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For the description of nonsequential double ionization(NSDI) of rare-gas atoms by a strong linearly polar-
ized laser field, the quantum-mechanicalS-matrix diagram that incorporates rescattering impact ionization is
evaluated in the strong-field approximation. We employ a uniform approximation, which is a generalization of
the standard saddle-point approximation. We systematically analyze the manifestations of the electron-electron
interaction in the momentum distributions of the ejected electrons: for the interaction, by which the returning
electron frees the bound electron, we adopt either a(three-body) contact interaction or a Coulomb interaction,
and we do or do not incorporate the mutual Coulomb repulsion of the two electrons in their final state. In
particular, we investigate the correlation of the momentum components parallel to the laser-field polarization,
with the transverse momentum components either restricted to certain finite ranges or entirely summed over. In
the latter case, agreement with experimental data is best for the contact interaction and without final-state
repulsion. In the former, if the transverse momenta are restricted to small values, comparison of theory with the
data shows evidence of Coulomb effects. We propose that experimental data selecting events with small
transverse momenta ofboth electrons are particularly promising in the elucidation of the dynamics of NSDI.
Also, a classical approximation of the quantum-mechanicalS matrix is formulated and shown to work very
well inside the classically allowed region.
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I. INTRODUCTION

Double and multiple ionization of atoms by intense laser
fields is a very important process for laser-plasma diagnos-
tics. As long as electrons are ripped off one by one, usually at
the leading edge of the laser pulse while the intensity is
rising [1], the process can be straightforwardly described in
terms of rate equations and the Ammosov-Delone-Krainov
(ADK ) rates [2]. However, as early as 1983 experimental
evidence was found for the significance of anonsequential
channel where several electrons are ejected in one coherent
process[3]. Nonsequential double and multiple ionization in
an intense laser field is of great fundamental interest, since it
requires electron-electron correlation as a necessary precon-
dition. If one electron did not notice the other, all multiple
ionization would be sequential. In most other intense-laser
atom processes, such as high-order harmonic generation or
above-threshold ionization, footprints of electron-electron
correlation are hard to find[4]. In contrast, in double ioniza-
tion of helium below saturation, the nonsequential pathway
was observed to be dominant by many orders of magnitude
[5].

The search for the physical mechanism that is capable of
producing an effect of this magnitude remained inconclusive
until experimental information became available that went
beyond mere ion counting, that is, beyondtotal double-

ionization probabilities. The advent of the cold-target recoil-
ion momentum spectroscopy(COLTRIMS) technique, also
known as reaction microscope[6], combined with high-
repetition-rate lasers, has opened the way towards acquisi-
tion of multiply differential cross sections of the double-
ionization process. The first step was taken with the
observation of the momentum distributions(all three compo-
nents) of the doubly charged ion[7,8]. In principle, this tech-
nique enables one to record all six momentum components
of two particles of opposite charges produced in some reac-
tion. For double ionization, to the extent that the momentum
transfer by the laser field is negligible, this amounts to a
complete kinematical characterization of the process. For a
recent review, see Ref.[9].

As a result, for the low-frequency high-intensity lasers
that were employed in the COLTRIMS experiments, rescat-
tering [10] has emerged as a dominant mechanism. This is
the same mechanism that is responsible for high-order har-
monic generation and high-order above-threshold ionization:
an electron set free via tunneling is driven back by the field
to its parent ion where it can rescatter, recombine, or dis-
lodge another electron(or several electrons). Even though
rescattering appears to be the dominant mechanism, many
features of the data remain unexplained. An example is the
behavior of the multiply differential cross sections near and
below the classical threshold[11]. This realm is inaccessible
to classical methods, and the data are not compatible with the
results of the quantum descriptions.

The unequivocal imprint on the data caused by the sim-
plest version of rescattering—that is, electron-impact
ionization—is a double-humped distribution of the momen-
tum componentpioni of the doubly charged ion parallel to the
(linearly polarized) laser field[7,8]. The humps are centered
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nearpioni < ±4ÎUP, whereUP is the ponderomotive potential
of the laser field[12]. This simple estimate is a straightfor-
ward prediction of the rescattering model[13,14].

Various routes have been followed in the theoretical de-
scription of nonsequential double ionization(NSDI). The
mostab initio approach is the numerical solution of the time-
dependent Schrödinger equation in three spatial dimensions
for each electron[15,16]. Owing to the extreme demands on
computing power, no explicit results have been obtained yet
for the near-infrared frequencies used in experiments. A sig-
nificant simplification occurs if the inner electron is allowed
to respond to the outer, but not vice versa[17]. Much more
work has been done on the corresponding problem in one
spatial dimension for each electron[18–22].

An alternative quantum-mechanical approach has at-
tempted to identify the dominant contribution to theS-matrix
element for the NSDI process[23,24], out of the multitude of
diagrams that contribute. For low-frequency, high-intensity
lasers, this has turned out to be the one that describes rescat-
tering. It has been evaluated by several groups with different
approximations[13,25–31]. Of these, the evaluation with
saddle-point methods[27–30] requires the least computa-
tional effort and affords good physical insight.

Until recently, the theoretical effort concentrated on the
computation of total NSDI rates. Only a few theoretical re-
sults exist for the differential yields that have been obtained
with the help of the COLTRIMS method. These were ob-
tained from the solution of the one-dimensional time-
dependent Schrödinger equation[22], by a classical analysis
of excited two-electron configurations in a time-dependent
electric field [32] and by three-dimensional classical-
trajectory methods[33,34]. The latter have produced good
agreement with those data that are sufficiently far in the clas-
sical regime. Other than that, thus far the calculation of mul-
tiply differential yields has been the domain of theS-matrix
approach. In the latter, a crucial element is the form of the
electron-electron interaction by which the returning electron
frees the second bound electron. This interaction is treated in
the lowest-order Born approximation. The most natural
choice appears to be the Coulomb interaction. However, as-
tonishingly, a three-body contact interaction at the position
of the ion produces better agreement with the experimental
data, at least for neon[35].

In this paper, we perform a systematic investigation of the
rescattering contribution to theS-matrix element that de-
scribes NSDI. We calculate the distributions of the electron
momentum components parallel to the laser field, and inte-
grate over the components perpendicular to the field either
completely or partly. Experiments corresponding to the latter
situation have been carried out recently. For example, the
data were analyzed by binning the transverse momentum of
the observed electron according to its magnitude[37,36].
This is a further step towards the ultimate goal of kinemati-
cally complete experiments. It should help one disentangle
mere phase-space effects from the nontrivial dynamics of
electron-electron correlation and find clear signatures of the
very interaction that is instrumental for the ejection of the
second electron. We compare the two extreme limits of this
crucial electron-electron interaction, namely, the infinite-
range Coulomb potential and the zero-range contact poten-

tial. In addition, we exactly implement the Coulomb repul-
sion between the two electrons in the final state[38] and
study its effect on the aforementioned electron distributions.

We treat the problem in terms of quantum orbits[39,40].
Such orbits are closely related to the electron trajectories
obtained classically within the rescattering model. Their con-
tributions are, however, superposed in the fashion of the
quantum-mechanical path integral. Moreover, being complex
they account for the electron tunneling from its initial bound
state into the continuum owing to the action of the laser field.
Indeed, the quantum-orbit approach is capable of describing
interference effects, and it remains applicable in energy re-
gions that are out of reach to classical methods, where the
rescattering process is classically forbidden(in a sense to be
defined below in Sec. II B). Furthermore, this approach is
computationally much less demanding and more transparent
than other quantum-mechanical treatments.

Our computations are performed within a specific uniform
approximation[30,41], which is a generalization of the stan-
dard saddle-point approximation, widely used in the context
of atoms in strong laser fields[40]. The standard saddle-point
approximation requires that the saddles be well isolated,
whereas the uniform approximation in question only needs
the saddles to occur in pairs, regardless of their separation.
The latter condition is always satisfied by the quantum orbits
which occur in intense-laser-atom processes[39]. In fact, for
a specified final state, contributing orbits always come in
pairs, one having a longer travel time than the other. At the
boundaries between classically allowed and forbidden energy
regions, these two orbits almost coalesce. Such a boundary
causes a “cutoff” in the energy spectrum, such that the yield
decreases steeply when the associated parameter proceeds
into the classically forbidden region.

