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with few-cycle laser pulses

C. Figueira de Morisson FarfaX. Liu,2 A. Sanper&, and M. Lewensteih
Ynstitut fir Theoretische Physik, Universitat Hannover, Appelstrasse 2, 30167 Hannover, Germany
2Max-Born-Institut, Max-Born-Strasse 2A, 12489 Berlin, Germany
(Received 18 May 2004; published 15 October 2004

We address nonsequential double ionization induced by strong, linearly polarized laser fields of only a few
cycles, considering a physical mechanism in which the second electron is dislodged by the inelastic collision
of the first electron with its parent ion. The problem is treated classically, using an ensemble model, and
guantum mechanically, within the strong-field and uniform saddle-point approximations. In the latter case, the
results are interpreted in terms of “quantum orbits,” which can be related to the trajectories of a classical
electron in an electric field. We obtain highly asymmetric electron momentum distributions, which strongly
depend on the absolute phase, i.e., on the phase difference between the pulse envelope and its carrier frequency.
Around a particular value of this parameter, the distributions shift from the region of positive to that of
negative momenta, or vice versa, in a radical fashion. This behavior is investigated in detail for several
driving-field parameters, and provides a very efficient method for measuring the absolute phase. Both models
yield very similar distributions, which share the same physical explanation. There exist, however, minor
discrepancies due to the fact that, beyond the region for which electron-impact ionization is classically allowed,
the yields from the quantum-mechanical computation decay exponentially, whereas their classical counterparts
vanish.
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[. INTRODUCTION has led to the proposal and experimental realization of

Linearly polarized laser pulses of intensities higher tharschemes fqr its diagnosis, such as, for Instance, using the
101 W/cr? and only a few cycles are of vital importance to @SYmmetry in ATI photoelectron counts reaching two oppo-
several areas of physics, being applicable to, for instanc?,'te detectors placed in a plane perpendicular to the laser
solid-state physic$1], high-frequency sourceg?], or iso- leld [12]. . S
lated attosecond puisg8]. Only the latter application led to ~ Another phenomenon whose physical explanation lies on
a breakthrough in metrology, making it possible to trace thé® Iaser_-asssted rescattering process is nonseq_uentl_al double
motion of bound electrong4], to probe molecular dynamics ionization(NSDI). In this case, an electron recollides inelas-
[5], and to control electron emissigf]. In this pulse-length  tically with its parent ion, giving part of its kinetic energy to
regime, the phase difference between the pulse envelope aAagsecond electron, which is thus able to overcome the second
its carrier frequency, known as “absolute phase,” has a majdenization potential and reach the continuum. Fingerprints of
influence on strong-field optical phenomena, such as highsuch a mechanism were only revealed very recently, in ex-
order harmonic generatiotHHG) [7] or above-threshold periments in which the momentum component parallel to the
ionization(ATI) [8]. In particular, the absolute phase affects, laser field polarization could be resolved, either for the dou-
for instance, the harmonic or photoelectron yields, the maxibly charged iorf14] or for both electron§l5]. Such features,
mal energies in both spectra, and the time profiles of ATl andhamely a doubly peaked structure in the momentum distri-
HHG. This is a direct consequence of the physical mechabutions, with maxima ap;;=py=+2yU,, wherep;(j=1,2)
nisms governing such phenomena, which occur in a subfemand U, denote the electron momentum components parallel
tosecond time scale, and for which the time dependence db the laser field polarization and the ponderomotive energy
the electric field is important. In fact, high-order harmonic [16], respectively, are, up to the present date, the most strik-
generation is the outcome of a three-step process in which dng example of electron-electron correlation in the context of
electron leaves an atom by tunneling ionization at a titne atoms in strong laser fields. This fact has led not only to
propagates in the continuum, and recombines with its parerftirther experiment§17], but also to considerable theoretical
ion at a later instant, releasing the energy gained from the activity on the subject, using quantum-mechanidai—23,
field in the form of high-frequency radiation. A similar semiclassica23—-264, and classical27—-29 methods.
mechanism is also responsible for ATI, with the main differ- Recently, we have shown that NSDI may serve as a pow-
ence that the electron either rescatters elastically with its paerful tool for absolute-phase measurements, exploiting the
ent ion or reaches the detector without recolliding, originat-fact that, for few-cycle driving pulses, inversion symmetry is
ing high- or low-energy peaks in the spectra, respectivelybroken[29]. Thus, the distributions iripy,py) are mainly
Such a mechanism has been extensively studied both classiencentrated in the positive or negative momentum regions,
cally [9,10] and quantum mechanical[\t1]. changing from one region to the other upon a critical phase.

From the experimental point of view, controlling or mea- Such investigations have been performed classically, consid-
suring the absolute phase is a very difficult t4&B]. This  ering electrons released at timé&s uniformly distributed
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throughout the pulse and weighted with the quasistatic tun- Il. BACKGROUND

neling rate[30]. . . . . .
In this paper, we deal with this problem quantum me- The transition amplitude of the laser-assisted inelastic re-

chanically, and investigate the existence of a one-to-one copCaltering process responsible for NSDI, in the strong-field
respondence with the classical model in R@0]. Similar ~ @PProximation[32,33, is given by

studies have been performed for NSDI with monochromatic o t

driving fields, with practically identical outcome25,26. M :_f dtJ dt/(%‘”p VLUV, t)V @ UD(tt)

