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We address nonsequential double ionization induced by strong, linearly polarized laser fields of only a few
cycles, considering a physical mechanism in which the second electron is dislodged by the inelastic collision
of the first electron with its parent ion. The problem is treated classically, using an ensemble model, and
quantum mechanically, within the strong-field and uniform saddle-point approximations. In the latter case, the
results are interpreted in terms of “quantum orbits,” which can be related to the trajectories of a classical
electron in an electric field. We obtain highly asymmetric electron momentum distributions, which strongly
depend on the absolute phase, i.e., on the phase difference between the pulse envelope and its carrier frequency.
Around a particular value of this parameter, the distributions shift from the region of positive to that of
negative momenta, or vice versa, in a radical fashion. This behavior is investigated in detail for several
driving-field parameters, and provides a very efficient method for measuring the absolute phase. Both models
yield very similar distributions, which share the same physical explanation. There exist, however, minor
discrepancies due to the fact that, beyond the region for which electron-impact ionization is classically allowed,
the yields from the quantum-mechanical computation decay exponentially, whereas their classical counterparts
vanish.
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I. INTRODUCTION

Linearly polarized laser pulses of intensities higher than
1014 W/cm2 and only a few cycles are of vital importance to
several areas of physics, being applicable to, for instance,
solid-state physics[1], high-frequency sources[2], or iso-
lated attosecond pulses[3]. Only the latter application led to
a breakthrough in metrology, making it possible to trace the
motion of bound electrons[4], to probe molecular dynamics
[5], and to control electron emission[6]. In this pulse-length
regime, the phase difference between the pulse envelope and
its carrier frequency, known as “absolute phase,” has a major
influence on strong-field optical phenomena, such as high-
order harmonic generation(HHG) [7] or above-threshold
ionization(ATI ) [8]. In particular, the absolute phase affects,
for instance, the harmonic or photoelectron yields, the maxi-
mal energies in both spectra, and the time profiles of ATI and
HHG. This is a direct consequence of the physical mecha-
nisms governing such phenomena, which occur in a subfem-
tosecond time scale, and for which the time dependence of
the electric field is important. In fact, high-order harmonic
generation is the outcome of a three-step process in which an
electron leaves an atom by tunneling ionization at a timet8,
propagates in the continuum, and recombines with its parent
ion at a later instantt, releasing the energy gained from the
field in the form of high-frequency radiation. A similar
mechanism is also responsible for ATI, with the main differ-
ence that the electron either rescatters elastically with its par-
ent ion or reaches the detector without recolliding, originat-
ing high- or low-energy peaks in the spectra, respectively.
Such a mechanism has been extensively studied both classi-
cally [9,10] and quantum mechanically[11].

From the experimental point of view, controlling or mea-
suring the absolute phase is a very difficult task[13]. This

has led to the proposal and experimental realization of
schemes for its diagnosis, such as, for instance, using the
asymmetry in ATI photoelectron counts reaching two oppo-
site detectors placed in a plane perpendicular to the laser
field [12].

Another phenomenon whose physical explanation lies on
a laser-assisted rescattering process is nonsequential double
ionization(NSDI). In this case, an electron recollides inelas-
tically with its parent ion, giving part of its kinetic energy to
a second electron, which is thus able to overcome the second
ionization potential and reach the continuum. Fingerprints of
such a mechanism were only revealed very recently, in ex-
periments in which the momentum component parallel to the
laser field polarization could be resolved, either for the dou-
bly charged ion[14] or for both electrons[15]. Such features,
namely a doubly peaked structure in the momentum distri-
butions, with maxima atp1i=p2i= ±2ÎUp, wherepjis j =1,2d
andUp denote the electron momentum components parallel
to the laser field polarization and the ponderomotive energy
[16], respectively, are, up to the present date, the most strik-
ing example of electron-electron correlation in the context of
atoms in strong laser fields. This fact has led not only to
further experiments[17], but also to considerable theoretical
activity on the subject, using quantum-mechanical[18–22],
semiclassical[23–26], and classical[27–29] methods.

Recently, we have shown that NSDI may serve as a pow-
erful tool for absolute-phase measurements, exploiting the
fact that, for few-cycle driving pulses, inversion symmetry is
broken [29]. Thus, the distributions insp1i ,p2id are mainly
concentrated in the positive or negative momentum regions,
changing from one region to the other upon a critical phase.
Such investigations have been performed classically, consid-
ering electrons released at timest8 uniformly distributed
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throughout the pulse and weighted with the quasistatic tun-
neling rate[30].

In this paper, we deal with this problem quantum me-
chanically, and investigate the existence of a one-to-one cor-
respondence with the classical model in Ref.[29]. Similar
studies have been performed for NSDI with monochromatic
driving fields, with practically identical outcomes[25,26].
This has shown that, at least in the monochromatic case,
which is a good approximation for the long pulses used in
the experiments, intrinsically quantum mechanical effects
such as interference processes, or wave-packet spreading, are
not important. However, it is legitimate to ask the question of
whether this situation will persist in the few-cycle regime.
Indeed, it may well be that interference and wave-packet
spreading play a more important role in this latter case. Ad-
ditionally, it is not clear whether the quasistatic tunneling
rate considered in the classical model remains valid for few-
cycle driving pulses. In fact, this has been recently called
into question, with the derivation of a nonadiabatic rate[31].
Finally, it is worthwhile to check whether asymmetric distri-
butions and the critical phase also occur in a quantum-
mechanical context, and, in case they do, to understand the
physics behind such features.