We also present and evaluate a very simple model to de-
scribe rescattering impact ionization that is classical in the
following sense: The first electron enters the continuum by
quantum-mechanical tunneling, which is described by a rate
formula that is highly nonlinear in the applied field, such that
ionization predominantly takes place near the maxima of the
field. The process of impact ionization is governed by the
square of the form factor that occurs in the quantum calcu-
lation. Everything else is described in classical terms. Under
the condition that the kinetic energy of the returning electron
be much larger than the second ionization potential, the re-
sults of this classical model agree extremely well with the
quantum-mechanical results.

The paper is organized as follows. In the following sec-
tion, we provide the necessary theoretical background,
namely, the transition amplitude for NSDI in the strong-field
approximation(Sec.II A) and the saddle-point and uniform
approximations(Sec.II B). This formalism is subsequently
applied to compute momentum distributions of electrons for
the contact or Coulomb interaction, including or not includ-
ing the final-state electron-electron repulsion(Secs. III B and
III C, respectively). In Sec. IV we formulate and evaluate the
just mentioned classical model of rescattering-induced
NSDI. In Sec. V we relate the trends of our results to the
existing data. A detailed comparison for the parameters of
the respective experiments can be found in Ref.[42]. In the
concluding section, Sec. VI, we assess the merits and short-
comings of our approach.
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II. BACKGROUND

A. Transition amplitude

In the strong-field approximation(SFA), the transition
amplitude for the NSDI process, caused by laser-assisted in-
elastic rescattering, is given by[13,23]

M = −E
−`

`

dtE
−`

t

dt8kcp1p2

sVd stduV12U1
sVdst,t8dV1

^ U2
s0dst,t8duc0st8dl, s1d

whereV1 andU1
sVdst ,t8d denote the atomic binding potential

and the Volkov time-evolution operator acting on the first
electron,U2

s0dst ,t8d is the field-free propagator acting on the
second electron, andV12 is the electron-electron interaction
through which the second electron is freed by the first.
Equations1d can be interpreted as follows. Initially, both
electrons are bound in their ground stateuc0st8dl, which is
approximated by the productuc0

s1dst8dl ^ uc0
s2dst8dl of the

one-electron ground statesuc0
sndst8dl=ei uE0nut8uc0

sndl with ion-
ization potentialsuE0nu. At the time t8, the first electron is
released through tunneling ionization, whereas the second
electron remains bound in its initial state. Subsequently,
the first electron propagates in the continuum, gaining en-
ergy from the field. At the later timet, it undergoes an
inelastic collision with its parent ion, dislodging the sec-
ond electron in this process. The final electron state is
taken either as the product state of one-electron Volkov
states or as a two-electron Volkov statef38g, with
asymptotic momentap1 and p2. The two-electron Volkov
state exactly accounts for the electron-electron Coulomb
repulsion, in addition to the interaction with the laser
field.

The SFA is commonly made in semianalytical calcula-
tions of laser-atom processes affected by high-intensity low-
frequency laser fields. Briefly, it consists in neglecting the
influence of the binding potential on the propagation of the
electron in the continuum, and the action of the laser field on
the bound electron. In addition, there are other physical in-
gredients of the exact transition amplitude which arenot part
of the approximation(1): for example, when the first electron
tunnels out or when it returns to the ion or in both instances,
it may promote the second(bound) electron into an excited
bound state, from which the latter will tunnel out at a later
time. This process tends to produce electrons with low mo-
menta, as discussed below. Moreover, except in the initial
wave function, the presence of the ion is not accounted for.

Expanding the Volkov time-evolution operator in terms of
Volkov states,

UsVdst,t8d =E d3k uck
sVdstdlkck

sVdst8du, s2d

where

kr ucp
sVdstdl = s2pd−3/2exphifp + Astdg · r j

3expS− iEt

dtfp + Astdg2D , s3d

the amplitudes1d can be written as

M = −E
−`

`

dtE
−`

t

dt8E d3kVpkVk0 expfiSpst,t8,kdg, s4d

with the action

Spst,t8,kd = −
1

2Fo
n=1

2 E
t

`

dtfpn + Astdg2 +E
t8

t

dtfk + Astdg2G
+ uE01ut8 + uE02ut. s5d

Here Astd denotes the vector potential of the laser field,p
;sp1,p2d the final electron momenta, andk the drift mo-
mentum of the first electron in between ionization and recol-
lision. We use the length gauge, and we employ atomic units
throughout. The binding potentialV1 of the first electron and
the electron-electron interactionV12 enter through their
form factors

Vpk = kp2 + Astd,p1 + AstduV12uk + Astd,c0
s2dl s6d

and

Vk0 = kk + Ast8duV1uc0
s1dl. s7d

In this paper, for the binding potentialV1 we choose a Cou-
lomb potential and for the wave functionsc0

sidsr d ground-
state hydrogenic wave functions.

B. Saddle-point and uniform approximations

For sufficiently low frequencies and high laser intensities,
Eq. (4) can be evaluated to a good approximation by the
method of steepest descent, which we will also refer to as the
saddle-point approximation. Thus, we must determine the
values ofk, t8, and t for which Spst ,t8 ,kd is stationary, so
that its partial derivatives with respect to these variables van-
ish. This condition gives the equations

fk + Ast8dg2 = − 2uE01u, s8ad

o
n=1

2

fpn + Astdg2 = fk + Astdg2 − 2uE02u, s8bd

E
t8

t

dtfk + Astdg = 0. s8cd

Equations(8a) and (8b) express energy conservation at the
ionization and rescattering times, respectively, while Eq.(8c)
determines the intermediate electron momentum such that
the first electron returns to the ion. Obviously, the solutions
ts8ss=1,2, . . .d of Eq. (8a) cannot be real. In consequence,ts
andks are complex, too.

Equation(8b) describes energy conservation in the rescat-
tering process. From the point of view of the first electron,
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rescattering is inelastic, since it donates energy to the second
electron. Let us ignore, for the moment, the ionization poten-
tial uE01u and consider linear polarization. Then,k =−Ast8d,
and k and t8 are real. For givent8, Eqs.(8a) and (8c) then
determine the rescattering timet and the momentumk. In the
space of the final momentap=sp1,p2d, Eq. (8b) is the equa-
tion of the surface of a six-dimensional sphere with its center
at (−Astd ,−Astd) and its squared radius given byfk
+Astdg2−2uE02u. We only consider timest8 such that the lat-
ter is positive. Then all possible electron momenta that are
classically accessible in the process where the first electron is
ionized at the timet8 are located on the surface of this
sphere. The union of all these spheres upon variation oft8
contains all final electron momenta that are in this sense
classically accessible. Below, we will frequently refer to it as
the “classically accessible region.” Leaving this region along
any path in thesp1,p2d space, we experience a sharp “cutoff”
in the yield. Quantum mechanics allows a nonzero yield out-
side the classically allowed region, which, however, de-
creases exponentially with increasing distance from its
boundary. Formally, this is accomplished by the fact that the
exact solutions of the saddle-point equations(8), which are
always complex, exhibit rapidly increasing imaginary parts.
For a detailed analysis of the solutions of Eq.(8) for the
closely related case of above-threshold ionization, cf.
Ref. [39].

In the standard saddle-point method, the action(5) in the
matrix element(4) is expanded to second order about the
solutions to the saddle-point equations(8), whereupon the
integrations can be carried out with the result

MsSPAd = o
s

As expsiSsd, s9ad

Ss = Spsts,ts8,ksd, s9bd

As = s2pid5/2
Vpks

Vks0

ÎdetSp9ust,t8,kdus
. s9cd

Here the indexs runs over therelevantsaddle points, which
are visited by an appropriate deformation of the real integra-
tion contour, viz., thest ,t8 ,kd plane, to complex values, and
Sp9st ,t8 ,kdus denotes the five-dimensional matrix of the sec-
ond derivatives of the action(5) with respect tot ,t8, andk,
evaluated at the saddle points. This approximation can only
be applied when all the saddle points are well isolated. How-
ever, as already mentioned, the saddle-point solutions come
in pairs, whose two members approach each other very
closely near the classical cutoffs, i.e., near the boundaries of
the classically allowed region. Furthermore, beyond the clas-
sical cutoffs, one of the two saddle points would yield an
exponentially increasing contribution. This saddle point is
not visited by the aforementioned deformed integration con-
tour. Hence, this solution has to be discarded from the sum
(9a). Such a procedure leads to cusps in the cutoff region,
which are particularly problematic for nonsequential double
ionization. A detailed analysis of this problem is given in
Ref. [30].

