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High-order harmonic generation from a confined atom
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The order of high harmonics emitted by an atom in an intense laser field is limited by the so-called cutoff
frequency. Solving the time-dependent Schinger equation, we show that this frequency can be increased
considerably by a parabolic confining potential, if the confinement parameters are suitably chosen. Further-
more, due to confinement, the radiation intensity remains high throughout the extended emission range. All
features observed can be explained with classical arguments.

PACS numbeis): 32.80.Rm, 42.65.Ky, 42.50.Hz

Typical features of the emission spectra of an atom in aveak compared to those that originate from an effective tun-
strong laser field, known as “the plateau” and “the cutoff,” neling proce_:s$as is _the case for the lower brar)c_h
are a wide frequency region with harmonics of comparable Another idea to increase the cutoff energy is to use a
intensities, and an abrupt intensity decrease at the higtitatic electric field. It provides an additional force that accel-
energy end of the plateau. For a monochromatic drivingﬁrates the electron towards the atomic core, resulting in a
field, the cutoff energy is given by,.=|so+3.17U igher klnetlc_energEkin(t_l,tp). Indeed, it has begn demon-

’ CoS max™ [%0f T == p strated that with an electric field whose strength is only a few

where|eo| andU,, are the ionization potential and the pon-

‘ . e percent of the amplitude of the laser field one can consider-
deromotive energy, respectively. This simple cutoff law, de'ably enlarge the cutoff enerd,8]. However, the scheme

rived by classical means onfy,2], or using more refined gyffers from two principal limitations. First, the increased
methods{3], corresponds to the physical picture referred tokinetic energy occurs mainly for electrons with long excur-
as the “three-step model['1-3]: A bound electron exposed sion times. Due to wave-packet spreading, the overlap be-
to the laser field leaves the atom through tunneling at a timéween the returning electronic wave packet and the ground-
to (Step 2, propagates in the continuum, being driven backstate wave function is not significant, such that those
towards its parent ion at a later ting (step 2, and finally ~ trajectories have negligible influence on the harmonic spec-
falls back preferentially to the ground state under emission off@ This problem has been overcome by introducing an ad-
high harmonicgstep 3. This scenario describes the spectral ditional magnetic field to restrict the spreadiigg. A second,

. more severe limitation is the pronounced bound-state deple-
features observed experimentally very will. The cutoff .tion caused by the static electric field: the atom is irrevers-

frequency, in quantitative agreement with the experiment, "T’bly ionized within a few field cycles, such that no appre-
related to the maximum kinetic energy the electron has UPORiZbe high-harmonic generation take,s place.