In particular, we address the above-stated questions using
on S-matrix formalism, within the strong-field approximation
(SFA) [32,33]. We consider the simplest type of rescattering,
namely electron-impact ionization, and treat the problem in
terms of the so-called “quantum orbits”[34], which appear
in the context of saddle-point approximations. Specifically,
we use a uniform approximation whose only validity require-
ment is that the orbits in question occur in pairs, which is in
general the case for laser-assisted rescattering phenomena.
This method has been previously applied to NSDI in mono-
chromatic driving fields, in order to analyze the influence of
the types of interaction and final-state electron-electron cor-
relation on the yields[25,26]. Apart from considerably sim-
plifying the computations involved, as compared to other
theoretical methods[18–20], the quantum-orbit approach
provides additional physical insight, in terms of a space-time
picture. In fact, the quantum orbits are closely related to the
orbits of a classical electron in an external laser field. Hence,
in several situations, it is possible to draw a parallel be-
tweeen our quantum-mechanical treatment and the previous
classical considerations[29], discussing their similarities and
differences. In the following, we study the physical mecha-
nisms responsible for the critical phase within a quantum-
mechanical framework, concentrating on the main differ-
ences from the classical picture and from the
monochromatic-driving field case.

The paper is organized as follows. In the next section
(Sec. II), we provide the necessary theoretical background,
presenting the transition amplitude in the strong-field and
uniform approximations. Subsequently, in Sec. III, we
present differential electron momentum distributions for
various absolute phases, discussing the main features ob-
tained in terms of quantum orbits. The quantum-mechanical
results are then compared to a classical ensemble computa-
tion which is either the same as in[29], or slightly modified
with respect to it(Sec. IV). Finally, in Sec. V, we summarize
the paper and state our conclusions.

II. BACKGROUND

The transition amplitude of the laser-assisted inelastic re-
scattering process responsible for NSDI, in the strong-field
approximation[32,33], is given by

M = −E
−`

`

dtE
−`

t

dt8kcp1,p2

sVd stduV12U1
sVdst,t8dV ^ U2

s0dst,t8d

3uc0st8dl, s1d

where V, Un
s0dst ,t8d, Un

sVdst ,t8d, and V12 denote the atomic
binding potential, the field-free and the Volkov time evolu-
tion operators acting on thenth sn=1,2d electron, and the
interaction through which the second electron is freed by the
first, respectively. Equation(1) expresses the following
physical process: Initially, both electrons are bound, and the
atom is in the ground state, which is approximated by
uc0st8dl= uc0

s1dst8dl ^ uc0
s2dst8dl (i.e., product state of one-

electron ground states), with uc0
sndst8dl=ei uE0nut8uc0

sndl. At the
time t8, the first electron is released through tunneling ion-
ization, whereas the second electron remains bound. Subse-
quently, the first electron propagates in the continuum from
t8 to t, gaining energy from the field. At this latter time, it
collides inelastically with its parent ion, dislodging the sec-
ond electron. The final electron state is then chosen as the
product state of one-electron Volkov waves,ucp1,p2

sVd stdl
= ucp1

sVdstdl ^ ucp2

sVdstdl, wherep1,p2 are the final electron mo-
menta(for studies of correlated two-electron final states see,
e.g., Refs.[18,25,26]). In Eq. (1), the interaction with the
ionic potential is not taken into account. In our computations,
we use the length gauge and atomic units.

ExpandingUsVdst ,t8d in terms of Volkov states, Eq.(1)
reads

M = −E
−`

`

dtE
−`

t

dt8E d3kVpnkVk0expfiSst,t8,pn,kdg,

s2d

with the action

Sst,t8,pn,kd = −
1

2o
n=1

2 E
t

`

fpn + Astdg2dt −
1

2
E

t8

t

fk

+ Astdg2dt + uE01ut8 + uE02ut, s3d

whereAstd, pnsn=1,2d, k, anduE0nu denote the vector poten-
tial, the final momenta of both electrons, the intermediate
momentum of the first electron, and the ionization potentials,
respectively. All the influence of the binding potentialV and
of the electron-electron interactionV12 is included in the
form factors

Vpnk = kpn2 + Astd,p1 + AstduV12uk + Astd,c0
s2dl s4d

and

Vk0 = kk + Ast8duVuc0
s1dl s5d

In this paper, we consider a contact-type interaction
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V12 = dsr 1 − r 2ddsr 2d, s6d

which yields very good agreement with experimental data
within the context of NSDI in monochromatic driving fields
[23,25]. In this case, the form factorsVpnk ,Vk0 are constant
and the SFA transition amplitude can be solved analytically
up to one quadrature. For other types of potentials, this is
only possible by evaluating multiple integrals numerically.