In this paper, we will use a more general uniform approxi-
mation [43], which has been successfully applied to above-
threshold ionization[41], high-order harmonic generation
[44], and in an exemplary fashion to NSDI[30]. The uniform
approximation is nearly as simple as the standard saddle-
point approximation, but much more powerful. It requires
the same input as the former, namely, the amplitudesAs ss
= i , jd and the actionsSs ss= i , jd for each pairsi , jd of saddle-
point solutions. In the classically allowed region, the transi-
tion amplitude then is given by

Mi+j = Î2pDS/3 expsiS̄+ ip/4d

3hĀfJ1/3sDSd + J−1/3sDSdg + DAfJ2/3sDSd

− J−2/3sDSdgj,

DS= sSi − Sjd/2, S̄= sSi + Sjd/2,

DA = sAi − iAjd/2, Ā = siAi − Ajd/2. s10d

If the two saddle points are sufficiently far apart, the param-
eterDS is large, and the standard saddle-point approximation
(9) can be retrieved with the help of the asymptotic behavior,

J±nszd , S 2

pz
D1/2

cossz7 np/2 − p/4d, s11d

of the Bessel functions for largez.
In the classically forbidden region, one of the saddles is

avoided by the contour. This is accounted for by taking an
appropriate functional branch of the(multivalued) Bessel
functions, which will automatically be selected by requiring
a smooth functional behavior at a Stokes transition[45,46].
The transition occurs at

Re Spsti,ti8,k id = ReSpstj,tj8,k jd, s12d

and signifies that one of the saddles drops out of the steepest-
descent integration contour. The energy position of such a
transition approximately coincides with the boundary be-
tween the classically allowed and forbidden energy regions.
Beyond the Stokes transition,

Mi+j = Î2iDS/p expsiS̄dfĀK1/3s− iDSd + iDAK2/3s− iDSdg.

s13d

Again, the result of the saddle-point approximation may be
recovered using the asymptotic form

Knszd , S p

2z
D1/2

exps− zd s14d

for largez. Inserting Eq.s14d into Eq.s13d, it is easy to show
that only one saddle point contributes to the saddle-point
approximation in this energy region.

III. DISTRIBUTION OF ELECTRON MOMENTA

In the following, we will evaluate the matrix elementMi+j
[Eq. (10) or (13)]. We will restrict ourselves to the two short-
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est orbits, as explained below at the end of Sec. III A. Its
modulus square specifies the distribution of the asymptotic
momenta of the two electrons generated in the process of
NSDI. Following the analysis of the experimental data, we
decompose the electron momenta into components parallel
and perpendicular to the(linearly polarized) laser field, so
thatpn;spni ,pn'dsn=1,2d. In a typical reaction-microscope
experiment, the momentum of one electron and the momen-
tum of the doubly charged ion are measured(usually, it is not
possible to record all six components). Thereafter, the mo-
mentum of the other(undetected) electron is calculated from
the assumption of momentum conservation. Even in the case
where all six components of the final electron momenta were
known, plotting the results would require to integrate over
some of them. In most experiments, the momentum compo-
nents(of the detected electron) transverse to the laser polar-
ization are either not recorded at all or binned into certain
intervals. Correspondingly, we will compute the momentum
correlation function by either integrating entirely or partly
over the transverse momenta. Hence, we shall calculate an
integral of the type

Dsp1i,p2id =E d2p1'd2p2'uMi+ju2, s15d

where the integration extends over some range of the final
momenta, i.e., of their magnitudes and/or their relative ori-
entation.

We consider the monochromatic linearly polarized laser
field

Astd = A0 cossvtdx̂, s16d

which satisfiesAst+T/2d=−Astd with T=2p /v. Electrons
generated by a recollision event at a time within the interval
−T/4ø tøT/4 smoduloTd tend to populate the third quad-
rant of thesp1i ,p2id plane, while those fromT/4ø tø3T/4
smoduloTd mostly populate the first quadrant. In each time
interval, there are two contributing saddle-point solutions,
referred to above asi and j , which have to be added coher-
ently in the matrix elementMi+j. If the laser intensity is
sufficiently low, the two populations are practically disjoint.
However, with increasing laser intensity, the classical bound-
aries expand, and the two populations begin to overlap sig-
nificantly in the region where the momentap1i and p2i are
small. In this case, in principle, we have to superpose all four
contributions coherently, viz., in Eq.s15d we have to inte-
grate uMi+js−T/4ø tøT/4d+Mi+jsT/4ø tø3T/4du2. Rather,
we will neglect their interference by takinguMi+js−T/4ø t
øT/4du2+ uMi+jsT/4ø tø3T/4du2. This simplifies the calcu-
lation significantly, because it allows us to take advantage of
the symmetry uMst ,t8 ,pdu= uMst+T/2 ,t8+T/2 ,−pdu. This
procedure is justified by the fact that the relative phase be-
tween them is a rapidly oscillating function. Indeed, we have
checked for the case wherep1i=p2i that the exact and the
approximate calculations produce virtually identical results,
definitely so, when the transverse momenta are integrated
over.

A. The “classically allowed” regime of parallel momenta

Rewritten in terms of the parallel and perpendicular mo-
mentum componentspni andpn', the saddle-point equations
(8) read

fk + A0 cosvt8g2 = − 2uE01u, s17ad

o
n=1

2

fpni + A0 cosvtg2 = fk + A0 cosvtg2 − 2uE02u − o
n=1

2

pn'
2 ,

s17bd

with

k = −
1

vst − t8d
A0ssin vt − sin vt8dx̂ ; kx̂. s17cd

Equations17bd defines a circle in thesp1i ,p2id plane with its
center atp1i=p2i=−A0 cosvt and the square of its radius
given by the right-hand side. Forp1'=p2'=0, its interior
is the projection onto thesp1i ,p2id plane of the six-
dimensional surface mentioned below Eqs.s8d. Inside any
such circle, the rescattering process is classically allowed.
The radii decrease with increasing transverse kinetic en-
ergies of the final electrons. In effect, the transverse ki-
netic energies add to the second ionization potentialuE02u,
up to the point where the classically allowed region
shrinks to zero. Note that both the center and the radii of
the circles defined above depend on the rescattering time
t. The union of all circles defines the entire classically
allowed region in thesp1i ,p2id plane f47g. Depending on
the intensity and the second ionization potentialuE02u, it
may or may not include the originp1i=p2i=0 f49g.

The presence of the cutoffs at the boundary of the classi-
cal region and their dependence onpn' pose a serious prob-
lem for the application of the standard saddle-point approxi-
mation in computations of momentum distributions. In fact,
the integration over an interval of transverse momenta will
lead to a situation with many Stokes transitions, whose en-
ergy positions vary continuously. As a direct consequence,
the artifacts coming from the breakdown of the saddle-point
approximation at the cutoffs will affect the resulting yield
over a large interval of longitudinal momentapni. Therefore,
the uniform approximation is not only a desirable but also a
necessary tool for the computation of the momentum distri-
butions for NSDI in terms of quantum orbits. This problem is
discussed in detail in Ref.[30].

For fixed final momenta, the saddle-point equations
(17a)–(17c) may have a large number of relevant solutions,
which can be ordered by the length of their “travel time”
Rest− t8d. Below, we will consider the pair of the two short-
est quantum orbits, i.e., those two having the shortest travel
time. Due to spreading of the associated wave packets, usu-
ally these two make the dominant contributions[50]. Of
these, the longer orbit is associated with a “slow-down col-
lision,” that is, an electron along this orbit is decelerated by
the laser field when it is approaching the crucial collision
with the bound electron. In classical one-dimensional model
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calculations, these orbits have been shown to be particularly
efficient for NSDI[20]. A detailed discussion of these orbits
is given in Ref.[30].