This has shown that, at least in the monochromatic case, o Jew 2

which is a good approximation for the long pulses used in ,

the experiments, intrinsically quantum mechanical effects X[io(t"), (1)
such as interference processes, or wave-packet spreading, Wﬁerev, UaO)(t,t,)’ Ufy)(t,t’), and V,, denote the atomic

not important. However, it is legitimate to ask the question Ofbinding potential, the field-free and the Volkov time evolu-

whether this situation will persist in the few-cycle regime. . . heth (N=1.2) el d th
Indeed, it may well be that interference and wave-packefiOn OPerators acting on theth (n=1,2) electron, and the

spreading play a more important role in this latter case. AdInteraction through which the second electron is freed by the
ditionally, it is not clear whether the quasistatic tunnelingfirst. respectively. Equatior(1) expresses the following
rate considered in the classical model remains valid for fewPhysical process: Initially, both electrons are bound, and the
cycle driving pulses. In fact, this has been recently callecttom is in the ground state, which is approximated by
into question, with the derivation of a nonadiabatic f&#. |zﬁo(t’)>=|¢él)(t’)>®|w§)2)(t’)> (i.e., product state of one-
Finally, it is worthwhile to check whether asymmetric distri- electron ground statgswith |¢g”>(t’)):ei“50n“/|zpé”)). At the
butions and the critical phase also occur in a quantumtime t’, the first electron is released through tunneling ion-
mechanical context, and, in case they do, to understand theation, whereas the second electron remains bound. Subse-
physics behind such features. quently, the first electron propagates in the continuum from
In particular, we address the above-stated questions using to t, gaining energy from the field. At this latter time, it
on Smatrix formalism, within the strong-field approximation collides inelastically with its parent ion, dislodging the sec-
(SFA) [32,33. We consider the simplest type of rescattering,ond electron. The final electron state is then chosen as the

namely electron-impact ionization, and treat the problem i'broduct state of one-electron Volkov wavebp(v) (1)
terms of the so-called “quantum orbitg34], which appear P1P2

\Y% \% .
in the context of saddle-point approximations. Specifically,=|'f/’:31)(t)>®|‘/’E32)_(t)>' wherep,,p, are the final (_alectron mo-
ment is that the orbits in question occur in pairs, which is in€-9., Refs.[18,25,2§). In Eq. (1), the interaction with the
general the case for laser-assisted rescattering phenome#@fic potential is not taken into account. In our computations,
This method has been previously applied to NSDI in monoWe use the length gauge and atomic units.
chromatic driving fields, in order to analyze the influence of ~ExpandinguU™(t,t') in terms of Volkov states, EqJ)
the types of interaction and final-state electron-electron cort€ads
relation on the yield$25,26. Apart from considerably sim- o ¢
plifying the computations involved, as compared to other :_f dtJ dt’ f d3kVp NieoexdiSt,t, pn k)1,
theoretical method§18-2Q, the quantum-orbit approach — —o "
provides additional physical insight, in terms of a space-time 2)
picture. In fact, the quantum orbits are closely related to the
orbits of a classical electron in an external laser field. Hencewith the action
in several situations, it is possible to draw a parallel be-

tweeen our quantum-mechanical treatment and the previous 12 (* ) 1
classical consideratiorj&9], discussing their similarities and St pn.k) = - 52 [pn+ A(n)]dr - Ef [k
differences. In the following, we study the physical mecha- =Lt !

nisms responsible for the critical phase within a quantum- +A(7)2d7+ [Egift’ + |Egjt, (3)

mechanical framework, concentrating on the main differ-
ences from the classical picture and from theWhereA(), p,(n=1,2), k, and|Ey,| denote the vector poten-
monochromatic-driving field case. tial, the final momenta of both electrons, the intermediate
The paper is organized as follows. In the next sectiofmomentum of the first electron, and the ionization potentials,
(Sec. l), we provide the necessary theoretical backgroundrespectively. All the influence of the binding potentiaand
presenting the transition amplitude in the strong-field ancPf the electron-electron interactiovy, is included in the
uniform approximations. Subsequently, in Sec. Ill, weform factors
resent differential electron momentum distributions for
\F/)arious absolute phases, discussing the main features ob- Vpnk=<p”2+A(t)’pl+A(t)|V12|k+A(t)’ 2’2)> (4)
tained in terms of quantum orbits. The quantum-mechanical d
results are then compared to a classical ensemble computa-

thn which is el'gher the same as ﬂ29], or slightly modlfle_d Vio=(k +A(t")|V| %1)> (5)
with respect to i{Sec. IV). Finally, in Sec. V, we summarize
the paper and state our conclusions. In this paper, we consider a contact-type interaction
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Vo= 8(r—r,)8(ry), (6) electron-impact ionization becomes classically forbidden.

This means that there is not only a maximal, but also a mini-

which yields very good agreement with experimental datgn,) classically allowed energy, and the resulting yields ex-
within the context of NSDI in monochromatic driving fields pipit two cutoffs. or no cutoff at all. This is a major differ-
[23,29. In this case, the form factog, «,Vio are constant ence with respect to high-order harmonic generation or
and the SFA transition amplitude can be solved analyticallahoye-threshold ionization, for which only maximal classi-
up to one quadrature. For other types of potentials, this iggjly allowed energies exist.
only possible by evaluating multiple integrals numerically. |n the standard saddle-point method, the act®nis ex-

