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High-order harmonic generation from a confined atom

Carla Figueira de Morisson Faria and Jan-Michael Rost
Max-Planck-Institut fu¨r Physik komplexer Systeme, No¨thnitzer Strasse 38, 01187 Dresden, Germany

~Received 19 April 2000; published 18 October 2000!

The order of high harmonics emitted by an atom in an intense laser field is limited by the so-called cutoff
frequency. Solving the time-dependent Schro¨dinger equation, we show that this frequency can be increased
considerably by a parabolic confining potential, if the confinement parameters are suitably chosen. Further-
more, due to confinement, the radiation intensity remains high throughout the extended emission range. All
features observed can be explained with classical arguments.

PACS number~s!: 32.80.Rm, 42.65.Ky, 42.50.Hz
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Typical features of the emission spectra of an atom i
strong laser field, known as ‘‘the plateau’’ and ‘‘the cutoff,
are a wide frequency region with harmonics of compara
intensities, and an abrupt intensity decrease at the h
energy end of the plateau. For a monochromatic driv
field, the cutoff energy is given by«max5u«0u13.17Up ,
whereu«0u andUp are the ionization potential and the po
deromotive energy, respectively. This simple cutoff law, d
rived by classical means only@1,2#, or using more refined
methods@3#, corresponds to the physical picture referred
as the ‘‘three-step model’’@1–3#: A bound electron expose
to the laser field leaves the atom through tunneling at a t
t0 ~step 1!, propagates in the continuum, being driven ba
towards its parent ion at a later timet1 ~step 2!, and finally
falls back preferentially to the ground state under emission
high harmonics~step 3!. This scenario describes the spect
features observed experimentally very well@4#. The cutoff
frequency, in quantitative agreement with the experimen
related to the maximum kinetic energy the electron has u
return,Ekin(t1 ,t0).

According to this picture, in order to increase the cut
energy, one must increase the kinetic energy of the return
electron. Indeed, the existing proposals to extend the pla
towards higher energies reach a higher value ofEkin(t1 ,t0)
by different means. However, this does not necessarily im
an efficient generation of high-order harmonics up to t
larger cutoff energy.

For instance, a rather complex situation with seve
‘‘cutoffs’’ @5# emerges by using bichromatic fields with dri
ing waves of comparable intensities. An illustrative exam
is presented in@6#, using a driving field of linearly polarized
monochromatic light of frequencyv and its second har
monic. Under such conditions the monochromatic cutoff,
a function of the field-strength ratio between the two drivi
waves, splits into two branches. Thereby, the upper bra
extends up tou«0u15Up . However, the harmonics emergin
up to the cutoff of the upper branch are weak compared
those from the lower branch and therefore irrelevant to
emission spectrum. The reason is simple: The intensity of
harmonics is strongly influenced by step 1, which is the t
neling process out of the binding potential under the infl
ence of the field. If the field amplitude is small at the em
sion timet0 ~which is the case for the upper branch!, then the
tunneling barrier is large and the generated harmonics wil
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weak compared to those that originate from an effective t
neling process~as is the case for the lower branch!.

Another idea to increase the cutoff energy is to use
static electric field. It provides an additional force that acc
erates the electron towards the atomic core, resulting i
higher kinetic energyEkin(t1 ,t0). Indeed, it has been demon
strated that with an electric field whose strength is only a f
percent of the amplitude of the laser field one can consid
ably enlarge the cutoff energy@7,8#. However, the scheme
suffers from two principal limitations. First, the increase
kinetic energy occurs mainly for electrons with long excu
sion times. Due to wave-packet spreading, the overlap
tween the returning electronic wave packet and the grou
state wave function is not significant, such that tho
trajectories have negligible influence on the harmonic sp
tra. This problem has been overcome by introducing an
ditional magnetic field to restrict the spreading@8#. A second,
more severe limitation is the pronounced bound-state de
tion caused by the static electric field: the atom is irreve
ibly ionized within a few field cycles, such that no appr
ciable high-harmonic generation takes place.