B. No electron-electron repulsion in the final state

In this section, we neglect the Coulomb repulsion of the
two final-state electrons, so that the final state is the product
state of one-electron Volkov states,ucp1p2

sVd stdl= ucp1

sVdstdl
^ ucp2

sVdstdl.
The form factorVpk then is given explicitly by

Vpk =
1

s2pd9/2E d3r 1d
3r 2e

ifp1+Astdg·r 1e−ifk+Astdg·r 1

3eifp2+Astdg·r 2V12sr 1,r 2dc0
s2dsr 2d + sp1 ↔ p2d, s18d

whereV12 is the electron-electron interaction in question
that is responsible for freeing the second electron.

Let us consider an electron-electron interaction of the
form

V12 ; V12sr 1,r 2d = v12sr 1 − r 2dV2sr 2d, s19d

wherev12sr d only depends on the interparticle separation.
In a truly microscopic description, there would be no po-
tential V2, but we may want to interpretV12 as aneffective
potential that incorporates the presence of the ionswhich is
positioned at the origind. Then, the form factors18d can be
rewritten as

Vpk = fṽ12sp1 − kd + ṽ12sp2 − kdg

3E d3r 2e
−ifp1+p2−k−Astdg·r 2V2sr 2dcs2dsr 2d, s20d

whereṽ12spd is the Fourier transform ofv12sr d. Of course,
Vpk is symmetric upon the exchange ofp1↔p2, but this
does not hold if only individual components are inter-
changed, viz.,p1i ↔p2i wherei =x,y, or z. Only in the case
wherev12sr d is of very short range, so thatṽ12spd is con-
stant, does this exchange symmetry hold component by
component. On the other hand, this additional symmetry
holds regardless of the shape ofV2. The effect of these
symmetries will be encountered below.

In the next two sections, we will consider the two extreme
cases for the interactionV12sr 1,r 2d: the contact interaction
with zero range and the Coulomb interaction with infinite
range.

1. Contact interaction

First, we investigate the three-body contact interaction

V12sr 1,r 2d = dsr 1 − r 2ddsr 2d, s21d

which confines the electron-electron interaction to the posi-
tion of the ion. For this interaction, the form factorsVpk and
Vk0 are constants. In this case and only in this case, one does
not have to resort to the saddle-point approximation: the ma-
trix element s1d can be obtained analytically up to one
quadraturef13,51g. For any other potential, the exact evalu-
ation requires a numerical computation of multiple integrals.

In Fig. 1, we display the momentum distributions(15)
computed for this potential with the uniform approximation,
for various ranges ofupn'u sn=1,2d and with the relative
angle betweenp1' andp2' integrated over. In Fig. 1(a), the
transverse momenta are entirely summed over. The features
obtained, i.e., regions of circular shape around the two
maxima atp1i=p2i= ±2ÎUp, are in excellent agreement with
those in Ref.[28].

The saddle-point equation(17b) shows that the transverse
kinetic energies add to the second ionization potential. In
consequence, the higher the second ionization potential is
and the lower the intensity, the more closely are the momen-
tum correlation functions concentrated around the momenta
p1i=p2i=2ÎUP. This effect can be verified by comparing
panels(a) and (f): in (f) both transverse momenta are large
such that the total transverse kinetic energy is betweenUP

FIG. 1. Momentum correlation function(15) of the electron mo-
menta parallel to the laser field for nonsequential double ionization
computed with the uniform approximation using the contact inter-
action(21). The field frequency isv=0.0551 a.u. and the pondero-
motive energyUP=1.2 a.u., which corresponds to an intensity of
5.531014 W/cm2. The first two ionization potentials areuE01u
=0.79 a.u. anduE02u=1.51 a.u. corresponding to neon. Panel(a)
shows the yield for the case where the transverse momentapn'sn
=1,2d are completely integrated over, whereas in the remaining
panels they are restricted to certain intervals. In panels(b)
and (c), p2' is integrated, while 0,p1' / fUpg1/2,0.1 and
0.4,p1' / fUpg1/2,0.5, respectively. In panels(d), (e), and
(f), both transverse momenta are confined to the intervals
0,pn' / fUpg1/2,0.5, 0.5,pn' / fUpg1/2,1, and 1,pn' / fUpg1/2

,1.5, respectively.
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and 2.25UP, while in (a), where all transverse momenta are
summed over, the result is dominated by the contributions
from the smaller ones. In panel(b), one transverse momen-
tum is very small. Hence, the distribution is broader, as if the
intensity were higher and/or the second ionization potential
smaller than it actually is. Panels(d) and (e), where both
transverse momenta are restricted to very small or moder-
ately small values, have an appearance very different from
the other panels. The distributions are ring shaped and con-
centrated near the boundary of the classically allowed region,
while the region aroundp1i=p2i=2ÎUP is almost unpopu-
lated. Below, in Sec. IV, we will be able to understand these
features qualitatively as well as quantitatively from classical
considerations.

2. Coulomb interaction

In this section, we perform a similar analysis for the Cou-
lomb interaction

V12sr 1,r 2d =
1

ur 2 − r 1u
. s22d

This appears to be a more realistic description of the inter-
action, by which the first electron releases the second. In an
ab initio Born-series calculation, this interaction constitutes
the lowest order. The ion is not accounted for, that is, the
potential V2sr 2d of Eq. s19d is absent. The corresponding
form factor

Vpk ,
1

sp1 − kd2h2uE02u + fp1 + p2 − k + Astdg2j2 + sp1 ↔ p2d

s23d

is a function of the electron velocitiespn+Astd andk +Astd
just after and just prior to, respectively, the crucial rescatter-
ing event.

Using the uniform approximation, we again compute mo-
mentum distributions(15) for various transverse-momentum
ranges regardless of the relative orientation of the transverse
momenta.(We postpone showing a few distributions for
fixed relative angle till the very end of Sec. III.) These dis-
tributions are shown in Fig. 2. The form factor(23) favors
small p1−k and/or smallp2+Astd [or small p2−k and/or
small p1+Astd], which is equivalent to small momentum
transfer of the returning electron to the bound electron and
the bound electron being set free with small velocity[52].
This means that the maxima of the distribution are expected
for small p1 and largep2 (or large p1 and smallp2), i.e.,
away from thep1i=p2i diagonal, since the vector potential is
near its maximum at the rescattering timet while the drift
momentumk is small. When the transverse momenta are
summed over[Fig. 2(a)], the result is in agreement with Ref.
[28]. In Figs. 2(b) and 2(c), we restrict the transverse mo-
mentum of one of the electrons. In comparison with the case
of the contact interaction in Fig. 1, this has a lesser effect on
the momentum correlations. The signature of the Coulomb
interaction—one electron having a small and the other a
large momentum—is rather stable against summing over
various parts of the transverse phase space. If both transverse

momenta are restricted[panels(d)–(f)], we again observe, as
in Fig. 1, that the most significant contributions to the yield
occur near the boundaries of the classically allowed region,
whose area decreases for increasing transverse momenta.
The shapeof the distribution in panel(f), where both trans-
verse momenta are large, then does not look very different
from Fig. 1(f). It is, however, concentrated at smaller values
of pi.

All panels of Figs. 1 and 2 exhibit inversion symmetry
with respect to the origin, that is, symmetry upon
sp1i ,p2id↔ s−p1i ,−p2id. This is an immediate consequence of
the symmetryAst+T/2d=−Astd of the monochromatic laser
field (16). With the exception of Figs. 2(b) and 2(c), all pan-
els also show reflection symmetry with respect to the diago-
nal p1i=p2i. Since the action(5) is invariant upon inter-
changing all or some components ofp1 andp2, the presence
or absence of this additional reflection symmetry is related to
the corresponding symmetry properties of the form factor
Vpk, which were discussed below Eq.(20). In panels(b) and
(c) of Figs. 1 and 2, the transverse momentum components
of the detected electron(electron 1) are binned, while those
of the other electron(electron 2) are summed over. For the
contact interaction(21), Vpk is constant and, therefore, trivi-
ally symmetric upon interchanging all or only some of the
components ofp1 and p2. This is not so for the Coulomb
interaction(22). Hence, panels(b) and (c) of Fig. 1 do, and
of Fig. 2 do not, exhibit reflection symmetry about the diag-
onal p1i=p2i.