For low enough frequencies and high enough laser intenpanded quadratically around the saddle points, and the tran-

sities, Eq.(2) can be solved to a good approximation by thesijtion amplitude(2) is approximated by
steepest-descent method. Thus, we must deterkjitie and

t, such thatS(t,t’,p,, k) is stationary, i.e., its partial deriva- MSPA =" A expliSy), (12)
tives with respect to these parameters vanish. This condition s
yields
[k +At)]?=~-2Eq, (7) S$=S(tste k), 12
2 Vi Vk 0
> [P+ ADT =k + AW - 2[Eqd, ®) A= (2mi)P2——, (13)
n=1 \"dEt%(tatryk)S
and where the indes runs over the relevant saddle points, Sgd
t denotes the five-dimensional matrix of the second derivatives
f ddk +A(7)]=0. (9)  of the action with respect tot’, andk. In practice, we first
t/ determinek(t,t’) as a function of the other variables, insert-

Equations(7) and (8) give the energy conservation at the ing this in the action, and take

start and rescattering times, respectively, while g.con-
straints the intermediate momentum of the first electron so A= (27i)52 ’ ,
that it returns to its parent ion. For vanishili,|, the clas- (t’ —t)?"z\s’detSf;;(t,t’)S
sical equations of motion of both electrons in the external . . o
field are obtained. For nonzetBy,|, Eq. (7) expresses tun- SO that the computation of the Qetermmam is .S|m.pl|f|ed.
neling ionization at’, and has no real solution. Physically, _ The above-stated saddle-point approximation is only ap-
this means that this process is not classically allowed. Thiglicable for well-isolated saddle points. This does not hold
results in complex variables, t, andk, which always occur near th_e boundaries of the classically allowed region, where
in pairs. The real parts of such variables are directly related® pairs of saddles nearly coalesce. Furthermore, beyond
to a longer and a shorter orbit of a classical electron in aruch boundaries, one of the saddles yields diverging results,
electric field. The longer orbit can be associated to the so@nd must be discarded. This leads to cusps in the yield which
called “slow-down collisions,” which have recently been dis-are particularly problematic for nonsequential double ioniza-
cussed in the literaturg22,24,28. The imaginary parts de- tion. A detailed analysis of this problem is given[@4].
termine to which extent electron-impact ionization is allowed ~Such artifacts can be eliminated by using a more general,
or forbidden, both within and beyond the boundaries of thedniform approximation[37], whose only validity require-
classically allowed energy region. In this latter domain, oneMent is that the saddles occur in pairs. This approximation
of the orbits leads to exponentially decaying contributions in1as been successfully applied in the context of above-
the transition amplitud€2), which cause cutoffs in the dis- t_hreshold ionization36] and nonsequential double ioniza-
tributions, while the remaining orbit starts to yield diverging tion [24,.26. o _
contributions, and must be discarded. Within this improved approximation, in the classically al-
Equation(8) can also be written in terms of the momen- Igwca_d reg.ic_)n, t_he transition amplitude for a pair of trajecto-
tum components parallel and perpendicular to the laser-fielf€S1 andj is given by
polarization, denoted by, andp,, (n=1,2), respectively. In _ _ _
this case, for constant transverse momenta, one obtains theMi+j = V27AS'3 exfiS +im/4){A[J13(AS) + J_1/5(A9)]

Vok Vi 0

(14)

equation + AA[Jy5(AS) - (AT,
2 2
—_ _ _ 2 _
gl [P+ AT =[k + AT - 2|Eqd n21 Pni. (10 AS=(S-9)2, S=(5+9)/2,

describing a circle in thpy, p, plane, whose radius depends ) —
on the kinetic energyE,(t)=[k+A(t)]2/2 of the first elec- AA= (A -1A)I2,  A=(A - A)/2. (15

tron upon return, and on the effective binding enefBy  The saddle-point approximation is recovered for large values

=|Egg +22.,p2 /2. If Eeft) < [Eqg, this radius collapses and of AS, using the asymptotic behavior
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of the Bessel functions for large One should note that the -2 2 2 2
uniform approximation considers the collective contribution 4426 3 4 %420 2 2 %20 2 4 %20 7 4
of a pair of gaddle points, m;tgad of, as in the former caseg ; © ; ® ; @ ; )
taking them into account individually. > . . .
In the classically forbidden region, one of the saddles%0 % . K 0 .
. -2 2 2 2
must be discarded. For that purpose, a branch of the Besse i j .
function must be chosen in such a way that the approxima- 4 -2 0 2 4 420 2 4 420 2 4 420 2 ¢
tion exhibits a smooth functional behavior at the Stokes tran-, | ) ® N
L. . < _ 2 2 2 2
sition [35], given by Sl ‘ 0 . B . o
F L . .
Re S,(t,t] ki) = ReS,(t;,t] k). an =2 2 # 2
. 4—4 2 0 2 4 J'~4 2 0 2 4 4—4 2 0 2 4 4—4 2 0 2 4
Beyond the Stokes transition, p, /U™ p, /U™ p,/U,]"” P, /U1

Miyj = V2IAS 7 expliS)[AKy3(— 1AS) +iAAKy5(=1AS)]. FIG. 1. Differential electron momentum distributions computed

(19 for neon (|Ep;|=0.79 a.u. andEgy=1.51 a.u) subject to a four-

. . ) ) . . cycle pulse(n=4) of fregencyn=0.057 a.u. and various intensities
The saddle-point approximation is, again, recovered usingng absolute phases. The upper, middle and lower panels corre-

the asymptotic expansion spond  to  1=4Xx10"W/cn? (U,=0.879a.u),  1=55
\12 x10"w/en? (Up=1.2a.u), and 1=8x10"W/cn? (U,