return, Eyn(ty,to). _ _ The bound-state depletion that prevents an effective ex-
According to this picture, in order to increase the cutoffiansion of the high-harmonic frequency points to the prin-
energy, one must increase the kinetic energy of the returningjpje dilemma easily described in the picture of the returning
electron. Indeed, the existing proposals to extend the plateaslectron: To extend the plateau and increase the cutoff, a
towards higher energies reach a higher valu&gf(t;,to)  kinetic energy of the returning electron, as large as possible,
by different means. However, this does not necessarily implys desirable. On the other hand, an electron with such a high
an efficient generation of high-order harmonics up to thisenergy will leave the atom and will be lost for the possible
larger cutoff energy. generation of high harmonics in consecutive laser cycles.
For instance, a rather complex situation with several Hence, we need a mechanism that brings an electron back
“cutoffs” [5] emerges by using bichromatic fields with driv- to the nucleus, despite the fact that it has a kinetic energy so
ing waves of comparable intensities. An illustrative examplehigh that it would be irreversibly driven away from the core.
is presented ifi6], using a driving field of linearly polarized Naively, a simple wall for the electron should already do
monochromatic light of frequencw and its second har- this. However, one must avoid the abrupt reflection of the
monic. Under such conditions the monochromatic cutoff, asharged electron at a wall, since this would lead to brems-
a function of the field-strength ratio between the two drivingstrahlung that masks the desired high-order harmonic genera-
waves, splits into two branches. Thereby, the upper branction of the atom9].
extends up t¢so|+5up. However, the harmonics emerging  In the following we will show that the idea of bringing
up to the cutoff of the upper branch are weak compared tback the fast electron by an additional confinement and
those from the lower branch and therefore irrelevant to thehereby extending the cutoff for the spectrum without addi-
emission spectrum. The reason is simple: The intensity of théonal depletion does indeed work for a suitably soft confine-
harmonics is strongly influenced by step 1, which is the tuniment potential.
neling process out of the binding potential under the influ- We consider a one-dimensional situation, which is a rea-
ence of the field. If the field amplitude is small at the emis-sonable approximation for linearly polarized light. Atomic
sion timet, (which is the case for the upper brancthen the  units are used throughout. The binding of the electron is
tunneling barrier is large and the generated harmonics will beescribed by the potential
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FIG. 1. Schematic representation of an atom in an external con-Io e\
fining potentialV,(x) [cf. Eq.(2a)]. The parametex, for which the A | 9, .
. . . (o)) 3
potential is truncated and the electron excursion ampliglefor O \(%
the parameters of Fig.(@, as well as the nontruncated potential, 9\
are indicated in the figure. 900, ®,
9 -8 o/ O 0o OOQQ 06%
OQO
V,(x)=—1.1exg—x?/1.21), (1) 09
12 B gm 1

which supports a single bound stale) at energy eg
=—0.58 a.u., corresponding to the argon ionization poten-

tial. The system is exposed to a monochromatic laser field Harmonic Order

E(t)=Egsinwt and the additional harmonic potentigdtig. FIG. 2. Harmonic spectra calculated using the time-dependent
1) Schralinger equatiofTDSE) [cf. Eq. (4)]. (a) Field amplitudeE,
=0.08 a.u., field frequency=0.057 a.u., withoufdashed ling
Qﬁ and with (solid line) confinement ,=0.019 a.u.).(b) Field
Vi(x)= 7x2h(x), (2a)  strengthsE,=0.06 a.u.,E,=0.07 a.u., andg;=0.08 a.u., con-

finement curvatur€),=0.019 a.u., and the same frequency as in
the previous part. The classical cutoff energies, given by the cutoff

1, [x]<Xo, law |eo|+4.55Jp, correspond to the harmonic ordems=33, n
=41, andn=49 and are indicated by arrows in the figure. In part
h(x)= 00{2 0), Xo=<|X|<Xmax: (2b) (b), only the harmonic intensities are given, connected by lines.
0, [X|>Xmax .d p?
e I 00)=| 5 FVO-pAD [lp(), 3

with 0= (|X| = Xg)/ (Xmax—Xo), truncated atx=x,. Setting

h(x)=1 in Eg. (28 gives the corresponding non-truncated With V(x) =V4(x) +Vp(x), and the emission spectra are
potential. The parameta,=nE,/w? is chosen to be a mul- given by

tiple of the electron excursion amplitude, amng=2xo. . )
Parabollc poten.tlal shapes are taken as a first approxmatlo_n (T(w):’ f d(t)exd —iwt]| , 4)
in several physical systems, as for instance electromagnetic 0
traps[10] or solid-state deviceEl1]. Note that, for the pa-

rameter range chosen, identical emission spectra are obtainedhere the dipole acceleration
with and without truncation of the harmonic potential, indi-

cating that even in the truncated potential depletion has a d(t)={(t)| —dV(x)/dx+E(t)| (1)) (5)
negligible influence. Thus, the electron does not reach the

edges ofV,(x), which indicates an effective confinement. is computed by means of Ehrenfest's theor@h We take
Furthermore, this shows that the confining potential does ndhe atom initially in the ground stat@). Furthermore, in the
generate harmonics itself. Therefore, high-harmonic generaesults to be presented we choge=73.87 a.u., which cor-
tion still takes place only near the atomic core, for which theresponds to three times the excursion amplitude of an elec-

coordinatex is considerably smaller than the electron excur-tron in a monochromatic field witE;=0.08 a.u. andw

sion amplitude. =0.057 a.u. With these field parameters and a reasonable
The evolution of the electronic wave packet is describedchoice of(},,, one indeed finds that the high-order harmonic
by the time-dependent Sclilinger equation spectrum extends beyond the cutoff energy.,=|eol
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FIG. 3. Cutoff energies computed using the classical model, a:
functions of the field intensityE3, for confinement constants 0

<(0,=<0.019 a.u. andv=0.057 a.u.