For low enough frequencies and high enough laser inten-
sities, Eq.(2) can be solved to a good approximation by the
steepest-descent method. Thus, we must determinek, t8, and
t, such thatSst ,t8 ,pn,kd is stationary, i.e., its partial deriva-
tives with respect to these parameters vanish. This condition
yields

fk + Ast8dg2 = − 2uE01u, s7d

o
n=1

2

fpn + Astdg2 = fk + Astdg2 − 2uE02u, s8d

and

E
t8

t

dtfk + Astdg = 0. s9d

Equations(7) and (8) give the energy conservation at the
start and rescattering times, respectively, while Eq.(9) con-
straints the intermediate momentum of the first electron so
that it returns to its parent ion. For vanishinguE01u, the clas-
sical equations of motion of both electrons in the external
field are obtained. For nonzerouE01u, Eq. (7) expresses tun-
neling ionization att8, and has no real solution. Physically,
this means that this process is not classically allowed. This
results in complex variablest8, t, andk, which always occur
in pairs. The real parts of such variables are directly related
to a longer and a shorter orbit of a classical electron in an
electric field. The longer orbit can be associated to the so-
called “slow-down collisions,” which have recently been dis-
cussed in the literature[22,24,28]. The imaginary parts de-
termine to which extent electron-impact ionization is allowed
or forbidden, both within and beyond the boundaries of the
classically allowed energy region. In this latter domain, one
of the orbits leads to exponentially decaying contributions in
the transition amplitude(2), which cause cutoffs in the dis-
tributions, while the remaining orbit starts to yield diverging
contributions, and must be discarded.

Equation(8) can also be written in terms of the momen-
tum components parallel and perpendicular to the laser-field
polarization, denoted bypni andpn'sn=1,2d, respectively. In
this case, for constant transverse momenta, one obtains the
equation

o
n=1

2

fpni + Astdg2 = fk + Astdg2 − 2uE02u − o
n=1

2

pn'
2 , s10d

describing a circle in thep1i, p2i plane, whose radius depends
on the kinetic energyEretstd=fk +Astdg2/2 of the first elec-

tron upon return, and on the effective binding energyuẼ02u
= uE02u+on=1

2 pn'
2 /2. If Eretstdø uẼ02u, this radius collapses and

electron-impact ionization becomes classically forbidden.
This means that there is not only a maximal, but also a mini-
mal classically allowed energy, and the resulting yields ex-
hibit two cutoffs, or no cutoff at all. This is a major differ-
ence with respect to high-order harmonic generation or
above-threshold ionization, for which only maximal classi-
cally allowed energies exist.

In the standard saddle-point method, the action(3) is ex-
panded quadratically around the saddle points, and the tran-
sition amplitude(2) is approximated by

MsSPAd = o
s

As expsiSsd, s11d

Ss = Spsts,ts8,ksd, s12d

As = s2pid5/2
Vpks

Vks0

Îdet Sp9st,t8,kds

, s13d

where the indexs runs over the relevant saddle points, andSp9
denotes the five-dimensional matrix of the second derivatives
of the action with respect tot ,t8, andk. In practice, we first
determinekst ,t8d as a function of the other variables, insert-
ing this in the action, and take

As = s2pid5/2
Vpks

Vks0

st8 − td3/2Îdet Sp9st,t8ds

, s14d

so that the computation of the determinant is simplified.
The above-stated saddle-point approximation is only ap-

plicable for well-isolated saddle points. This does not hold
near the boundaries of the classically allowed region, where
the pairs of saddles nearly coalesce. Furthermore, beyond
such boundaries, one of the saddles yields diverging results,
and must be discarded. This leads to cusps in the yield which
are particularly problematic for nonsequential double ioniza-
tion. A detailed analysis of this problem is given in[24].

Such artifacts can be eliminated by using a more general,
uniform approximation[37], whose only validity require-
ment is that the saddles occur in pairs. This approximation
has been successfully applied in the context of above-
threshold ionization[36] and nonsequential double ioniza-
tion [24,26].

Within this improved approximation, in the classically al-
lowed region, the transition amplitude for a pair of trajecto-
ries i and j is given by

Mi+j = Î2pDS/3 expsiS̄+ ip/4dhĀfJ1/3sDSd + J−1/3sDSdg

+ DAfJ2/3sDSd − J−2/3sDSdgj,

DS= sSi − Sjd/2, S̄= sSi + Sjd/2,

DA = sAi − iAjd/2, Ā = siAi − Ajd/2. s15d

The saddle-point approximation is recovered for large values
of DS, using the asymptotic behavior
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J±nszd , S 2

pz
D1/2

cossz7 np/2 − p/4d s16d

of the Bessel functions for largez. One should note that the
uniform approximation considers the collective contribution
of a pair of saddle points, instead of, as in the former case,
taking them into account individually.

In the classically forbidden region, one of the saddles
must be discarded. For that purpose, a branch of the Bessel
function must be chosen in such a way that the approxima-
tion exhibits a smooth functional behavior at the Stokes tran-
sition [35], given by

Re Spsti,ti8,k id = ReSpstj,tj8,k jd. s17d

Beyond the Stokes transition,

Mi+j = Î2iDS/p expsiS̄dfĀK1/3s− iDSd + iDAK2/3s− iDSdg.

s18d

The saddle-point approximation is, again, recovered using
the asymptotic expansion

Knszd , S p

2z
D1/2

exps− zd s19d

for largez. Inserting Eq.(19) into Eq.(18), it is easy to show
that only one saddle contributes to the saddle-point approxi-
mation in this energy region. Equations(15) and(18) should
be matched at the Stokes transitions, whose energy positions
roughly coincide with the boundary between the classically
allowed and forbidden energy regions.

In the following, we take the few-cycle pulseEstd
=−dAstd /dt, with

Astd = A0expf− 4svt − pnd2/spnd2gsinfvt + fgêx, s20d

where n, v, A0, and f denote its number of cycles, fre-
quency, amplitude, and absolute phase, respectively. We then
find the start and return times such that the saddle-point
equations are fulfilled, and use such times to compute the
yields, which are given by

Gsp1i,p2id =E d2p1'E d2p2'uMu2, s21d

whereM is given by Eq.(2) within the uniform approxima-
tion.