K, (2) ~ (—> exp(-2) (19 =1.758a.u.), respectively. The absolute phases are given as fol-
2z lows: Panelga), (e), and(i): ¢=0.8m; panels(b), (f), and(j): ¢

for largez. Inserting Eq(19) into Eq.(18), it is easy to show ;gi’”l?wpa”ds(c), (9), and(k): ¢=1m; and panelgd), (h), and(l):

that only one saddle contributes to the saddle-point approxi*
mation in this energy region. Equatio(5) and(18) should  t'+T/2,—p,,-p,)|, which was true for monochromatic

be matched at the Stokes transitions, whose energy positioggiving fields, does not hold. The circular shapes are typical
roughly coincide with the boundary between the classicallyfor the contact-type interaction, and are also observed in the

allowed and forbidden energy regions. monochromatic case.
In the following, we take the few-cycle pulsg(t) Depending on the phase, the yields are mainly concen-
=—dA(t)/dt, with trated either in the regions of positive or negative parallel

momenta. For instance, in the figure, initially, the parallel
A(t) = Agexrd - 4wt — mn)?/(mn)?]sinfwt + ¢J&,, (20)  momenta of both electrons are essentially posifiFes.
wheren, o, Ay, and ¢ denote its number of cycles, fre- ]}(a}, 1(e), gnd 1)]. As the plhase increasbes, cqntributions d
quency, amplitude, and absolute phase, respectively. We thqhom negative momenta are also present, becoming more an
find the start and return times such that the saddle-point©r¢ significant, unt_ll_ the dlstrlbutlon_s are almost ent|rgly
_ . . POINLitted from the positive to the negative momentum region
equauons_are fuIﬁI_Ied, and use such times to compute thfcf. Figs. 1d), 1(h), and 11)]. This process occurs for differ-
yields, which are given by ent intervals of absolute phases, depending on the peak in-
tensity of the driving field. For the specific example pre-
T'(py,P2) =fd2puf d?p,, M2, (21)  sented, the higher the intensity is, the earlier the momenta
start to change sign.
whereM is given by Eq.(2) within the uniform approxima- This phase dependence is very similar to that2e],
tion. obtained within a classical framework. Thereby, this behav-
ior was traced back to sets of electron trajectories, whose
IIl. QUANTUM-ORBIT ANALYSIS re]evan_ce was Qetermined by the _phase space and. by the rate
with which the first electron was ejected in the continuum. A
In Fig. 1, we present the momentum distributions com-critical phase was related to a change in the dominant pair of
puted using the above-discussed method, for various abserbits, which had a huge repercussion in the distributions.
lute phases, in the form of contour plots in they,p,) This phase was also shifted towards smaller absolute values
plane. We choose the atomic species to be neon, for whicWith increasing driving-field intensity.
electron-impact ionization is the dominant physical mecha- Subsequently, we analyze both the asymmetry and the
nism [38]. In general, such distributions exhibit circular critical phase in terms of pairs of quantum orbits, which are
shapes, centered at particular momenta alpng p2=p;, classified adi, ), according to increasing start times and
and, in contrast to the monochromatic-field case, are n@psolute phases. We consider only relatively short orbits so
longer symmetric with respect tOpy,pz) < (=Py,—P2)-  thatt—t' <T, whereT=27/w denotes the field cycle. Longer
This symmetry breaking is expected, since the relafii) orbits yield negligible contributions due to wave-packet
=-A(t+T/2), and thus [M(t,t',py,po)|=|M(t£T/2, spreading.
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] ] ) FIG. 3. The same as in the previous figures for the orbits 3 and
FIG. 2. Real and imaginary parts of the start and return times for,

the orbits 1 and 2 as functions of the parallel momenfyralong

the diagonalpy= pz, computed for a four-cycle pulsén=4) of s eijther classically allowed or at least much more probable
absolute phasep=0.57. The atomic parameters were taken astg gccyr. Additionally, whereas Ifwt] almost vanishes in
[Eoy/=0.79 . u. andEqj =1.51 a.u. and correspond to neon, while s yagion, Infiet’] has a nearly constant and nonvanishing
the field intensity and frequency were chosen &s5.5 . .

4 _ ~ . value [cf. panels(c)]. This is due to the fact that tunneling
X 10" W/em?(Up=12 a.u) and»=0.057 a.u., respectively. The er seis classically forbidden. Indeed, the larger this value
numbers in the figure denote the transverse mom@mta, p,, ) in P th ler i tf)1/ b b'I'i th tth" 9 tak |
units of yU,,. The shorter and longer orbits in each pair correspono‘s’ ”e smailer IS the probabiiity that this process takes place
to the solid and dashed lines, respectively. at all. . . . i