Panels(b) and (c) of Fig. 2 show that the longitudinal
momentum of electron 1(the one whose perpendicular mo-

FIG. 2. Same as Fig. 1, but calculated for the Coulomb interac-
tion (22).
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mentum is restricted) has a higher propensity to be small
than the same momentum component of electron 2, in viola-
tion of the reflection symmetry. This can be traced to the
term sp1−kd−2=fp1'

2 +sp1i−kd2g−1 of the form factor(23),
the term that is related to the momentum transfer from the
returning electron to the rest of the system. Ifp1'

2 is small,
then the form factor is largest ifp1i is small as well, since the
drift momentumk of the returning electron is small.

In principle, the presence or absence in the data of the
reflection symmetry allows one to draw conclusions regard-
ing the actual form of the interaction(19). Indeed, experi-
mental data that resolve the transverse momentum of the
detected electron do show a violation of thep1i↔p2i sym-
metry [36,37]. However, there are experimental reasons that
also lead to such a violation: the detector has a bias to detect
the electron that arrives first, which is the faster one of the
two electrons.

Another important conclusion derived from the compari-
son of Figs. 1 and 2 is that the influence of the electron-
electron interactionV12 on the correlation functions is most
pronounced if both transverse electron momenta are re-
stricted to small values. Except for the fact that both respect
the classical boundary, the distributions of Figs. 1(d) and 1(e)
on the one hand and Figs. 2(d) and 2(e) on the other could
hardly be more different. Notice, also, the dramatic differ-
ence between Figs. 1(a) and 1(d), while there is compara-
tively little difference between Figs. 2(a) and 2(d). For the
contact interaction, which does not allow for any dynamics
(apart from energy conservation), phase space is the all-
important feature, while for the Coulomb interaction the dy-
namical form factor overshadows the consequences of phase
space. These facts combined suggest that experiments for
different rare gases with restricted transverse momentaof
both electronsmight be best suited to unravel the differences
between the electron-electron correlation in different atoms.

One should note that the results obtained for the
Coulomb-type interaction are strongly dependent on the
gauge employed. We use the length gauge. Computations of
NSDI yields in the velocity gauge[23,25,26] give momen-
tum distributions that are more concentrated near the diago-
nal p1i=p2i and the originp1i=p2i=0. This is due to the fact
that in the velocity gauge the form factor(23) is lacking the
vector potentialAstd in the second factor of the denominator.
Hence, the mechanism described above, which favors un-
equal momenta, is upset, and the form factor plainly de-
creases for increasing momentap1 and p2. The absence of
the vector potential implies that the form factor does not
depend on theinstantaneous momentaat the time of rescat-
tering (as it does in the length gauge), but on thedrift mo-
menta.

C. Electron-electron repulsion in the final state

In this section, we take into account the repulsion of the
two electrons in the final state. We do so by replacing in the
matrix element(1) the product Volkov state by the exact
correlated two-electron Volkov state whose wave function
is [38]

Cp1p2

sV,Cdsr 1,r 2,td = cp1

sVdsr 1,tdcp2

sVdsr 2,td

31F1s− iz;1;ispr − p · r ddCszd, s24d

wherer =r 1−r 2, p=sp1−p2d /2,

z = up1 − p2u−1, s25d

and 1F1sa;b;zd denotes the confluent hypergeometric func-
tion. The normalization factor is

Cszd = e−pz/2Gs1 + izd, s26d

so that

uCszdu2 =
2pz

exps2pzd − 1
. s27d

The two-electron Volkov state has the simple forms24d
since, owing to the dipole approximation, the laser field
couples only to the center of mass of the two electrons, while
the Coulomb repulsion only affects their relative position.
The prefactors26d will be found to have strong influence on
the NSDI yields, since it strongly favors unequal momenta.

The corresponding form factorVpk, originally defined in
Eq. (6), is now to include the entire spatial part of the two-
electron Volkov function(24). Hence, in place of Eq.(18) we
have

Vpk =
C*szd

s2pd9/2E d3r 1d
3r 2e

isp1−kd·r 1eifp2+Astdg·r 2

3V12sr 1,r 2dc0
s2dsr 2d1F1„iz,1,− ispr − p · r d….

s28d

1. Contact interaction

For the contact interaction(21), the Coulomb-repulsion-
modified form factor(28) is just

Vpk ~ C*szd, s29d

which is directly proportional to the prefactors26d. Note that
it does not depend on the electron momentum in the inter-
mediate state, but only on the final-state momenta, so that it
can be taken out of all integrals in Eq.s4d. Its influence on
the momentum distributions is shown in the subsequent fig-
ures, in which the cases of parallel, perpendicular, and anti-
parallel transverse momenta are investigated.

Figure 3 deals with the case of antiparallel transverse mo-
menta, i.e., the electron momenta transverse to the field po-
larization form an angle off=p. For this angle, electron-
electron repulsion is expected to play the least important
role. If the magnitudes of the transverse momenta are com-
pletely integrated over[Fig. 3(a)], the momentum distribu-
tion in the sp1i ,p2id plane looks very similar to the case
without repulsion[cf. Fig. 1(a)], except that it is slightly
broader in the direction perpendicular to the diagonalp1i

=p2i. If one of the momenta is restricted to relatively low
values [Fig. 3(b)], each maximum near ±2ÎUp splits into
two, which are positioned symmetrically with respect top1i

=p2i. If this momentum range is shifted to higher values, the
two maxima start to merge originating a plateau that extends
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across the diagonal[Fig. 3(c)]. These features are physically
expected, since Coulomb repulsion is more pronounced for
small electron momenta. The influence of Coulomb repulsion
can also be seen very clearly if both transverse momenta are
restricted to small values[Fig. 3(d)]. Indeed, there is a whole
region around the diagonalp1i=p2i for which the yield com-
pletely vanishes in comparison with the case without repul-
sion [i.e., Fig. 1(d)]. An analogous, less extreme effect is
present for slightly larger momenta[Fig. 3(e)]. In fact, as
compared to its counterpart without repulsion[Fig. 1(e)],
there is a noticeable decrease in the yield along and in the
vicinity of p1i=p2i. For large transverse momenta, on the
other hand, Coulomb repulsion hardly makes any difference
[cf. Fig. 3(f)].

The case when the transverse momenta of the two elec-
trons form a right angle, i.e.,f=p /2, is intermediate(Fig.
4). If the transverse momenta are integrated over, the
sp1i ,p2id-momentum distribution considerably broadens in
the direction perpendicular top1i=p2i, as compared with the
case without repulsion and with the previous case. If one of
the momenta is restricted to small values, the distribution,
again, exhibits the two distinct sets of maxima observed in
the antiparallel situation, with the main difference that such
maxima are now more pronounced and occur even if one of
the momenta is not so small[e.g., in Fig. 4(c)]. If both mo-
menta are small, the yield looks almost identical to that ob-
served in the antiparallel case. As before, Coulomb repulsion
has no noticeable effect, when both transverse momenta are
large [panel(f)].

Finally, in Fig. 5 we address the most extreme situation,
when both transverse momenta are parallelsf=0d. A general
feature in this case is the sharp decrease in the yield near
p1i=p2i, with two distinct sets of maxima, symmetric with
respect top1i=p2i, for all ranges of the transverse momenta,
restricted or not.

Figure 6 shows the corresponding results when the rela-
tive anglef is also integrated over. As expected, it looks
much like an average of the momentum distributions of Figs.
3–5.

2. Coulomb interaction

For the Coulomb interaction(22), the form factorVpk can
be evaluated with the help of the integral[53]

E d3r

r
eia·r

1F1sin;1;iskr − k · r dd

= 4psa2din−1fsa − kd2 − k2g−in. s30d

This yields

Vpk ,
C*szd

sp1 − kd2h2uE02u + fp1 + p2 − k + Astdg2j2

3F1 −
sp1 − kd · sp1 − p2d

sp1 − kd2 G−iz

+ sp1 ↔ p2d.

s31d

Comparing this with the form factors23d without final-state

FIG. 3. Same as Fig. 1, but including Coulomb repulsion of the
two electrons in the final state. The transverse momenta of the two
electrons are antiparallel,f=p.