III. QUANTUM-ORBIT ANALYSIS

In Fig. 1, we present the momentum distributions com-
puted using the above-discussed method, for various abso-
lute phases, in the form of contour plots in thesp1i ,p2id
plane. We choose the atomic species to be neon, for which
electron-impact ionization is the dominant physical mecha-
nism [38]. In general, such distributions exhibit circular
shapes, centered at particular momenta alongp1i=p2i=pi,
and, in contrast to the monochromatic-field case, are no
longer symmetric with respect tosp1i ,p2id↔ s−p1i ,−p2id.
This symmetry breaking is expected, since the relationAstd
=−Ast±T/2d, and thus uMst ,t8 ,p1i ,p2idu= uMst±T/2 ,

t8±T/2 ,−p1i ,−p2idu, which was true for monochromatic
driving fields, does not hold. The circular shapes are typical
for the contact-type interaction, and are also observed in the
monochromatic case.

Depending on the phase, the yields are mainly concen-
trated either in the regions of positive or negative parallel
momenta. For instance, in the figure, initially, the parallel
momenta of both electrons are essentially positive[Figs.
1(a), 1(e), and 1(i)]. As the phase increases, contributions
from negative momenta are also present, becoming more and
more significant, until the distributions are almost entirely
shifted from the positive to the negative momentum region
[cf. Figs. 1(d), 1(h), and 1(l)]. This process occurs for differ-
ent intervals of absolute phases, depending on the peak in-
tensity of the driving field. For the specific example pre-
sented, the higher the intensity is, the earlier the momenta
start to change sign.

This phase dependence is very similar to that in[29],
obtained within a classical framework. Thereby, this behav-
ior was traced back to sets of electron trajectories, whose
relevance was determined by the phase space and by the rate
with which the first electron was ejected in the continuum. A
critical phase was related to a change in the dominant pair of
orbits, which had a huge repercussion in the distributions.
This phase was also shifted towards smaller absolute values
with increasing driving-field intensity.

Subsequently, we analyze both the asymmetry and the
critical phase in terms of pairs of quantum orbits, which are
classified assi , jdsfd according to increasing start times and
absolute phases. We consider only relatively short orbits so
that t− t8&T, whereT=2p /v denotes the field cycle. Longer
orbits yield negligible contributions due to wave-packet
spreading.

FIG. 1. Differential electron momentum distributions computed
for neon (uE01u=0.79 a.u. anduE02u=1.51 a.u.) subject to a four-
cycle pulsesn=4d of freqencyv=0.057 a.u. and various intensities
and absolute phases. The upper, middle and lower panels corre-
spond to I =431014 W/cm2 sUp=0.879a.u.d, I =5.5
31014 W/cm2 sUp=1.2 a.u.d, and I =831014 W/cm2 sUp

=1.758a.u.d, respectively. The absolute phases are given as fol-
lows: Panels(a), (e), and (i): f=0.8p; panels(b), (f), and (j): f
=0.9p; panels(c), (g), and(k): f=1p; and panels(d), (h), and(l):
f=1.1p.
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Figure 2 shows one of such pairs fort8 nearT, which we
specifically denotes1,2ds0.5pd. We consider the intermediate
intensity in Fig. 1, for which the phase chosen yields positive
parallel momenta, along the diagonalp1i=p2i=pi. Panels(a)
and(b) display Refvt8g and Refvtg as functions ofpi, which
can be associated to the times obtained by solving the clas-
sical equations of motion of two electrons colliding inelasti-
cally in a laser field. There exists always a longer and a
shorter orbit for the electron, which nearly coalesce near two
particular momenta. Such momenta correspond to Stokes
transitions [Eq. (17)], which, for high enough intensities,
roughly coincide with the minimal and maximal classically
allowed momenta[39]. These two specific momenta delimit
a region that is most extensive forp j'=0 s j =1,2d. As the
transverse momenta increase, the effective second ionization

potentialuẼ02u also becomes larger until this region collapses.
An interesting feature is that, between the Stokes transitions,
the real parts of the rescattering and start times are centered
around a particular value ofpi, which correspond to the peak
of the momentum distributions. For few-cycle pulses, this
center depends on the pair of orbits, as well as on the abso-
lute phase. For monochromatic driving fields, it lies atpi

= ±2ÎUp [24].
The remaining panels depict the imaginary parts of such

times, which provide in some sense a measure for a process
being classically allowed or forbidden. Indeed, they deter-
mine whether the transition amplitudes(2) increase or de-
crease exponentially, or how relevant the contributions from
particular sets of orbits are. These imaginary parts noticeably
increase at and beyond the Stokes transitions, and remain
practically constant in the momentum region in between.
This suggests that, in this region, electron-impact ionization

is either classically allowed or at least much more probable
to occur. Additionally, whereas Imfvtg almost vanishes in
this region, Imfvt8g has a nearly constant and nonvanishing
value [cf. panels(c)]. This is due to the fact that tunneling
per seis classically forbidden. Indeed, the larger this value
is, the smaller is the probability that this process takes place
at all.