Two additional pairs of orbits, for which 1T5st’ < 2T,

. . . are displayed in Figs. 3 and 4. At these times, the p(#6g
Figure 2 shows one of such pairs fidmearT, which we is closer to its peak intensity. In such figures, there exist

specifically denotd1,2)s,). We consider the intermediate extensive regions between the Stokes transitions, in which

intensity in Fig. 1, for which the phase chosen yields positiveRe{wt,] and Réwt] practically coincide with the start and

pa(rjaltl)el dr_no:nenéa, f;\!ong ;hs di?gormflzp?‘:p”. Panel;_(ar)] return times obtained within a classical framework, and in
and(b) display Ré¢wt'] and Rgwt] as functions opy, which  nich [jm[ wt]| are vanishingly small. Such features are clear

can be ass_omated to 'ghe times obtained by spl\_/lng_ the CI_a%'vidence that, in this case, electron-impact ionization is clas-
sical equations of motion of two electrons colliding inelasti- sically allowed

cally in a laser field. There exists always a longer and @ apqiher noteworthy feature is that, in the classically al-
shorter orbit for the electron, which nearly coalesce near tWoowed region,Im[wt']| has much smaller values than those
Frarr?(;?ilal: mEomeln a. ?Vl;]?hh rr}o;nﬁint? CﬁrresEoir;]ctj :10 itiStOkelﬁ Fig. 2. Physically, this means that the first electron left
ansitions [Eq. (17], ch, for high enoug ensites, with a larger tunneling probability at, in comparison to the

roughly coincide with the minimal and_ _maX|maI classu_:al_ly orbits (1.2 . Furthermore, the fact that this region is ex-
allowed momentd3d]. These two specific momenta delimit tensive sh(gxs) that the kinétic energy of the first electron
a region that is most extensive fpr, =0 (j=1,2. As the on return is larger fof3.4) ang)ES 6 than for
transverse momenta increase, the effective second ionizatich? 9 "7(0.5m) 1~/(0.5m)

potential|[Eyy| also becomes larger until this region collapses. 120f
An interesting feature is that, between the Stokes transitions_|11_8 '
the real parts of the rescattering and start times are centere'g1 168
around a particular value @, which correspond to the peak §11'4
of the momentum distributions. For few-cycle pulses, this )
center depends on the pair of orbits, as well as on the absc 112
lute phase. For monochromatic driving fields, it liespat 09
=x2VU, [24].

The remaining panels depict the imaginary parts of suche 0.7
times, which provide in some sense a measure for a proceeg
being classically allowed or forbidden. Indeed, they deter-— 05
mine whether the transition amplitudé€®) increase or de- Ty
crease exponentially, or how relevant the contributions from %3772 3 .
particular sets of orbits are. These imaginary parts noticeably p"/[Up]”2
increase at and beyond the Stokes transitions, and remain
practically constant in the momentum region in between. FIG. 4. The same as in the previous figures for the orbits 5 and
This suggests that, in this region, electron-impact ionizatiors.
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FIG. 6. Real[panel(a)] and imaginary{panel(b)] parts of the
start times for the orbit€3,4), (5,6), and(7,8) alongpy,=p, and for

FIG. 5. Individual contributions of the four most relevant pairs vanishing transverse momenta, indicated by dotted, dashed, and
of orbits to the NSDI yield, forpy=py=p;, for ponderomotive  solid lines, respectively. We consider neon subject to a four-cycle
energyU,=1.2 a.u and absolute phasés 0.5m, $=0.8m, and¢  (n=4) pulse of intensityl =5.5x 10" W/cm?, various absolute
=1.1x [panelg(a), (b), and(c), respectively. The remaining param- phases, and frequency=0.057 a.u. Specifically, fory=0.5m,
eters are the same as in the previous figures. The curves have beglgctron-impact ionization is classically forbidden for the orbits
normalized to the maximum of the most relevant contributions.(7,8).
Specifically, in panelgb) and(c), the contributions fron(1,2) are . . .
srﬂaller th;’n thg ran§e)of oréle)rs of magnitude displayed. larger than for(1,2) o sr)- From the technical viewpoint, it is

worth mentioning that, for(7,8)s,), the yield has been

(1.2)0.5m- For that reason, the contributions froi®,4) s,  cOmMputed by using Eq1l), and taking the orbit for which
and(5,6) s, to the total yield should be more relevant than this expression is exponentially decaying.
those from(1.2) .5, For other absolute phases, there may be other sets of or-

This is confirmed by Fig. 5, which depicts the yields com- bits whose contributions may compete with or even over-

puted from each pair of the above-discussed orbits, along thWheIm those from(5,6). This is in fact the case in Figs(

. . oo Snd Jc), for ¢$=0.87 and ¢=1.1m, respectively. Such
diagonal py=px=p;. In Fig. ¥a), the contributions from phases, as well as the remaining parameters, are the same as
(5,6)(0.5m are at least two orders of magnitude larger thanin Figs. Xd) and 1f), corresponding to the beginning and to
those from the remaining pairs, so that the distributions williye end of a shift in the momentum distributions.
be concentrated in the first quadrant of fpg, p) plane. In Fig. 5(b), one clearly sees that the second most relevant
Hence, for practical purposes, the remaining contribution$,air of orbits is no longet3,4) o.sx), but (7,8)0.5x- The con-

can be neglected. They are, however, very useful for th‘?ributions from such orbits now are only one order of mag-

physical understanding of the problem. nitude smaller than those fronb,6 Consequentl
The second most prominent contributions come from n,6) 0.87)- q Y,

. . . . there are also small, but not negligible, contributions in nega-
(3,4)0.5m- This is expected, since, for these orbits, there is %ive momentum regions. This is?ir? agreement with Figl)1 9
relatively large probability that the first electron tunnels OUt¢5r which there is a sm.all spot in the third quadrant of the
as We”. as a 'Iarg_e momentum region for which electron—(pln,pzu) plane, in addition to the dominant contributions in
impact ionization is allowed.