+3.1J, without significant loss of intensity; see Fig. 2.

More specifically,
| 80| + 45&]

without trapping. The classical argument for the cutoff en-
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FIG. 4. Cutoff energies computed using the classical model, as

functions of the frequencw of the driving field, for confinement
curvatures 6<(),<0.019 a.u. The circle in the figure corresponds

have been calculated.

0 w=0.057 a.u. and),=0.019 a.u., for which the spectra in Fig.

off constant is approached, i.é((,,w—»)—3.17, as can

be seen in Fig. 4. For finite frequeney the cutoff energy

_ increases with growin@, . In fact, the lower the frequency,

,» we have determined a cutoff energy ofihe more sensitively the cutoff law depends 6. This

p, Which is a 50% increase compared to the case, gnerty is the actual reason why one can obtain an increased
cutoff energy with a confinement. For very low frequencies,

ergy applies to the situation with confinement as well and W&o ¢ toff energy can be easily extended beydag|

find very good agreement between the cutoff in the quantum_ g,
.

In practice, however, there is a lower frequency

spectra(e.g., Fig. 2 and the classical cutoff. The latter has | to generate an appreciable intensity of high harmonics

been determined in analogy to the situation without confine
ment [4,5]: Starting with an electron of velocity zero, its
trajectory is propagated under the influence of the laser fiel
and the confinement potential,, [but without the atomic
potential V(x) =V,]. We vary the initial timet, for which

in the present context. If the confinement frequency is com-
arable to the laser frequend,~ w, the confinement po-
ntial itself starts to contribute to the harmonic generation
process, ceasing to be a passive element. Hence, the condi-
tion for high-harmonic generatio(HHG) under a confine-

the electron leaves the atom within a field cycle, computingment potential can be written &, /w<1. However, there is

Eyin(t1,to) for return timest=t,; satisfying the condition
X(t1) =0. The local maxima irkE,;,(t1,tp) yield the classical
prediction for the cutoffs in the harmonic spectra.

tunneling regimg 12].

also the usual upper limit in frequeneythat comes from the
requirement that the atom in the laser field must be in the

The. good agreement of the classical cutoff vyith the one Typical frequencies used in HHG experiments, and for
found in the quantum spectra allows us to predict, with thg, 1..ch 4 long plateau is obtained, are in the vicinity of

classical model, the behavior of the cutoff as a function of_ 557 4.4 For this frequency a confinement indeed leads

the external parameters, i.e., the confinement con$dgant
the frequency and the amplitude of the external field. We

to a larger cutoff energy, as demonstrated in Fig. 2.
In conclusion, we have presented a scheme for increasing

find that in the parameter range of interest the cutoff law can o «ytoff energy of the high-harmonic spectra of an atom

under the influence of a strong laser field. Placing the atom

in a confining parabolic potential, we have shown that the
(6) cutoff energy can be increased by more than 50%. An effec-

tive increase of the cutoff requires a careful choice of the
where f(Qy,,w) in general neither exhibits a simple func- confinement strength. The confinement curvafiifemust be
tional form nor can be derived analytically. However, thestrong enough for the electron to be appreciably accelerated

be written in the form

emax= g0l +1(Qp ,w)Up,

linear dependence on the field intens’ag/throughup in Eq.

towards the parent ion, but weak enough for it to move in a

(6) is preserved just as in the case without confinement; sequasicontinuum.” If (), is too weak, the conventional cut-
Fig. 3. Only for large confinement constants or electron traoff law | e +3.1M,, is not altered by it. I{), is too strong,

jectories with long excursion times doéé();,,w) become

slightly intensity dependent.