Two additional pairs of orbits, for which 1.5T& t8&2T,
are displayed in Figs. 3 and 4. At these times, the pulse(20)
is closer to its peak intensity. In such figures, there exist
extensive regions between the Stokes transitions, in which
Refvt8g and Refvtg practically coincide with the start and
return times obtained within a classical framework, and in
which uImfvtgu are vanishingly small. Such features are clear
evidence that, in this case, electron-impact ionization is clas-
sically allowed.

Another noteworthy feature is that, in the classically al-
lowed region,uImfvt8gu has much smaller values than those
in Fig. 2. Physically, this means that the first electron left
with a larger tunneling probability att8, in comparison to the
orbits s1.2ds0.5pd. Furthermore, the fact that this region is ex-
tensive shows that the kinetic energy of the first electron
upon return is larger fors3,4ds0.5pd and s5,6ds0.5pd than for

FIG. 2. Real and imaginary parts of the start and return times for
the orbits 1 and 2 as functions of the parallel momentumpi along
the diagonalp1i= p2i, computed for a four-cycle pulsesn=4d of
absolute phasef=0.5p. The atomic parameters were taken as
uE01u=0.79 a.u. anduE02u=1.51 a.u. and correspond to neon, while
the field intensity and frequency were chosen asI =5.5
31014 W/cm2sUp=1.2 a.u.d andv=0.057 a.u., respectively. The
numbers in the figure denote the transverse momenta(p1' ,p2') in
units ofÎUp. The shorter and longer orbits in each pair correspond
to the solid and dashed lines, respectively.

FIG. 3. The same as in the previous figures for the orbits 3 and
4.

FIG. 4. The same as in the previous figures for the orbits 5 and
6.
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s1.2ds0.5pd. For that reason, the contributions froms3,4ds0.5pd
ands5,6ds0.5pd to the total yield should be more relevant than
those froms1.2ds0.5pd.

This is confirmed by Fig. 5, which depicts the yields com-
puted from each pair of the above-discussed orbits, along the
diagonal p1i=p2i=pi. In Fig. 5(a), the contributions from
s5,6ds0.5pd are at least two orders of magnitude larger than
those from the remaining pairs, so that the distributions will
be concentrated in the first quadrant of thesp1i ,p2id plane.
Hence, for practical purposes, the remaining contributions
can be neglected. They are, however, very useful for the
physical understanding of the problem.

The second most prominent contributions come from
s3,4ds0.5pd. This is expected, since, for these orbits, there is a
relatively large probability that the first electron tunnels out,
as well as a large momentum region for which electron-
impact ionization is allowed.

Additional contributions come from the orbitss1,2ds0.5pd
ands7,8ds0.5pd. The latter set of orbits is not displayed in the
previous figures, due to the fact that, in this case, there are no
Stokes transitions, i.e., electron-impact ionization is forbid-
den throughout. Interestingly, the contributions from all pairs
of orbits discussed above, includings7,8ds0.5pd, are several
orders of magnitude larger than those from the pair
s1,2ds0.5pd. This is due to the fact that, fors7,8ds0.5pd, the
tunneling probability for the first electron is considerably

larger than fors1,2ds0.5pd. From the technical viewpoint, it is
worth mentioning that, fors7,8ds0.5pd, the yield has been
computed by using Eq.(11), and taking the orbit for which
this expression is exponentially decaying.

For other absolute phases, there may be other sets of or-
bits whose contributions may compete with or even over-
whelm those from(5,6). This is in fact the case in Figs. 5(b)
and 5(c), for f=0.8p and f=1.1p, respectively. Such
phases, as well as the remaining parameters, are the same as
in Figs. 1(d) and 1(f), corresponding to the beginning and to
the end of a shift in the momentum distributions.

In Fig. 5(b), one clearly sees that the second most relevant
pair of orbits is no longers3,4ds0.8pd, but s7,8ds0.8pd. The con-
tributions from such orbits now are only one order of mag-
nitude smaller than those froms5,6ds0.8pd. Consequently,
there are also small, but not negligible, contributions in nega-
tive momentum regions. This is in agreement with Fig. 1(d),
for which there is a small spot in the third quadrant of the
sp1i ,p2id plane, in addition to the dominant contributions in
the first quadrant. For larger phases, such as, for instance,
f=1.1p [Fig. 5(c)], the contributions from(7,8) become
even more relevant than those from(5,6). Hence, the distri-
butions are shifted from the first to the third quadrant, in
accordance with Fig. 1(h).

In Fig. 6, we systematically analyze the dependence of the
real and imaginary parts of the timest8 on the absolute
phase, for the three most relevant sets of orbits. As an overall
feature, for the pair(3,4) uImfvt8gu is larger than for the
remaining two pairs. Physically, this means that tunneling is

FIG. 5. Individual contributions of the four most relevant pairs
of orbits to the NSDI yield, forp1i=p2i=pi, for ponderomotive
energyUp=1.2 a.u and absolute phasesf=0.5p, f=0.8p, andf
=1.1p [panels(a), (b), and(c), respectively]. The remaining param-
eters are the same as in the previous figures. The curves have been
normalized to the maximum of the most relevant contributions.
Specifically, in panels(b) and (c), the contributions froms1,2d are
smaller than the range of orders of magnitude displayed.