. s : the first quadrant. For larger phases, such as, for instance,
Additional contributions come from the o_rb|(a,2)(0,_5,7) b=1.17 ([:IFig. 5c)], the C(g)ntrigutions from(7,8) become
and(7,8)(o.5x- The latter set of orbits is not displayed in the g\en more relevant than those fra6). Hence, the distri-

previous figures, due to the fact that, in this case, there are ngutions are shifted from the first to the third quadrant, in
Stokes transitions, i.e., electron-impact ionization is forbid-accordance with Fig. (h).

den throughout. Interestingly, the contributions from all pairs | Fig. 6, we systematically analyze the dependence of the
of orbits discussed above, including,8)sy, are several real and imaginary parts of the times on the absolute
orders of magnitude larger than those from the paiphase, for the three most relevant sets of orbits. As an overall
(1,2)(0.5m- This is due to the fact that, fof7,8)¢s,), the feature, for the pain3,4) |Im[wt’]| is larger than for the
tunneling probability for the first electron is considerably remaining two pairs. Physically, this means that tunneling is
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less probable in this case. In general, this makes the contri- -

butions from this pair to the yield less relevant than those p"/[Up]

from the other two sets. An exception, however, occurs for

¢=0.57, due to the fact that, in this case, electron-impact F|G. 8. Real[panel(a)] and imaginary{panel(b)] parts of the
ionization is forbidden fo(7,8). This leads to exponentially start times for the orhitg5,6),(7,8), indicated by dashed and solid
decaying contributions for this pair, which are overwhelmediines, respectively, for absolute phage=0.87 and various laser
by those from(3,4). Still, even in this particular case, these intensities, along,=p, and vanishing transverse momenta. The
latter are two orders of magnitude smaller than the yieldremaining parameters are the same as in the previous figure.
from the orbits(5,6) [cf. Fig. 5a)].

For high driving-field intensities, as those in the IoWerelectric fields at the tunneling times are comparable. This

g : : . situation persists within a phase interval until, finally, the
pﬁ;)rllslscg]ntfilt?ﬁ tildntsh?rr;rTSaZ) elxn|st gr]]'ggl’ tﬁgyvge?/el:mthneige“ absolute maximum of the field corresponds to the latter set of
gibie, - N9 ’ ’ ._orbits, so that the momenta are mainly negative. An interest-

contributions are vanishingly small. An interesting feature |sing situation occurs forp=0.5m, for which, in principle,

that, with increasing absolute phases, this set of orbits gradyere exist two sets of times near which the electric field

ally _Io_ses rele\_/anc_:e, sindém[wt]| ipcreases. This can be gyhibits comparable maxima, corresponding (&4) and

explicitly seen in Fig. 5, where the yield fro(8,4) decreases (7 g) For low intensities, rescattering is not allowed for the

in at least three orders of magnitude ¢sncreases. orbits(7,8), and the contributions to the yield are absent. For
The other two pairs of orbit¢5,6) and(7,8), are, in fact,  pigh intensities, however, electron-impact ionization is al-

far more important to the yield. Thereby, three distinct be-ready allowed in this case, so that the critical phase is shifted

haviors can be identified. Below=0.87, the distributions towards smaller values.

are mainly determined by the orbit§,6), whose contribu- In Fig. 8, we explicitly show how electron-impact ioniza-

tions lie in the region ofp,>0. Around this phase, the pair tion becomes classically allowed or forbidden upon a change

(7,8)0.8m Ccomes into play. Indeed, although this pair doesin the driving-field intensity, for¢.=0.8x. In fact, as the

not delimit a large classically allowed region, the imaginaryintensity is decreased, this process ceases to be allowed for

parts of the corresponding start times are comparable to dhe orbits(7,8), whose contributions lie near the peak of the

smaller than those d6,6). Thus, the contributions from both pulse(cf. Fig. 7). As a direct consequence, the critical phase

pairs start to compete, and the distributions spread over boftls shifted towards larger absolute values as the intensity de-

positive and negative momentum regions. As the phase irereases, as shown in Fig. 1.

creases|im[wt']| gradually decreases for this latter set, until

the negative parallel momenta are favored. This explains the IV. COMPARISON WITH CLASSICAL MODELS

features in Fig. 1. One may refer ¥=0.87 as a critical In this section, we will recall and apply the classical
phasedg., since it marks a change in the sets of dominantmodel used if29], performing a direct comparison with the
orbits. results of theéS-matrix computation. We consider an electron

The pulse profilgFig. 7), together with the real parts of ensemble subject to the few-cycle pul&®), which is re-
the tunneling times, allows an intuitive interpretation of theleased from the origin of the coordinate system with initial
above statements. Below.=0.8m, the peak value of the vanishing drift velocities, i.e.,
pulse is near Het'] for the orbits(5,6), whose contribu- p+A(t') =0 (22)
tions then dominate. Thus, the distributions essentially con- '
centrate in the positive momentum region. Around thisThe varying parameters are the tunneling tirtiesiniformly
phase, this picture starts to change, and there are two sets distributed throughout the pulse, and the quasistatic tunnel-
orbits, namely(5,6) and (7,8), for which the instantaneous ing rate[30]
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FIG. 9. Differential electron momentum distributions for the parameters as in Fig. 6.

same parameters as in Fig. 1, computed with the classical model
discussed in Sec. IV.
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to the yield from near the boundary of such a region, even if
rescattering is forbidden, whereas in the classical m@egl
R(t") ~ exd - 2(2|E)¥43E()[V|E(t)|,  (23)  9) such contributions vanish. Obviously, such discrepancies