FIG. 4. Same as Fig. 3, but the transverse momenta are at right
angles,f=p /2.
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repulsion, we see that the former is now multiplied with the
normalization factors26d as well as with the factor in square
brackets. The latter now does depend onk, so it cannot, in
principle, be pulled out of the integral. However, for givenp
in the classically allowed regime, the two saddle-point solu-
tions ks of the respective pair of solutions are almost equal
and, moreover, almost real. The contribution of the factor in
square brackets in Eq.s31d is then negligible as it is raised to
a complex power. In the classically forbidden regime, its
effect may be more significant, but in this regime the abso-
lute yields are very small. All in all, the dominant effect of
the final-state repulsion is due to the normalization factor
uCszdu2, as we observed already in Eq.s29d for the contact
interaction. This has been confirmed by the identical results
obtained taking both the exact form factors31d and the Cou-
lomb form factor without repulsion multiplied by this factor
snot shownd.

Once more, in Figs. 7–9, we investigate NSDI for the
transverse electron momenta being antiparallel, perpendicu-
lar, and parallel, respectively. The parallel case in Fig. 9 pre-
sents a very extreme example of the influence of Coulomb
repulsion: the momentum correlation function has shrunk to
four spots, which are pushed away from the diagonal to the
very edge of the classically allowed region. Figure 9 should
be compared with the corresponding results for the contact
interaction in Fig. 5, where this effect is much less dramatic,
except in the case whereboth transverse momenta are either
large [panels(f)] or small [panels(d)].

The case where both transverse momenta are restricted to
small values can be compared with two-electron one-

dimensional model calculations. Indeed, momentum correla-
tion functions calculated in this context from the numerical
solution of the time-dependent Schrödinger equation[22]
look very much like those in panels(d) of Figs. 7–9. For
these very small transverse momenta, their relative orienta-
tion hardly matters anymore, and the correlation function is
concentrated in the four small regionsp1i=0,p2i= ±2ÎUP

and p2i=0,p1i= ±2ÎUP on the axes. The very same feature
can be observed in the results of Ref.[22].

Finally, in Fig. 10 we present the results of integrating
over the relative orientationf.

Panels(b) and (c) of Figs. 7–10 again exhibit the lack of
the p1i↔p2i symmetry, which was discussed above in con-
nection with Fig. 2. As above the asymmetry is strongest in
panels(b), where the transverse momentump1' is restricted
to the smallest values. The factoruCszdu2, which incorporates
final-state repulsion, is invariant uponp1↔p2 component by
component, since it depends onup1−p2u. Therefore, the
asymmetry is not affected when final-state repulsion is
turned on.

To conclude this section, we investigate the momentum
correlation as a function of the relative angle between the
momenta of the final electronsin the absence of final-state
repulsion. For the contact interaction, it does not depend on
this angle at all; for the Coulomb interaction(23), it is pre-
sented in Fig. 11. We only show the case where the trans-
verse momenta are entirely integrated. The dependence on
the relative angle is weak: only a slight recess of population
away from the diagonal is observed when the relative orien-

FIG. 5. Same as Fig. 3, but the transverse momenta are parallel,
f=0.

FIG. 6. Same as Fig. 3, but the relative orientation of the trans-
verse momenta is integrated over.
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tation turns from back-to-back to side-by-side[from panel
(a) to (b)]. In the other cases(not shown), corresponding to
panels(b)–(f) of the previous figures, the dependence is simi-
larly weak if not weaker.

IV. CLASSICAL MODELS

The saddle-point equations(8) pinpoint the crucial stages
of NSDI: initial tunneling of the first electron, inelastic scat-
tering, and free propagation in between these two events.
Apart from the initial tunneling, the respective physics can
largely be envisioned as classical, insomuch as the final elec-
tron momenta are classically accessible, and the better so the
higher above threshold the inelastic rescattering takes place.
Therefore, in this section we will explore a completely clas-
sical model.

Let us then consider the following expression for the
NSDI yield (up to a constant factor) such that two electrons
are generated with drift momentap1 andp2:

Fsp1,p2d =E dt8Rst8ddS1

2
fp1 + Astdg2 +

1

2
fp2 + Astdg2

+ uE02u − EretstdDuVpku2

=E dt8Rst8ddS1

2
sp1'

2 + p2'
2 d − DEDuVpku2 s32d

with

DE ; DEsp1i,p2i,td

; Eretstd − uE02u − 1
2fp1i + Astdg2 − 1

2fp2i + Astdg2.

s33d

Here the first electron appears in the continuum with zero
velocity at the timet8 according to the time-dependent rate
Rst8d;R(Est8d), for which we take Rst8d,uEst8du−1

3exph−2s2uE01ud3/2/ f3uEst8dugj f54g. Starting from the posi-
tion of the ion, the electron is accelerated by the laser
field. The time t; tst8d. t8, at which the electron returns
to the ion with kinetic energyEretstd=s1/2dfk +Astdg2, is
calculated classically along the lines of the simple-man
modelf55g. At this time, the electron dislodges the second
bound electron in an inelastic collision. Thed function in
Eq. s32d expresses energy conservation in this inelastic
collision. In fact, it is nothing but the saddle-point equa-
tion s8bd with real t ,t8, and k. The actual distribution of
final momenta is governed by the form factoruVpku2,
whose shape depends on theseffectived electron-electron
interaction potential.

Several features are absent in this model that are part of
the quantum-mechanical description:

(i) There is spreading of the electronic wave packet from
the ionization timet8 to the return timet.

(ii ) For given p1 and p2, there are several solutionst
; tst8d (cf. the discussion at the end of Sec. III A). In quan-
tum mechanics, their contributions are added coherently in

FIG. 7. Same as Fig. 1, but calculated for the Coulomb interac-
tion (22) and final-state Coulomb repulsion. The transverse mo-
menta of the final electrons are antiparallel,f=p.

FIG. 8. Same as Fig. 7, but the transverse momenta are perpen-
dicular, f=p /2.
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the amplitude, while in the total classical yield(32), the
probabilities corresponding to the various solutions are
added.

(iii ) Below the classical threshold, the argument of thed
function in Eq.(32) is nonzero for any ionization timet8, and
the yield is zero. Quantum mechanics admits larger energy
transfer from the laser field to the charged particles, so that
the yield remains nonzero, though it becomes exponentially
small when the parameters move farther into the nonclassical
regime. This implies that the classical model becomes al-
ready unreliable near the boundaries of the classical region.

We want to evaluate the distribution of the momentum
components parallel to the laser field for particular configu-
rations of the transverse components. This is governed by
distribution functions of the type(15). In most cases, we are
not interested in the relative orientation of the transverse mo-
menta, and we restrict their magnitudes to certain ranges.
This requires calculating

Dsp1i,p2i;P1
2,P2

2d = 2pE
0

P1
2

dp1'
2 E

0

P2
2

dp2'
2

3E
0

2p

dfFsp1,p2d. s34d

As in the quantum-mechanical considerations, we shall in-
vestigate the two extreme cases for the electron-electron po-
tential V12.

A. Contact interaction

In this case, the form factor is a constant independent of
the momentum of the returning electron as well as the mo-
menta of the two final electrons. Therefore, the distribution
of the final momenta is governed only by energy conserva-
tion at the instant of rescattering as expressed in thed func-
tion in Eq.(32) and by the available phase space. The model
is sufficiently simple that we can carry out the integrations
over the transverse momenta analytically. To this end, we
may, for example, replace thed function by its Fourier trans-
form,

dsxd =E
−`

` dl

2p
exps− ilxd.

Finite or infinite integrations overpn then can be carried out
straightforwardly, and the remaining integration overl is
done with the help off56g

E
−`

` dl

sil + «dneipl =
2p

Gsnd
p+

n−1, s35d

wherex+
n =xnusxd, with usxd the unit step function ande→

+0.
This procedure yields

FIG. 9. Same as Fig. 7, but the transverse momenta are parallel,
f=0.