FIG. 6. Real[panel(a)] and imaginary[panel(b)] parts of the
start times for the orbits(3,4), (5,6), and(7,8) alongp1i=p2i and for
vanishing transverse momenta, indicated by dotted, dashed, and
solid lines, respectively. We consider neon subject to a four-cycle
sn=4d pulse of intensityI =5.531014 W/cm2, various absolute
phases, and frequencyv=0.057 a.u. Specifically, forf=0.5p,
electron-impact ionization is classically forbidden for the orbits
s7,8d.
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less probable in this case. In general, this makes the contri-
butions from this pair to the yield less relevant than those
from the other two sets. An exception, however, occurs for
f=0.5p, due to the fact that, in this case, electron-impact
ionization is forbidden for(7,8). This leads to exponentially
decaying contributions for this pair, which are overwhelmed
by those from(3,4). Still, even in this particular case, these
latter are two orders of magnitude smaller than the yield
from the orbits(5,6) [cf. Fig. 5(a)].

For high driving-field intensities, as those in the lower
panels in Fig. 1, there may exist minor, though not negli-
gible, contributions from(3,4). In general, however, these
contributions are vanishingly small. An interesting feature is
that, with increasing absolute phases, this set of orbits gradu-
ally loses relevance, sinceuImfvt8gu increases. This can be
explicitly seen in Fig. 5, where the yield froms3,4d decreases
in at least three orders of magnitude asf increases.

The other two pairs of orbits,s5,6d ands7,8d, are, in fact,
far more important to the yield. Thereby, three distinct be-
haviors can be identified. Belowf=0.8p, the distributions
are mainly determined by the orbitss5,6d, whose contribu-
tions lie in the region ofpi .0. Around this phase, the pair
s7,8ds0.8pd comes into play. Indeed, although this pair does
not delimit a large classically allowed region, the imaginary
parts of the corresponding start times are comparable to or
smaller than those ofs5,6d. Thus, the contributions from both
pairs start to compete, and the distributions spread over both
positive and negative momentum regions. As the phase in-
creases,uImfvt8gu gradually decreases for this latter set, until
the negative parallel momenta are favored. This explains the
features in Fig. 1. One may refer tof=0.8p as a critical
phasefc, since it marks a change in the sets of dominant
orbits.

The pulse profile(Fig. 7), together with the real parts of
the tunneling times, allows an intuitive interpretation of the
above statements. Belowfc=0.8p, the peak value of the
pulse is near Refvt8g for the orbitss5,6d, whose contribu-
tions then dominate. Thus, the distributions essentially con-
centrate in the positive momentum region. Around this
phase, this picture starts to change, and there are two sets of
orbits, namelys5,6d and s7,8d, for which the instantaneous

electric fields at the tunneling times are comparable. This
situation persists within a phase interval until, finally, the
absolute maximum of the field corresponds to the latter set of
orbits, so that the momenta are mainly negative. An interest-
ing situation occurs forf=0.5p, for which, in principle,
there exist two sets of times near which the electric field
exhibits comparable maxima, corresponding tos3,4d and
s7,8d. For low intensities, rescattering is not allowed for the
orbits s7,8d, and the contributions to the yield are absent. For
high intensities, however, electron-impact ionization is al-
ready allowed in this case, so that the critical phase is shifted
towards smaller values.

In Fig. 8, we explicitly show how electron-impact ioniza-
tion becomes classically allowed or forbidden upon a change
in the driving-field intensity, forfc=0.8p. In fact, as the
intensity is decreased, this process ceases to be allowed for
the orbitss7,8d, whose contributions lie near the peak of the
pulse(cf. Fig. 7). As a direct consequence, the critical phase
is shifted towards larger absolute values as the intensity de-
creases, as shown in Fig. 1.

IV. COMPARISON WITH CLASSICAL MODELS

In this section, we will recall and apply the classical
model used in[29], performing a direct comparison with the
results of theS-matrix computation. We consider an electron
ensemble subject to the few-cycle pulse(20), which is re-
leased from the origin of the coordinate system with initial
vanishing drift velocities, i.e.,

p + Ast8d = 0. s22d

The varying parameters are the tunneling timest8, uniformly
distributed throughout the pulse, and the quasistatic tunnel-
ing rate[30]

FIG. 7. Time-dependent electric field, for various absolute
phases. The peak-field times are marked with arrows and the corre-
sponding pairs of orbits are indicated by the numbers in the figure.
The remaining parameters are the same as in the previous figure.

FIG. 8. Real[panel(a)] and imaginary[panel(b)] parts of the
start times for the orbits(5,6),(7,8), indicated by dashed and solid
lines, respectively, for absolute phasef=0.8p and various laser
intensities, alongp1i=p2i and vanishing transverse momenta. The
remaining parameters are the same as in the previous figure.
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Rst8d , expf− 2s2uE01ud3/2/3uEst8dug/uEst8du, s23d

with which the electron counts are weighted. Some of these
electrons subsequently return to the origin and free a second
electron ensemble at later timest through electron-impact
ionization. Their return and rescattering conditions are given
by Eqs.(9) and (8), respectively. The yields are then given
by

G ,E dt8Rst8ddSEretstd − o
j=1

2
fp j + Astdg2

2
− uE02uD ,

s24d

whereEretstd is the kinetic energy of the electron upon return
and the argument in thed function gives the energy conser-
vation att. This model is discussed in more detail in[26].