. . . are absent in the symmetric momentum distributions ob-
with which the electron counts are weighted. Some of thes? ned in the monochromatic case

a i
electrons subsequently return to the origin and freg a secong For monochromatic driving fields, a very good agreement
.elef:tro.n ensemble at later tlmesthrc_)ugh ele_c:_tron—lmpa(;t has also been reported in previous publicatif?&2§. It is
ionization. Their return and rescattering conditions are given, ot obvious. however. that this would remain true in the
by Egs.(9) and(8), respectively. The yields are then given few-cycle regime. In fact, apart from yielding distributions

by which immediately vanish at the boundaries of the classi-
cally allowed region, the classical model does not take into
02|), account several effects which are present in the quantum-
mechanical computation. Examples of such effects are the
(24) guantum interference between different possible paths for the
returning electron, or the spread of the electron wave packet.
whereE,(1t) is the kinetic energy of the electron upon return Furthermore, the classical model considers an additional ap-
and the argument in thé function gives the energy conser- proximation with respect to theS-matrix computation,
vation att. This model is discussed in more detail[R6]. namely Eq.(23), which is a quasistatic, cycle-averaged tun-
Figure 9 presents the outcome of the classical computaneling rate. This rate is a key ingredient in the distributions
tion, for the same parameters as in Fig. 1. Interestingly, botlgiven by Eg.(24), and vital for the phase dependence ob-
figures are very similar. Indeed, there exist only minor dif-served in Fig. 9cf. Fig. 10 and discussions i29]). How-
ferences near the boundaries of the classically allowed resver, its validity may be limited or even questionable in the
gion, which occur for high intensities, as displayed in thefew-cycle regime. Indeed, recently, a nonadiabatic rate that
lower panels of Figs. 1 and 9. Such differences are due to thghould be more accurate in this case has been def8Hd
fact that the yield from the quantum-mechanical computatiorin general, the nonadiabatic rate tends to broaden the time
is exponentially decaying in the region for which electron-range for which the relevance of sets of orbits persists. We
impact ionization is classically forbidden, whereas the distri-verified, however, that this rate does not modify the yields
bution (24) immediately vanishes. Such discrepancies werdor the parameter range in question. Discrepancies between
also present in the monochromatic case. the quasistatic and the nonadiabatic rate occur only when the
Further discrepancies occur for specific phases, in panelseldysh parametery= V|E01|/(2Up) is much larger than
(c) and (e) of both figures, and show that the sign reversalunity. In this case, the driving-field intensity would be far too
starts to take place for slightly smaller absolute phases in thisw for the rescattering process discussed in this paper to be
guantum-mechanical case. This effect can be understood #llowed, and thus for the classical model to be applicable.
one keeps in mind that the critical phase indicates a changeor measurements of NSDI yields below the threshold, see,
in the dominant set of trajectories, and that prerequisites foe.g., Ref.[40].
this dominance are a large tunneling probability for the first The subsequent pictuk&ig. 10 is the classical counter-
electron and electron-impact ionization being classically alpart of Fig. 6, providing an interpretation of Fig. 9 in terms
lowed. In the particular example provided in the parels of the interplay between the ionization rat23) and the
and(e) of Figs. 1 and 9, this process has just become alloweghase space. Thereby, as in the quantum-mechanical case, we
for the orbits(7,8), within a small momentum region. In the consider parallel momenta along the diagopal=p,=p;
guantum-mechanical caggig. 1), there exist contributions and vanishing transverse momenta. The main contributions

F~Jdt’R(t’)é(E,et(t)—E[—pJ%(t)]ﬂE
=1
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four-cycle pulse (n=4) of approximate intensity 1=5.5
p/UI" X 10 W/cn? (Up=1.2), frequencyw=0.057 a.u., and absolute
phases¢=0.1w, ¢=0.57, and ¢=0.97 [panels(a)—c), respec-
FIG. 11. Individual contributions to the momentum distributions tively], and ¢=1.1w, #=1.57, and ¢=1.97 [panels (d)~F),
for the same pairs of orbits and for the same parameters as in Fig. pespectively.
computed with the classical model. Pa¢&, (b), and (c) corre-

spond to¢=0.57, ¢=0.8m, and ¢=1.1, respectively. The curves _ . s .
have been normalized to the peak value of the largest curve. Th =0.1m, there is a transition in the momentum distributions

contributions from the orbits for which electron-impact ionization is | O thg third to the f.IrSt quad.rant in thipy, pz“). plane, €.,

classically forbidden are absent. exactly in the opposite direction to the transition in Flgs. 1
and 9. Furthermore, the upper and lower panels in Fig. 12

to the yield come from pairs of trajectories for which the look exactly the same, if the first and the third quadrant are

tunneling probability is large, and for which electron-impactinterchanged. This shows that there is a symmetry in

ionization is classically allowed. In the figure, according tothe momentum distributions, which is due to the fact

such criteria, it is possible to identify two sets of relevantthat  A(t,¢)=-A(t,¢+m), so that IM(pyy, 2> B)

orbits, corresponding to electrons ejected at &' <12, =|M(=py, =Pay, p* )|

with positive parallel momenta, and to electrons released at

12=< ot’ <15, with negative parallel momenta.