FIG. 10. Same as Figs. 7–9, but the relative orientation of the
transverse momenta is integrated over.
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Dsp1i,p2i;P1
2,P2

2d = 2p2E dt8Rst8df2DE + s2DE − P1
2 − P2

2d+

− s2DE − P1
2d+ − s2DE − P2

2d+g. s36d

Note that this distribution is symmetric uponp1i↔p2i. Spe-
cial cases include

Dsp1i,p2i;`,`d = 4p2E dt8Rst8dsDEd+, s37d

where the transverse momenta are entirely integrated over
fas in panelssad of the figures of this paperg,

Dsp1i,p2i;P2,`d = 4p2E dt8Rst8dminF1

2
P2,sDEd+G ,

s38d

where one electron is binnedfcf. panelssbdg, or

Dsp1i,p2i;P2,P2d = 4p2E dt8Rst8dusDEdusP2 − DEd

3fDEusP2 − 2DEd + sP2 − DEd

3us2DE − P2dg, s39d

where both transverse momenta are restricted to the same
rangefcf. panelssddg. The other distributions that we plotted
can be obtained similarly.

Momentum correlation functions calculated from Eqs.
(37)–(39) are shown in Fig. 12. Generally, they agree very
well with the quantum-mechanical results of Fig. 1. The mi-
nor differences that exist are most visible in the case where
both transverse momenta are restricted to small intervals
[panels(d) and(e)]. Here, the classical model emphasizes the
boundary of the classical region projected onto thesp1i ,p2id
plane even more strongly than the quantum calculation. Of
course, the latter extends into the classically forbidden re-
gion, but this is not visible on the scale of Fig. 1.

The classical model and the expressions(36)–(39) derived
from it explain the dependence of the correlation-function
distributions on the values of the transverse momenta and, in
particular, the peculiar behavior visible in panels(d) and(e)
of Figs. 1 and 12. In order to satisfy thed-function condition
in Eq. (32), DE must be small(large) for small (large) trans-
verse momenta. Let us consider the case of large momenta
first. For givent, the quantityDE is largest aroundp1i=p2i

=−Astd, and, as a function oft, its absolute maximum is
DEmax;3.17UP− uE02u. Large transverse momenta are only
possible near rescattering times corresponding to this maxi-

mum and, therefore, are concentrated aroundp1i=p2i

= ±2ÎUP [57]. This is very visible in Fig. 12(f). The inte-
grated correlation function(37) has its maximum at about the
same momenta. However, it is broader, since it receives ad-
ditional contributions from timest8 whereDEstd is smaller,
as well as from smaller transverse momenta. If one trans-
verse momentum is binned with small values, the applicable
distribution is given in Eq.(38). Comparing this with Eq.
(37), we see that largeDE are now less favored and, in
consequence, the maximum of the distribution moves to
lower values ofpni, and the distribution is still broader. This
is clearly visible in panels(b) of Figs. 1 and 12. When both
transverse momenta are small such that 0ø upn'uø P, the

FIG. 11. Momentum correlation function for
the Coulomb form factor(23) in the absence of
final-state repulsionfor specific relative anglesf:
f=p (a), f=p /2 (b), and f=0 (c). The other
parameters are as in Fig. 1(a); in particular, the
transverse momenta are completely summed
over.

FIG. 12. Same as Fig. 1, but calculated from the classical model
for the contact interaction. Equation(37) underlies panel(a), Eq.
(38) panels(b) and (c), and Eq.(39) panel(d).
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pertinent distribution(39) shows that this requiresDEø P2.
For Fig. 12,P2=0.25, soDE must be small. For timest such
that Eret is much larger thanuE02u this requires thatp1i

+Astd andp2i+Astd be large, which produces the ring-shaped
population. There are contributions, too, from timest where
Eret is not much larger thanuE02u. They populate the interior
of the rings, but they are much weaker, since their ionization
times are significantly below the maxima ofRst8d. It is im-
portant to recall that the features just discussed only depend
on phase space and on the highly nonlinear form of the in-
jection rateRst8d. Any deviation from the patterns depicted
in Figs. 1 and 12 is due to the form factorVpk favoring
certain momenta over others. Hence a comparison of the
measured momentum correlations with those of Figs. 1 and
12 does yield information about the actual electron-electron
correlation mechanism.

With the method described above, arbitrary components
of the final momenta can be summed over. In particular,
single-electron momentum distributions in coincidence with
NSDI can be computed by integrating over the momentum of
one electron. This will not be pursued in this paper.

B. Electron-electron Coulomb interaction

The distribution function(34) can also be evaluated ana-
lytically in the presence of the Coulomb form factor(23),
which depends onp1'

2 , p2'
2 , and the relative anglef between

p1 and p2. For arbitrary upper limitsP1
2 and P2

2, again all
integrals(up to the integration overt8) can be carried out
analytically: First, the integral overf leads to a compact
expression. Subsequently, the integration overp2'

2 can be
carried out trivially by means of thed function in Eq.(32),
so that

1
2sp1'

2 + p2'
2 d − DE = 0, s40d

with DE defined in Eq.s33d. The remaining integral overp1'
2

then leads to a result that is too lengthy to be written down,
but still analytical. The only integration that requires a nu-
merical effort is the integration over the ionization timet8.
Results of this procedure will be presented elsewhere.

C. Coulomb repulsion between the final-state electrons

Finally, the Coulomb repulsion between the two electrons
in the continuum can be incorporated by replacing

uVpku2 → uVpku2uCszdu2 s41d

with the functionCszd from Eq. s26d. This was exact for the
contact potentialfcf. Eq. s29dg and approximate for the Cou-
lomb potentialfcf. Eq. s31dg. Including this factor precludes,
in general, performing the integrations36d, for the contact as
well as for the Coulomb interaction, over the transverse mo-
menta in analytical form, owing to the functional form of
uCszdu2. There is one exception: if the final transverse mo-
menta of the two electrons are perpendicular,p1' ·p2'=0,
then z−2=sp1i−p2id2+p1'

2 +p2'
2 , and we havep1'

2 +p2'
2

=DE by Eq. s40d. In this case, the functionuCszdu2, which
cannot be integrated in analytical form, actually does not
have to be integrated over.

The results of such a calculation for the casef=p /2 are
presented in Fig. 13. Comparison with the corresponding
quantum-mechanical calculation in Fig. 4 again shows agree-
ment well into small details. Virtually the only discrepancies
are located near the diagonal, which the classical model
clears of any population even more efficiently than the
quantum-mechanical version.

V. COMPARISON WITH EXPERIMENTAL DATA

The COLTRIMS or reaction-microscope technique[6] al-
lows, in principle, recording all three components of the mo-
mentum vectors of two particles with opposite charges
ejected in some reaction process. Insomuch as the momen-
tum imparted by the laser field can be neglected, this permits
a complete kinematical analysis of laser-induced double ion-
ization. Experiments so far have concentrated on the rare
gases helium, neon, and argon. In a first round of experi-
ments, the momentum of the doubly charged ion was regis-
tered for helium[7], neon[8], and argon[58]. The second
stage focused on the correlation of the two electrons
[11,35–37,59,60]. Typically, the momentum components par-
allel to the(linearly polarized) laser field of one of the two

FIG. 13. Same as Fig. 12, but including electron-electron repul-
sion in the final state. The transverse momenta are perpendicular,
f=p /2.
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electrons and of the ion were recorded, regardless of the
components perpendicular to the laser field. The momentum
of the second electron is then inferred from momentum con-
servation. In Figs. 1–10, our results corresponding to such an
analysis of the data are presented in the panels labeled(a).
The most detailed results are available for argon, for which
the correlation of the parallel components is analyzed
[36,37], while the transverse component of the momentum of
the detected electron is binned into certain intervals. The
theoretical results for such a situation, but for the parameters
of neon, are displayed in panels(b) and(c) of Figs. 1–10. In
panels(d)–(f), the transverse momenta of both electrons are
confined to certain ranges. Such data have not been pub-
lished yet. In a recent experiment[31], the correlation of the
transverse momenta was investigated, with the longitudinal
components summed over.