Figure 9 presents the outcome of the classical computa-
tion, for the same parameters as in Fig. 1. Interestingly, both
figures are very similar. Indeed, there exist only minor dif-
ferences near the boundaries of the classically allowed re-
gion, which occur for high intensities, as displayed in the
lower panels of Figs. 1 and 9. Such differences are due to the
fact that the yield from the quantum-mechanical computation
is exponentially decaying in the region for which electron-
impact ionization is classically forbidden, whereas the distri-
bution (24) immediately vanishes. Such discrepancies were
also present in the monochromatic case.

Further discrepancies occur for specific phases, in panels
(c) and (e) of both figures, and show that the sign reversal
starts to take place for slightly smaller absolute phases in the
quantum-mechanical case. This effect can be understood if
one keeps in mind that the critical phase indicates a change
in the dominant set of trajectories, and that prerequisites for
this dominance are a large tunneling probability for the first
electron and electron-impact ionization being classically al-
lowed. In the particular example provided in the panels(c)
and(e) of Figs. 1 and 9, this process has just become allowed
for the orbits(7,8), within a small momentum region. In the
quantum-mechanical case(Fig. 1), there exist contributions

to the yield from near the boundary of such a region, even if
rescattering is forbidden, whereas in the classical model(Fig.
9) such contributions vanish. Obviously, such discrepancies
are absent in the symmetric momentum distributions ob-
tained in the monochromatic case.

For monochromatic driving fields, a very good agreement
has also been reported in previous publications[25,26]. It is
not obvious, however, that this would remain true in the
few-cycle regime. In fact, apart from yielding distributions
which immediately vanish at the boundaries of the classi-
cally allowed region, the classical model does not take into
account several effects which are present in the quantum-
mechanical computation. Examples of such effects are the
quantum interference between different possible paths for the
returning electron, or the spread of the electron wave packet.
Furthermore, the classical model considers an additional ap-
proximation with respect to theS-matrix computation,
namely Eq.(23), which is a quasistatic, cycle-averaged tun-
neling rate. This rate is a key ingredient in the distributions
given by Eq.(24), and vital for the phase dependence ob-
served in Fig. 9(cf. Fig. 10 and discussions in[29]). How-
ever, its validity may be limited or even questionable in the
few-cycle regime. Indeed, recently, a nonadiabatic rate that
should be more accurate in this case has been derived[31].
In general, the nonadiabatic rate tends to broaden the time
range for which the relevance of sets of orbits persists. We
verified, however, that this rate does not modify the yields
for the parameter range in question. Discrepancies between
the quasistatic and the nonadiabatic rate occur only when the
Keldysh parameterg=ÎuE01u / s2Upd is much larger than
unity. In this case, the driving-field intensity would be far too
low for the rescattering process discussed in this paper to be
allowed, and thus for the classical model to be applicable.
For measurements of NSDI yields below the threshold, see,
e.g., Ref.[40].

The subsequent picture(Fig. 10) is the classical counter-
part of Fig. 6, providing an interpretation of Fig. 9 in terms
of the interplay between the ionization rate(23) and the
phase space. Thereby, as in the quantum-mechanical case, we
consider parallel momenta along the diagonalp1i=p2i=pi

and vanishing transverse momenta. The main contributions

FIG. 9. Differential electron momentum distributions for the
same parameters as in Fig. 1, computed with the classical model
discussed in Sec. IV.

FIG. 10. Quasistatic tunneling rate(23) [panel (a)], together
with the classically allowed momenta computed with the classical
model[panel(b)], as functions of the tunneling times, for the same
parameters as in Fig. 6.
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to the yield come from pairs of trajectories for which the
tunneling probability is large, and for which electron-impact
ionization is classically allowed. In the figure, according to
such criteria, it is possible to identify two sets of relevant
orbits, corresponding to electrons ejected at 9&vt8&12,
with positive parallel momenta, and to electrons released at
12&vt8&15, with negative parallel momenta.

According to the absolute phase, similarly to the
quantum-mechanical case, there exist three distinct types of
behavior. Forf,0.8p, apart from the fact that the classi-
cally allowed region is almost vanishing for the orbits(7,8),
the quasistatic rate(23) is considerably larger for the former
set of electrons, so that the distributions are concentrated in
the positive momentum regions. Aroundf=0.8p, such tun-
neling rates are comparable for both sets of orbits, resulting
in nonvanishing yields for positive and negative parallel mo-
menta. Finally, as the phase increases, tunneling is more
prominent for the latter set of orbits, and the distributions
gradually change towards negative momenta. As in the pre-
vious section, the critical phase marks a change in the domi-
nant orbits. This is in agreement with Fig. 6 and with the
results in[29].

The ratios between the individual contributions of such
pairs of orbits, as well as the momenta for which their
maxima occur, displayed in Fig. 11, are also in very good
agreement with its quantum-mechanical counterpart(Fig. 5).
However, the distributions computed with the classical
model are narrower than those obtained using the quantum-
mechanical computation. This is once more related to the
fact that, in a classical framework, the contributions from the
forbidden momentum region cannot be taken into account.

Another interesting feature, which is displayed in Fig. 12,
is the existence of other critical phases. For instance, around

f=0.1p, there is a transition in the momentum distributions
from the third to the first quadrant in thesp1i ,p2id plane, i.e.,
exactly in the opposite direction to the transition in Figs. 1
and 9. Furthermore, the upper and lower panels in Fig. 12
look exactly the same, if the first and the third quadrant are
interchanged. This shows that there is a symmetry in
the momentum distributions, which is due to the fact
that Ast ,fd=−Ast ,f±pd, so that uMsp1i ,p2i ,fdu
= uMs−p1i ,−p2i ,f±pdu.

