominent in both sets of results
This is comparable to the case considered in@4#, Fig. 2.

Our results show that the semiclassical model contains
essential physics leading to high-harmonic generation i
linearly polarized laser field. The multiple peak structure
@4# is reproduced in qualitatively similar fashion in both r
sults, with peaks at similar positions and of similar mag
tude.

However, the agreement is good only for a special cho
of the ‘‘atomic dipole’’ function dx(p), namely, dx(p)

;pe2ap2 , with a51, shown as the short-dashed line in F
2. This ‘‘Gaussian dipole’’ approximation to the dipole m
trix element corresponds to a Gaussian ground-state w
function in position-space and plane-wave continuum wa
functions. If we take fordx(p) the exact dipole matrix ele
ment between the bound state and the continuum stat
energyp2/2 ~given as the dotted line in Fig. 2! we obtain the
dotted line in Fig. 1~c!, exhibiting a strong spurious pea
nearE5E0. This spurious peak appears generally in the s
tionary phase approximation when the width~in p space! of
dx(p) is made so small that the contribution near the ‘‘ze
time’’ trajectory is strongly peaked: physically this wou
correspond to contributions near the origin from parts of
wave function that are being ‘‘accelerated’’ by the fie
within the range of the potential. It is evident from the fu
time-dependent solution~solid line! that this is not an impor-
tant mechanism of harmonic generation in the present c
Furthermore, for such a peakeddx(p), the stationary phase
approximation starts to become invalid.

In the actual physical process of high-harmonic gene
tion at low laser frequency the ‘‘rescattering’’ wave pack
appears through a tunnel ionization process and thus it is
astonishing that the modeling through a dipole matrix e
ment is not adequate. On the other hand, for the second
teraction in Eq.~2!, which ‘‘generates the harmonics,’’ th
dipole matrix element should be quite appropriate.

a-

.

FIG. 2. Dipole matrix elementsdx(p). Dotted line: exact;
dashed line: plane-wave continuum approximation; short-das
line: ‘‘Gaussian’’ approximation.
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Finally, in Fig. 1~d! we consider the time-dependent d
pole including the projection@6# onto the bound stateu0&,
namely,x0(t)5^c(t)u0&^0uxuc(t)& @7#. This projection re-
tains only contributions from bound-to-continuum dipo
‘‘transitions.’’ Although the harmonic spectrum resultin
from this projection is very close to the harmonic spectr
from the full solution, the time dependence@using Eq.~5!#
shown in Fig. 1~d! is different from the exact one@solid line
in Fig. 1~c!#, being closer to the one from the ‘‘Gaussia
dipole’’ two-step model@dashed line in Fig. 1~c!#, in particu-
lar with respect to the broadert2 peak and the minima a
t55.97 and 6.47. For the group oft1 peaks, the same peak
are observed, but the ones corresponding to earlier re
times appear strongly suppressed in the two-step mode
thus appears that the ‘‘continuum-to-continuum transition
play an important though not decisive role in explaining t
difference between the full solution and the two-step mo
@8#.

It must be noted that in our one-dimensional case
transverse spreading of the wave packet is not present
thus the higher-order returns to the origin at later times t
to be enhanced in probability@we have an exponent 1/2 in
stead of the usual 3/2 in Eq.~2!#. In both models effects o
propagation and phase matching@4# were not included. Our
time profile from the full solution is only approximatel
symmetric under a shift of 0.5 T. This is clear since in o
fully time-dependent case there is strong ionization and t
the dipole moment decays in time, in addition to other e
plicitly time-dependent effects. Finally, although we a
probing the harmonic response over times shorter than
laser field period, the harmonic generation process must
pen over several cycles of the laser field in a quasiperio
fashion@9#.

Obviously, the Fourier transform of any harmonic com
frequency spectrum leads to a temporally peaked time s
trum, but only the particular phases inherent to harmo
generation will lead to the present peak distribution. Co
h
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cluding, the general plateau harmonic generation spectra
reproduced by a wide variety of models. The classical ret
cutoff @5# is reproduced by all models including
‘‘quasifree’’ returning electron. But the time dependence
the harmonic generation is a much more differential and t
sensitive measure, in which not simply the magnitudes
the relative phases of all contributing harmonics are
volved. When only cutoff harmonics are involved, as sho
in Fig. 1~a!, the time of harmonic generation is just 0.45 a
0.95 in units of the laser period, that is, just before the pe
of the field. This result again is not very sensitive: mo
models correctly predict the phase of thecutoff harmonics.
However, when more and more of theplateauharmonics are
superposed, a much more complex time behavior emer
From the full time-dependent solution, it is clear that t
semiclassical picture that predicts two dominant shortest
turn time peaks is qualitatively correct, as shown by the so
line with the peakst1 and t2 in Figs. 1~b! and 1~c!. The
exact shapes and substructure of these peaks are, how
not quantitatively reproduced by the two-step model. Fi
we found that a spurious peak can appear atE(t)5E0 when
dx(p) is chosen too peaked in the two-step model. Seco
the shortest return timet1 peak splits into several peaks wit
comparable magnitude. The two-step model indicates
one of these is dominant, which is not the case in the
solution. Third, the longer return timet2 peak is narrower in
the full solution. A projection x0(t) involving only
continuum-to-bound transitions from the full time-depende
solution leads for thet2 peak to closer agreement with th
two-step model. Thist2 peak appears stably isolated in a
three cases and should thus be a better candidate for pr
gative selection@4# than the strongly model-dependent ser
of t1 peaks.
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