According to the absolute phase, similarly to the V. CONCLUSIONS
quantum-mechanical case, there exist three distinct types of

. . The studies performed in thi learly sh h -
behavior. For¢<0.8m, apart from the fact that the classi- P In this paper clearly show that non

e s sequential double ionization with few-cycle pulses is a pow-
cally allowed region is almost vanishing for the ori#s8), erful tool for absolute-phase measurements. More specifi-

the quasistatic rate?3) is considerably larger for the former : :
set of electrons, so that the distributions are concentrated i%ally, the yields, as functions of the electron momentum

the positive momentum regions. Aroure= 0.8, such tun- compor?ents(pln,pzu) paraIIeI_ to th_e Iaser—fiel_d_ polarization_,
neling rates are comparable for both sets of orbits, resulting’® Mainly concentrated either in the positive or negative
in nonvanishing yields for positive and negative parallel mo-omentum region, depending on the absolute phase in ques-
menta. Finally, as the phase increases, tunneling is moréon- Around a critical phase, such distributions start to shift
prominent for the latter set of orbits, and the distributionsffom one momentum region to the other, until, as the phase
gradually change towards negative momenta. As in the prdhcreases, complete sign reversal in the momenta occurs.
vious section, the critical phase marks a change in the domSuch features, obtained considerig, 2e") electron-impact
nant orbits. This is in agreement with Fig. 6 and with theionization within a quantum-mechanic&matrix frame-
results in[29]. work, are interpreted in terms of the so-called quantum or-
The ratios between the individual contributions of suchbits, which can be directly associated to the trajectories of
pairs of orbits, as well as the momenta for which theirclassical electrons. Both the asymmetry and the critical phase
maxima occur, displayed in Fig. 11, are also in very goodresult from the interplay between phase-space effects and the
agreement with its quantum-mechanical counter@@g. 5). probability that the first electron leaves its parent ion through
However, the distributions computed with the classicaltunneling ionization. The former and the latter, respectively,
model are narrower than those obtained using the quantunaletermine whether electron-impact ionization is classically
mechanical computation. This is once more related to thellowed or forbidden, or the relevance of a set of orbits to the
fact that, in a classical framework, the contributions from theyield.
forbidden momentum region cannot be taken into account.  The huge effects observed, namely the yields vanishing or
Another interesting feature, which is displayed in Fig. 12,appearing over extensive and well-separated regions in the
is the existence of other critical phases. For instance, aroungy,py) plane, are due to a particular characteristic of the
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rescattering process in question, for which, in addition to dunction in Eq. (24) would never be fulfilled. In the
maximal, there is also a minimal classically allowed energyquantum-mechanical model, there would be exponentially
In other words, electron-impact ionization is allowed only decaying contributions throughout. If this radius does not
within confined momentum-space regions, defined by the racollapse, the process will be allowed within a confined
dius in Eqg.(10). By varying the driving-field intensity and momentum-space region. In the classical case, the start and
the absolute phase adequately, this radius can be forced teturn times coalesce at the boundaries of this region,
vanish, so that a whole momentum-space region would bewhereas, quantum mechanically, this does not completely
come classically forbidden. Furthermore, a particular regiorhappen.
can be made irrelevant due to a small tunneling probability The above-stated effects explain the minor discrepancies
for the first electron. This is a major advantage over othebetween Figs. 1 and 9. In particular, two types of discrepan-
phenomena occurring in the context of strong-laser field mateies have been observed. First, for high driving-field intensi-
ter interaction, such as above-threshold ionization and highties, the distributions obtained with the quantum-mechanical
order harmonic generation. For both phenomena, there ammputation are slightly broader than those from the classi-
only maximal classically allowed energies, so that these efeal model. Second, in the quantum-mechanical framework,
fects do not occur. the distributions start to shift at a slightly smaller phase, as
Apart from providing support for previous classical com- compared to the outcome of the classical simulation. The
putations[29], the present results allow one to establish aformer differences were also present in NSDI with mono-
one-to-one correspondence between the classical and tleromatic driving fields, whereas the latter discrepancies are

quantum-mechanical approaches. specific to asymmetric momentum distributions, which oc-
Tunneling, for instance, is incorporated in the classicalcur, for instance, in the context of few-cycle driving pulses.
model using the quasistatic rat23) which weighs the elec- The agreement between both the quantum-mechanical and

tron counts. In thes-matrix computation, this process is di- the classical computations go beyond the physical explana-
rectly related to the imaginary parts of the start tirle®oth  tions for the asymmetry and the critical phase. Indeed, the
the quasistatic rate and [th] are somehow a measure of the momentum distributions computed with one or the other
relevance of a set of orbits. Indeed, dominant contributiongnethod, as well as the predicted critical phase and the inter-
always come from pairs of orbits for which E@3) is larger ~ val in which the momenta change sign, are very similar,
or Im[t’'] are smaller than those from the remaining pairs.apart from minor differences near the classical boundaries.
Depending on the absolute phase, this may occur for a singl€his is concrete evidence that the effects reported in this
set of orbits, whose contributions lie either in the negative opaper are not rooted in a particular model or framework,
in the positive momentum regions, or there may be sets dpeing, on the contrary, of a deeper physical nature. In fact,
orbits whose contributions compete. A critical phase characrecently, a similar asymmetry has been observed in ongoing
terizes a change in the dominant set of orbits. NSDI experiments with few-cycle driving pulsg41].
Furthermore, the phase-space effects which occur if
electron-impact ionization becomes classically forbidden,
i.e., if the radius in Eq(10) collapses, are present in both  Discussions with W. Becker and H. Rottke are gratefully
frameworks in very similar, though not entirely identical, acknowledged. This work was supported in part by the Deut-
ways. In the classical computation, this would lead to vansche Forschungsgemeinschéiuropean Graduate College
ishing yields, since the condition in the argument of the “Interference and Quantum Applications” and SFBA07
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