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Electron-electron dynamics in laser-induced nonsequential double ionization
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For the description of nonsequential double ioniza(id®DI) of rare-gas atoms by a strong linearly polar-
ized laser field, the quantum-mechaniGamatrix diagram that incorporates rescattering impact ionization is
evaluated in the strong-field approximation. We employ a uniform approximation, which is a generalization of
the standard saddle-point approximation. We systematically analyze the manifestations of the electron-electron
interaction in the momentum distributions of the ejected electrons: for the interaction, by which the returning
electron frees the bound electron, we adopt eith@hiiee-body contact interaction or a Coulomb interaction,
and we do or do not incorporate the mutual Coulomb repulsion of the two electrons in their final state. In
particular, we investigate the correlation of the momentum components parallel to the laser-field polarization,
with the transverse momentum components either restricted to certain finite ranges or entirely summed over. In
the latter case, agreement with experimental data is best for the contact interaction and without final-state
repulsion. In the former, if the transverse momenta are restricted to small values, comparison of theory with the
data shows evidence of Coulomb effects. We propose that experimental data selecting events with small
transverse momenta bbth electrons are particularly promising in the elucidation of the dynamics of NSDI.
Also, a classical approximation of the quantum-mecharficalatrix is formulated and shown to work very
well inside the classically allowed region.
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[. INTRODUCTION ionization probabilities. The advent of the cold-target recoil-
S . ion momentum spectroscogCOLTRIMS) technique, also
Double and multiple ionization of atoms by intense laserknown as reaction microscops], combined with high-

fields is a very important process for laser-plasma diagnosrepetition-rate lasers, has opened the way towards acquisi-
tics. As long as electrons are ripped off one by one, usually aion of multiply differential cross sections of the double-
the leading edge of the laser pulse while the intensity ijonization process. The first step was taken with the
rising [1], the process can be straightforwardly described irobservation of the momentum distributioga! three compo-
terms of rate equations and the Ammosov-Delone-Krainownentg of the doubly charged iofv,8]. In principle, this tech-
(ADK) rates[2]. However, as early as 1983 experimentalnique enables one to record all six momentum components
evidence was found for the significance ohansequential of two particles of opposite charges produced in some reac-
channel where several electrons are ejected in one coherelign. For double ionization, to the extent that the momentum
procesg3]. Nonsequential double and multiple ionization in transfer by the laser field is negligible, this amounts to a
an intense laser field is of great fundamental interest, since fomplete kinematical characterization of the process. For a
requires electron-electron correlation as a necessary precoff:cent review, see Ref9]. o ,
dition. If one electron did not notice the other, all multiple = AS @ result, for the low-frequency high-intensity lasers
ionization would be sequential. In most other intense-lasefat were employed in the COLTRIMS experiments, rescat-

atom processes, such as high-order harmonic generation Eﬁ“ng [10] hashem.ergetdh ats.a domma_rzjtl mehr?n'ﬁ’m'dTh'i IS
above-threshold ionization, footprints of electron-electron € same mechanism that Is responsibie for fugh-order har-

. : : .. monic generation and high-order above-threshold ionization:
c_orrelatlon_ are hard to flnw]._ln contrast, in doubl_e I0NIZa= 5 electron set free via tunneling is driven back by the field
tion of helium below saturation, the nonsequential pathwa){O its parent ion where it can rescatter, recombine, or dis-

was observed to be dominant by many orders of magnltud%dge another electrofor several electrons Even though

LS rescattering appears to be the dominant mechanism, man
The search for the physical mechanism that is capable C}E g app , y

duci f fthi itud ined | uSi atures of the data remain unexplained. An example is the
producing an effect of this magnitude remained InCoNClusVg,qayior of the multiply differential cross sections near and

until experimental information became available that wentye o,y the classical threshofd1]. This realm is inaccessible
beyond mere ion counting, that is, beyoatal double- to classical methods, and the data are not compatible with the
results of the quantum descriptions.
The unequivocal imprint on the data caused by the sim-

*Electronic address: faria@itp.uni-hannover.de plest version of rescattering—that is, electron-impact
"Electronic address: henning@mpipks-dresden.mpg.de ionization—is a double-humped distribution of the momen-
*Electronic address: xjliu@mbi-berlin.de tum componenp,, Of the doubly charged ion parallel to the
SElectronic address: whecker@mbi-berlin.de (linearly polarized laser field[7,8]. The humps are centered

1050-2947/2004/69)/043405%17)/$22.50 69 043405-1 ©2004 The American Physical Society



FIGUEIRA de MORISSON FARIAet al. PHYSICAL REVIEW A 69, 043405(2004)

nearp;,n =~ +4Up, whereUp is the ponderomotive potential tial. In addition, we exactly implement the Coulomb repul-
of the laser field12]. This simple estimate is a straightfor- sion between the two electrons in the final stg28] and
ward prediction of the rescattering modéB,14. study its effect on the aforementioned electron distributions.