The bound-state depletion that prevents an effective
tension of the high-harmonic frequency points to the pr
ciple dilemma easily described in the picture of the return
electron: To extend the plateau and increase the cutof
kinetic energy of the returning electron, as large as possi
is desirable. On the other hand, an electron with such a h
energy will leave the atom and will be lost for the possib
generation of high harmonics in consecutive laser cycles

Hence, we need a mechanism that brings an electron b
to the nucleus, despite the fact that it has a kinetic energ
high that it would be irreversibly driven away from the cor
Naively, a simple wall for the electron should already
this. However, one must avoid the abrupt reflection of
charged electron at a wall, since this would lead to brem
strahlung that masks the desired high-order harmonic gen
tion of the atom@9#.

In the following we will show that the idea of bringing
back the fast electron by an additional confinement a
thereby extending the cutoff for the spectrum without ad
tional depletion does indeed work for a suitably soft confin
ment potential.

We consider a one-dimensional situation, which is a r
sonable approximation for linearly polarized light. Atom
units are used throughout. The binding of the electron
described by the potential
©2000 The American Physical Society02-1
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Va~x!521.1 exp~2x2/1.21!, ~1!

which supports a single bound stateu0& at energy «0
520.58 a.u., corresponding to the argon ionization pot
tial. The system is exposed to a monochromatic laser fi
E(t)5E0 sinvt and the additional harmonic potential~Fig.
1!

Vh~x!5
Vh

2

2
x2h~x!, ~2a!

h~x!5H 1, uxu,x0 ,

cosS p

2
u D , x0<uxu<xmax,

0, uxu.xmax,

~2b!

with u5(uxu2x0)/(xmax2x0), truncated atx5x0. Setting
h(x)51 in Eq. ~2a! gives the corresponding non-truncat
potential. The parameterx05nE0 /v2 is chosen to be a mul
tiple of the electron excursion amplitude, andxmax52x0.
Parabolic potential shapes are taken as a first approxima
in several physical systems, as for instance electromagn
traps@10# or solid-state devices@11#. Note that, for the pa-
rameter range chosen, identical emission spectra are obta
with and without truncation of the harmonic potential, ind
cating that even in the truncated potential depletion ha
negligible influence. Thus, the electron does not reach
edges ofVh(x), which indicates an effective confinemen
Furthermore, this shows that the confining potential does
generate harmonics itself. Therefore, high-harmonic gen
tion still takes place only near the atomic core, for which t
coordinatex is considerably smaller than the electron exc
sion amplitude.

The evolution of the electronic wave packet is describ
by the time-dependent Schro¨dinger equation

FIG. 1. Schematic representation of an atom in an external c
fining potentialVh(x) @cf. Eq.~2a!#. The parameterx0 for which the
potential is truncated and the electron excursion amplitudea0, for
the parameters of Fig. 2~a!, as well as the nontruncated potentia
are indicated in the figure.
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uc~ t !&5Fp2

2
1V~x!2pA~ t !G uc~ t !&, ~3!

with V(x)5Va(x)1Vh(x), and the emission spectra a
given by

s~v!5U E
0

`

d~ t !exp@2 ivt#U2

, ~4!

where the dipole acceleration

d~ t !5^c~ t !u2dV~x!/dx1E~ t !uc~ t !& ~5!

is computed by means of Ehrenfest’s theorem@9#. We take
the atom initially in the ground stateu0&. Furthermore, in the
results to be presented we chosex0573.87 a.u., which cor-
responds to three times the excursion amplitude of an e
tron in a monochromatic field withE050.08 a.u. andv
50.057 a.u. With these field parameters and a reason
choice ofVh , one indeed finds that the high-order harmon
spectrum extends beyond the cutoff energy«max5u«0u

n-

FIG. 2. Harmonic spectra calculated using the time-depend
Schrödinger equation~TDSE! @cf. Eq. ~4!#. ~a! Field amplitudeE0

50.08 a.u., field frequencyv50.057 a.u., without~dashed line!
and with ~solid line! confinement (Vh50.019 a.u.). ~b! Field
strengthsE050.06 a.u.,E050.07 a.u., andE050.08 a.u., con-
finement curvatureVh50.019 a.u., and the same frequency as
the previous part. The classical cutoff energies, given by the cu
law u«0u14.55Up , correspond to the harmonic ordersn533, n
541, andn549 and are indicated by arrows in the figure. In pa
~b!, only the harmonic intensities are given, connected by lines
2-2



2.
o
s
n
w
tu
s

ne
s
e

in

n
th
o

ca

c-
he

s
tra

i
u

,

sed
s,

cy
ics
m-

ion
ondi-

the

for

ads

sing
om
om
the
ec-
the

ated
a

-

erate
e di-
ced

in
f-

, a

, as

ds
.