In the experiments, characteristic differences have been
established between NSDI of argon and helium on the one
hand, and neon on the other. In argon, a significant number
of events is found where the momentap1i andp2i are either
both small or such that they correspond to back-to-back
emission, so that they come to lie in the second or fourth
quadrant of thesp1i ,p2id plane[36,59]. Very few such events
are seen in neon[35]. There is some consensus that these
events are caused by the recolliding first electron exciting the
second bound electron into an excited bound state from
which it tunnels out at a later time[60,61]. This mechanism
is not part of the model considered in this paper(in one
spatial dimension, it has been incorporated in Ref.[13]). The
different behavior of helium/argon versus neon has been at-
tributed to the different energy dependence of the pertinent
electron-ion cross sections for excitation and ionization of
the respective ions[62].

For a detailed comparison between the results of the mod-
els presented in this paper and the data, for precisely the
conditions of the latter, we refer to Ref.[42]. In what fol-
lows, we will just compare the tendencies of our current
results with those derived from the data. For neon, the mo-
mentum correlation functions calculated for the contact po-
tential and integrated over all transverse momenta[Fig. 1(a);
see also Ref.[28]] agree quite well with the data of Ref.[35]
(and also with those of Ref.[36]; see below). Note that these
theoretical results do not include the Coulomb repulsion in
the final state. For the case where the transverse momentum
of one electron is binned, data exist for argon only, while all
of our calculations are for neon. However, our model does
not crucially depend on the atomic species, and we plotted
all momentum distributions on the scale ofp/ÎUP. Keeping
in mind that the distributions broaden when the second ion-
ization potential decreases[13], we expect the tendencies
that emerge in our results for neon to apply to argon as well.
Inspecting, then, the argon data[36] where one transverse
momentum is binned to the interval 0ø up'uø0.5 a.u., we
notice a slight but distinct broadening of the distribution
away from the diagonalp1i=p2i. This is similar to the ten-
dency visible in panels(b) and (c) of Fig. 6, which do in-
clude the final-state Coulomb repulsion. Note that these data
show no similarity with panels(b) and(c) of Figs. 10, which
also include the final-state Coulomb repulsion, but are calcu-
lated for the case whereV12 is given by the Coulomb poten-

tial (22). However, the data are also compatible with panels
(b) and (c) of Fig. 2, which correspond to the Coulomb po-
tential for V12 andno final-state repulsion.

Another set of electron-electron correlation data in argon
[37] has accomplished even tighter binning of the transverse
momenta. Here, too, forup'uø0.3 a.u. the tendency of the
distributions to broaden away from the diagonalp1i=p2i is
obvious. For the very smallest bin, 0ø up'uø0.1 a.u.[Fig.
1(a) of Ref. [37]], the measured distribution in thesp1i ,p2id
plane now does show a pattern with four well-separated
maxima located on thep1i andp2i axes. This is reminiscent
of the panels(b) of Figs. 7–10, which are calculated for
about the same binning and intensity(though for neon) and
include both the final-state repulsion and the Coulomb po-
tential V12. The contrast of the measured distribution, how-
ever, is much less pronounced than in Figs. 7–10. All in all,
the data agree better with a symmetrized version of Fig. 2(b),
which takes the Coulomb interaction forV12, but does not
include the final-state Coulomb repulsion.

It is remarkable that, apart from the case last mentioned,
the data show little similarity with the model calculations
that take the Coulomb repulsion forV12. In no case do they
agree with what one might have expected to be the optimal
description: the Coulomb potential forV12 plus final-state
Coulomb repulsion.

VI. CONCLUSIONS

We have performed a systematic investigation of the
electron-electron dynamics in non-sequential double ioniza-
tion within the strong-field-approximation framework. We
have evaluated the SFA transition amplitudes by means of
the uniform approximation[30,41], which, apart from being
valid in all energy regions, considerably simplifies the com-
putations compared with a numerical evaluation[25,26,31]
or the solution of the time-dependent Schrödinger equation
[15,16].

Our main concern is the effect of the electron-electron
interaction on the correlation of the electron-momentum
components parallel to the polarization of the laser field, for
the case where the transverse components are either not de-
tected at all or restricted to certain intervals. First, we ask the
question of whether the effective interactionV12, which frees
the second electron and is treated in lowest-order Born ap-
proximation, is of short range or long range. Second, we do
include or we do not include the electron-electron Coulomb
repulsion in the final two-electron state.

The results of such investigations are at first sight very
surprising: When the transverse momenta are integrated over,
the apparently crudest approximation—where the electron-
electron interaction by which the second electron is kicked
out is treated as an effective three-body contact interaction,
and electron-electron repulsion in the final state is ignored—
yields the best agreement with the data. Comparison of the
available data with the model calculations reveals some evi-
dence of Coulomb effects only when one of the transverse
momentum components is very small, cf. the specific com-
parison in Ref.[42]. Unfortunately, the available experimen-
tal data have not been analyzed to extract momentum corre-
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lations whereboth transverse momenta are small. In this
case, the four variants of the strong-fieldS-matrix model that
we investigate—three-body contact interaction vs Coulomb
interaction and Coulomb repulsion vs no Coulomb repulsion
in the final state—exhibit the most pronounced differences.
Owing to this high sensitivity, one is led to surmise that such
an analysis of the data might most clearly unveil the funda-
mental dynamics.

Another property of the correlation of the electron mo-
mentapni parallel to the laser field that can be traced back to
the crucial electron-electron interactionV12 is a lack of sym-
metry upon the interchangep1i↔p2i, as discussed below Eq.
(20). It occurs when the two electrons are not treated on an
equal footing in the data analysis: the transverse momentum
of the detected electron is binned while the other one is in-
tegrated over. The symmetry then is violated for the case
whereV12 is given by a Coulomb potential and is observed
when it is the contact interaction, regardless of whether or
not the Coulomb repulsion between the final electrons is
taken into account. However, there are also experimental
causes unrelated to this fundamental reason that lead to a
violation of the symmetry.

The most relevant aspect of the contact-interaction model,
be it the quantum-mechanicalS-matrix formulation or the
classical version, might be its bare-bones character: arguably,
there is no simpler model that accounts for NSDI and incor-
porates tunneling, rescattering and energy conservation in
this process, and the consequences of three-dimensional
phase space. In this sense, its results provide a benchmark.
An example that intricate structures may still be created by
these simple ingredients is provided by the momentum cor-
relations presented in Figs. 1(d), 1(e), 12(d), and 12(e): the
ring-shaped populations may suggest the action of a repul-
sive force, which actually is not there.

It seems that the most important ingredient that is missing
from the present analysis is the interaction of the electrons in
the intermediate state and in the final states with the ion. To
some very elementary extent, this is accounted for if we

employ the three-body contact interaction for the crucial
electron-electron interactionV12, while it is definitely not
when we take the electron-electron Coulomb interaction
[51]. In reality, the presence of the ion will shield the funda-
mental electron-electron Coulomb repulsion to some extent,
which is taken into account in an extreme fashion by the
contact interaction. This argument is supported by the good
agreement of classical-trajectory(CT) [34] calculations with
both the experimental data and the results of our most rudi-
mentary model, since these calculations include all particle
interactions at any stage of the process. The particular im-
portance of the ion is also surmised in a recent comparison of
the experimental transverse electron-ion correlation with an
S-matrix calculation[31].

The excellent agreement between the results of our
quantum-mechanicalS-matrix calculations and those of the
corresponding classical model of Sec. IV can be invoked to
justify such a classical calculation from the outset, provided
the parameters are sufficiently far above the classical thresh-
old. This has recently been done in a computation of NSDI
by a few-cycle laser pulse as a function of the carrier-
envelope phase[63]. The agreement also lends additional
credit to the three-dimensional CT results in the regime suf-
ficiently well inside the classical realm. A corresponding
agreement between quantum and classical results has also
been observed in the context of one-dimensional model cal-
culations[20]. We can make contact with such models by
restricting the transverse momenta to values near zero. Of
course, recent measurements of NSDI at and below the clas-
sical threshold[11] are outside the reach of the classical
approach.
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