The general behavior df((}},,w) is rather complex. Nev-

the electron moves as a bound particle that does not generate

higher harmonics. In the extreme case, one observes the di-

pole response of a harmonic oscillator, i.e., equally spaced

ertheless, asymptotically a simple and familiar behavior isesonances. A rough indication of whether the electron is in
recovered: For very high frequency, the monochromatic cuta “quasicontinuum” is given by the ratio of the energy dif-
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ference between two consecutive levels of the confinemerghort electron excursion times, whereas using static fields
potential,Ae,,=Qy,, and the ionization potential of the atom one mainly affects electron trajectories witing excursion

in question. IfQ,/|eo|<1, this condition is fulfilled. Also, times. Due to wave-packet spreading, the former trajectories
as already discussed, the ratio between the frequenoy  are far more important for the harmonic spectra than the
the external field and the confinement curvatiigplays an  |atter. In order to reduce the spreading one needs very strong
important role. IfQ),/o~1, the parabolic potential contrib- magnetic field§8]. Another noteworthy feature of a confine-
utes too actively to the harmonic generation process, and th@ent potential is that one can obtain stronger harmonics than
plateau and cutoff are not present in the spectra. The beg{ the static field, or even in the monochromatic case. In fact,
results have been obtained foxo~100 a.u., Qn g3 serious disadvantage concerning static electric fields is an

~0.02 a.u., ando~0.04 a.u. In this case, the energy dif- 5y5reciable decrease in the harmonic intensities compared to
ference between two consecutive levels of the confinemenyq field-free case, due to depletion, i.e., irreversible ioniza-

potent!a: is st|lldo;2tr;e or(c)ieSr lc;f onr? tenth of the |on|zat|ﬁn tion. This problem is not present in our scheme.
pottefr;tla |20 and{, wa .t : dordt IS tplarameter rarsge, the However, similarly to the so far proposed extension of the
iUGCEJ energy can be extended until approximatedy| cutoff energy by using a combination of a static electric field
P . : . and magnetic fields, we are not aware of a direct possibility
On a more technical level, yet very interesting from the . o
for an experimental realization of our scheme. In the former

theoretical point of view, we have seen that the cutoff law is the n rv maanetic field is unrealistically large for
given by the classical picture of an electron moving undeFas€ e necessary magnetic field 1S unreafistically large Tor a

the influence of the laser field and the confinement potentiall.":lbor"jltory applicatiof13]. For our situation, a true electro-

Very good agreement between the quantum-mechanical fuﬂ;igget'(;t:]aepe('js tgﬁ mzcgct)ﬁg?ﬁ:;ﬁg”:ﬁ::eedrgp ;]rt]ebgaéarcn?rt]er
calculation and the classical model occurs for a wide rang ge w ' ’ '9 xciting

of field strengths, frequencies arouad-0.05 a.u., and con- possibilities in the future to design a confined atom as de-
finement curvatu,res of the order ﬂfh~1b‘2 a..u'., Thereby scribed in a quantum-dot like device, for instance as an im-

we have found that the cutoff law strongly depends on th urity. An_|mp_ortant_ ISsue here, howe\_/er, is the limitation in
. he radiation intensity in order to avoid the damage thresh-
confinement curvatur€),, and the frequency of the laser

. . ) . . old. Recently, solid-state materials that can survive our pa-
field, but only linearly on the field mtensnﬁg. y P

rameter range, namely fields of wavelength 790 nm and

The proposed setup presents several advantages over tlﬂ?ensities above 18 W/cm?, have been observddd]
schemes using static fields. For instance, using a confining ' '

potential, one can achieve a considerable extension of the We would like to thank K. Richter, D. B. Milasvic, M.
cutoff energy already for the trajectories corresponding td-. Du, and K. Leo for useful discussions.
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