V. CONCLUSIONS

The studies performed in this paper clearly show that non-
sequential double ionization with few-cycle pulses is a pow-
erful tool for absolute-phase measurements. More specifi-
cally, the yields, as functions of the electron momentum
componentssp1i ,p2id parallel to the laser-field polarization,
are mainly concentrated either in the positive or negative
momentum region, depending on the absolute phase in ques-
tion. Around a critical phase, such distributions start to shift
from one momentum region to the other, until, as the phase
increases, complete sign reversal in the momenta occurs.
Such features, obtained consideringse−,2e−d electron-impact
ionization within a quantum-mechanicalS-matrix frame-
work, are interpreted in terms of the so-called quantum or-
bits, which can be directly associated to the trajectories of
classical electrons. Both the asymmetry and the critical phase
result from the interplay between phase-space effects and the
probability that the first electron leaves its parent ion through
tunneling ionization. The former and the latter, respectively,
determine whether electron-impact ionization is classically
allowed or forbidden, or the relevance of a set of orbits to the
yield.

The huge effects observed, namely the yields vanishing or
appearing over extensive and well-separated regions in the
sp1i ,p2id plane, are due to a particular characteristic of the

FIG. 11. Individual contributions to the momentum distributions
for the same pairs of orbits and for the same parameters as in Fig. 5,
computed with the classical model. Parts(a), (b), and (c) corre-
spond tof=0.5p, f=0.8p, andf=1.1p, respectively. The curves
have been normalized to the peak value of the largest curve. The
contributions from the orbits for which electron-impact ionization is
classically forbidden are absent.

FIG. 12. Differential electron momentum distributions com-
puted with the classical model in Sec. IV for neon subject to a
four-cycle pulse sn=4d of approximate intensity I =5.5
31014 W/cm2 sUp=1.2d, frequencyv=0.057 a.u., and absolute
phasesf=0.1p, f=0.5p, and f=0.9p [panels (a)–(c), respec-
tively], and f=1.1p, f=1.5p, and f=1.9p [panels (d)–(f),
respectively].
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rescattering process in question, for which, in addition to a
maximal, there is also a minimal classically allowed energy.
In other words, electron-impact ionization is allowed only
within confined momentum-space regions, defined by the ra-
dius in Eq.(10). By varying the driving-field intensity and
the absolute phase adequately, this radius can be forced to
vanish, so that a whole momentum-space region would be-
come classically forbidden. Furthermore, a particular region
can be made irrelevant due to a small tunneling probability
for the first electron. This is a major advantage over other
phenomena occurring in the context of strong-laser field mat-
ter interaction, such as above-threshold ionization and high-
order harmonic generation. For both phenomena, there are
only maximal classically allowed energies, so that these ef-
fects do not occur.

Apart from providing support for previous classical com-
putations[29], the present results allow one to establish a
one-to-one correspondence between the classical and the
quantum-mechanical approaches.

Tunneling, for instance, is incorporated in the classical
model using the quasistatic rate(23) which weighs the elec-
tron counts. In theS-matrix computation, this process is di-
rectly related to the imaginary parts of the start timest8. Both
the quasistatic rate and Imft8g are somehow a measure of the
relevance of a set of orbits. Indeed, dominant contributions
always come from pairs of orbits for which Eq.(23) is larger
or Imft8g are smaller than those from the remaining pairs.
Depending on the absolute phase, this may occur for a single
set of orbits, whose contributions lie either in the negative or
in the positive momentum regions, or there may be sets of
orbits whose contributions compete. A critical phase charac-
terizes a change in the dominant set of orbits.

Furthermore, the phase-space effects which occur if
electron-impact ionization becomes classically forbidden,
i.e., if the radius in Eq.(10) collapses, are present in both
frameworks in very similar, though not entirely identical,
ways. In the classical computation, this would lead to van-
ishing yields, since the condition in the argument of thed

function in Eq. (24) would never be fulfilled. In the
quantum-mechanical model, there would be exponentially
decaying contributions throughout. If this radius does not
collapse, the process will be allowed within a confined
momentum-space region. In the classical case, the start and
return times coalesce at the boundaries of this region,
whereas, quantum mechanically, this does not completely
happen.

The above-stated effects explain the minor discrepancies
between Figs. 1 and 9. In particular, two types of discrepan-
cies have been observed. First, for high driving-field intensi-
ties, the distributions obtained with the quantum-mechanical
computation are slightly broader than those from the classi-
cal model. Second, in the quantum-mechanical framework,
the distributions start to shift at a slightly smaller phase, as
compared to the outcome of the classical simulation. The
former differences were also present in NSDI with mono-
chromatic driving fields, whereas the latter discrepancies are
specific to asymmetric momentum distributions, which oc-
cur, for instance, in the context of few-cycle driving pulses.

The agreement between both the quantum-mechanical and
the classical computations go beyond the physical explana-
tions for the asymmetry and the critical phase. Indeed, the
momentum distributions computed with one or the other
method, as well as the predicted critical phase and the inter-
val in which the momenta change sign, are very similar,
apart from minor differences near the classical boundaries.
This is concrete evidence that the effects reported in this
paper are not rooted in a particular model or framework,
being, on the contrary, of a deeper physical nature. In fact,
recently, a similar asymmetry has been observed in ongoing
NSDI experiments with few-cycle driving pulses[41].
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