RAPID COMMUNICATIONS

HIGH-ORDER HARMONIC GENERATION FROM A . . . PHYSICAL REVIEW A62 051402~R!
13.17Up without significant loss of intensity; see Fig.
More specifically, we have determined a cutoff energy
u«0u14.55Up , which is a 50% increase compared to the ca
without trapping. The classical argument for the cutoff e
ergy applies to the situation with confinement as well and
find very good agreement between the cutoff in the quan
spectra~e.g., Fig. 2! and the classical cutoff. The latter ha
been determined in analogy to the situation without confi
ment @4,5#: Starting with an electron of velocity zero, it
trajectory is propagated under the influence of the laser fi
and the confinement potentialVh @but without the atomic
potentialV(x)5Va]. We vary the initial timet0 for which
the electron leaves the atom within a field cycle, comput
Ekin(t1 ,t0) for return timest5t1 satisfying the condition
x(t1)50. The local maxima inEkin(t1 ,t0) yield the classical
prediction for the cutoffs in the harmonic spectra.

The good agreement of the classical cutoff with the o
found in the quantum spectra allows us to predict, with
classical model, the behavior of the cutoff as a function
the external parameters, i.e., the confinement constantVh ,
the frequency and the amplitude of the external field. W
find that in the parameter range of interest the cutoff law
be written in the form

«max5u«0u1 f ~Vh ,v!Up , ~6!

where f (Vh ,v) in general neither exhibits a simple fun
tional form nor can be derived analytically. However, t
linear dependence on the field intensityE0

2 throughUp in Eq.
~6! is preserved just as in the case without confinement;
Fig. 3. Only for large confinement constants or electron
jectories with long excursion times doesf (Vh ,v) become
slightly intensity dependent.

The general behavior off (Vh ,v) is rather complex. Nev-
ertheless, asymptotically a simple and familiar behavior
recovered: For very high frequency, the monochromatic c

FIG. 3. Cutoff energies computed using the classical model
functions of the field intensityE0

2, for confinement constants 0
<Vh<0.019 a.u. andv50.057 a.u.
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off constant is approached, i.e.,f (Vh ,v→`)→3.17, as can
be seen in Fig. 4. For finite frequencyv the cutoff energy
increases with growingVh . In fact, the lower the frequency
the more sensitively the cutoff law depends onVh . This
property is the actual reason why one can obtain an increa
cutoff energy with a confinement. For very low frequencie
the cutoff energy can be easily extended beyondu«0u
19Up . In practice, however, there is a lower frequen
limit to generate an appreciable intensity of high harmon
in the present context. If the confinement frequency is co
parable to the laser frequency,Vh;v, the confinement po-
tential itself starts to contribute to the harmonic generat
process, ceasing to be a passive element. Hence, the c
tion for high-harmonic generation~HHG! under a confine-
ment potential can be written asVh /v!1. However, there is
also the usual upper limit in frequencyv that comes from the
requirement that the atom in the laser field must be in
tunneling regime@12#.

Typical frequencies used in HHG experiments, and
which a long plateau is obtained, are in the vicinity ofv
50.057 a.u. For this frequency a confinement indeed le
to a larger cutoff energy, as demonstrated in Fig. 2.

In conclusion, we have presented a scheme for increa
the cutoff energy of the high-harmonic spectra of an at
under the influence of a strong laser field. Placing the at
in a confining parabolic potential, we have shown that
cutoff energy can be increased by more than 50%. An eff
tive increase of the cutoff requires a careful choice of
confinement strength. The confinement curvatureVh must be
strong enough for the electron to be appreciably acceler
towards the parent ion, but weak enough for it to move in
‘‘quasicontinuum.’’ If Vh is too weak, the conventional cut
off law u«0u13.17Up is not altered by it. IfVh is too strong,
the electron moves as a bound particle that does not gen
higher harmonics. In the extreme case, one observes th
pole response of a harmonic oscillator, i.e., equally spa
resonances. A rough indication of whether the electron is
a ‘‘quasicontinuum’’ is given by the ratio of the energy di

s

FIG. 4. Cutoff energies computed using the classical model
functions of the frequencyv of the driving field, for confinement
curvatures 0<Vh<0.019 a.u. The circle in the figure correspon
to v50.057 a.u. andVh50.019 a.u., for which the spectra in Fig
2 have been calculated.
2-3
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ference between two consecutive levels of the confinem
potential,D«h5Vh , and the ionization potential of the atom
in question. IfVh /u«0u!1, this condition is fulfilled. Also,
as already discussed, the ratio between the frequencyv of
the external field and the confinement curvatureVh plays an
important role. IfVh /v;1, the parabolic potential contrib
utes too actively to the harmonic generation process, and
plateau and cutoff are not present in the spectra. The
results have been obtained forx0;100 a.u., Vh
;0.02 a.u., andv;0.04 a.u. In this case, the energy d
ference between two consecutive levels of the confinem
potential is still of the order of one tenth of the ionizatio
potentialu«0u andVh /v;0.5. For this parameter range, th
cutoff energy can be extended until approximatelyu«0u
16Up .

On a more technical level, yet very interesting from t
theoretical point of view, we have seen that the cutoff law
given by the classical picture of an electron moving un
the influence of the laser field and the confinement poten
Very good agreement between the quantum-mechanical
calculation and the classical model occurs for a wide ra
of field strengths, frequencies aroundv;0.05 a.u., and con
finement curvatures of the order ofVh;1022 a.u. Thereby
we have found that the cutoff law strongly depends on
confinement curvatureVh and the frequencyv of the laser
field, but only linearly on the field intensityE0

2.
The proposed setup presents several advantages ove

schemes using static fields. For instance, using a confi
potential, one can achieve a considerable extension of
cutoff energy already for the trajectories corresponding
d

r
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short electron excursion times, whereas using static fie
one mainly affects electron trajectories withlong excursion
times. Due to wave-packet spreading, the former trajecto
are far more important for the harmonic spectra than
latter. In order to reduce the spreading one needs very st
magnetic fields@8#. Another noteworthy feature of a confine
ment potential is that one can obtain stronger harmonics t
in the static field, or even in the monochromatic case. In fa
a serious disadvantage concerning static electric fields is
appreciable decrease in the harmonic intensities compare
the field-free case, due to depletion, i.e., irreversible ioni
tion. This problem is not present in our scheme.

However, similarly to the so far proposed extension of t
cutoff energy by using a combination of a static electric fie
and magnetic fields, we are not aware of a direct possib
for an experimental realization of our scheme. In the form
case the necessary magnetic field is unrealistically large f
laboratory application@13#. For our situation, a true electro
magnetic trap is too macroscopic compared to the param
range we need. On the other hand, there might be exci
possibilities in the future to design a confined atom as
scribed in a quantum-dot like device, for instance as an
purity. An important issue here, however, is the limitation
the radiation intensity in order to avoid the damage thre
old. Recently, solid-state materials that can survive our
rameter range, namely fields of wavelengthl5790 nm and
intensities above 1014 W/cm2, have been observed@14#.

We would like to thank K. Richter, D. B. Milosˇević, M.
L. Du, and K. Leo for useful discussions.
ht,
.

-

a

n,
@1# P.B. Corkum, Phys. Rev. Lett.71, 1994~1993!.
@2# M.Yu. Kuchiev, Pis’ma Zh. E´ksp. Teor. Fiz.45, 319 ~1987!

@JETP Lett.45, 404 ~1987!#; K.C. Kulander, K.J. Schafer, an
J.L. Krause, inProceedings of the SILAP Conference, edited
by B. Pirauxet al. ~Plenum, New York, 1993!.

@3# M. Lewenstein, Ph. Balcou, M.Yu. Ivanov, A. L’Huillier, and
P.B. Corkum, Phys. Rev. A49, 2117 ~1994!; W. Becker, S.
Long, and J.K. McIver,ibid. 41, 4112~1990!; 50, 1540~1994!.

@4# For a recent review, consult P. Salie`res, A. L’Huillier, P. An-
toine, and M. Lewenstein, Adv. At., Mol., Opt. Phys.41, 83
~1999!.

@5# See, e.g., C. Figueira de Morisson Faria, M. Do¨rr, W. Becker,
and W. Sandner, Phys. Rev. A60, 1377~1999!; C. Figueira de
Morisson Faria, W. Becker, M. Do¨rr, and W. Sandner, Lase
Phys.9, 388 ~1999!.

@6# C. Figueira de Morisson Faria, D.B. Milosˇević, and G. G. Pau-
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