Various routes have been followed in the theoretical de- We treat the problem in terms of quantum orhi29,4qQ.
scription of nonsequential double ionizatighlSDI). The  Such orbits are closely related to the electron trajectories
mostab initio approach is the numerical solution of the time- obtained classically within the rescattering model. Their con-
dependent Schrédinger equation in three spatial dimensiorigbutions are, however, superposed in the fashion of the
for each electrofl15,16. Owing to the extreme demands on quantum-mechanical path integral. Moreover, being complex
computing power, no explicit results have been obtained yethey account for the electron tunneling from its initial bound
for the near-infrared frequencies used in experiments. A sigstate into the continuum owing to the action of the laser field.
nificant simplification occurs if the inner electron is allowed Indeed, the quantum-orbit approach is capable of describing
to respond to the outer, but not vice vefdd]. Much more interference effects, and it remains applicable in energy re-
work has been done on the corresponding problem in ongions that are out of reach to classical methods, where the
spatial dimension for each electr¢h8—23. rescattering process is classically forbiddena sense to be

An alternative quantum-mechanical approach has atdefined below in Sec. Il B Furthermore, this approach is
tempted to identify the dominant contribution to {Benatrix ~ computationally much less demanding and more transparent
element for the NSDI proce$83,24, out of the multitude of than other quantum-mechanical treatments.
diagrams that contribute. For low-frequency, high-intensity Our computations are performed within a specific uniform
lasers, this has turned out to be the one that describes rescapproximation/30,41], which is a generalization of the stan-
tering. It has been evaluated by several groups with differenlard saddle-point approximation, widely used in the context
approximations[13,25-3]. Of these, the evaluation with Of atoms in strong laser field40]. The standard saddle-point
Sadd|e_p0int method$27_3q requires the least computa- approximation r_equires that_the_ Sa(_idles be well isolated,
tional effort and affords good physical insight. whereas the uniform approximation in question only needs

Until recently, the theoretical effort concentrated on theth€ saddles to occur in pairs, regardless of their separation.
computation of total NSDI rates. Only a few theoretical re- 1he latter condition is always satisfied by the quantum orbits

sults exist for the differential yields that have been obtainedVhich occur in intense-laser-atom procesi. In fact, for

with the help of the COLTRIMS method. These were ob-& specified final state, contributing orbits always come in
tained from the solution of the one-dimensional time-Pars: one having a longer travel time than the other. At the

- . . . boundaries between classically allowed and forbidden energy
dependent Schrodinger equa}tlm],_ by a clasglcal analysis egions, these two orbits almost coalesce. Such a boundary
of excited two-electron configurations in a time-dependen

- : ! ! : a “ LI , 3
electric field [32] and by three-dimensional classical- uses a "cutoff” in the energy spectrum, such that the yield

. decreases steeply when the associated parameter proceeds
trajectory methodg$33,34. The latter have produced good i,ig the cIassicaFI)Ig forbidden region. P P

agreement with those data that are sufficiently far in the clas- \\e a1s0 present and evaluate a very simple model to de-
sical regime. Other than that, thus far the calculation of mulscripe rescattering impact ionization that is classical in the
tiply differential yields has been the domain of tBenatrix  following sense: The first electron enters the continuum by
approach. In the latter, a crucial element is the form of theguantum-mechanical tunneling, which is described by a rate
electron-electron interaction by which the returning electronformula that is highly nonlinear in the applied field, such that
frees the second bound electron. This interaction is treated iimnization predominantly takes place near the maxima of the
the lowest-order Born approximation. The most naturalfield. The process of impact ionization is governed by the
choice appears to be the Coulomb interaction. However, asquare of the form factor that occurs in the quantum calcu-
tonishingly, a three-body contact interaction at the positioriation. Everything else is described in classical terms. Under
of the ion produces better agreement with the experimentahe condition that the kinetic energy of the returning electron
data, at least for neofB85]. be much larger than the second ionization potential, the re-
In this paper, we perform a systematic investigation of thesults of this classical model agree extremely well with the
rescattering contribution to th&matrix element that de- quantum-mechanical results.
scribes NSDI. We calculate the distributions of the electron The paper is organized as follows. In the following sec-
momentum components parallel to the laser field, and intetion, we provide the necessary theoretical background,
grate over the components perpendicular to the field eithemamely, the transition amplitude for NSDI in the strong-field
completely or partly. Experiments corresponding to the latteepproximation(Sec.Il A) and the saddle-point and uniform
situation have been carried out recently. For example, thapproximations(Sec.Il B). This formalism is subsequently
data were analyzed by binning the transverse momentum @fpplied to compute momentum distributions of electrons for
the observed electron according to its magnit§@@,3§. the contact or Coulomb interaction, including or not includ-
This is a further step towards the ultimate goal of kinemati-ing the final-state electron-electron repulsi@ecs. 11l B and
cally complete experiments. It should help one disentangléll C, respectively. In Sec. IV we formulate and evaluate the
mere phase-space effects from the nontrivial dynamics ojfust mentioned classical model of rescattering-induced
electron-electron correlation and find clear signatures of th&SDI. In Sec. V we relate the trends of our results to the
very interaction that is instrumental for the ejection of theexisting data. A detailed comparison for the parameters of
second electron. We compare the two extreme limits of thishe respective experiments can be found in R&2]. In the
crucial electron-electron interaction, namely, the infinite-concluding section, Sec. VI, we assess the merits and short-
range Coulomb potential and the zero-range contact potercomings of our approach.
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Il. BACKGROUND (r|gp"(©) = (2m) > explilp + A(H)] -1}

A. Transition amplitude t
><exp<—iJ d7'[p+A(T)]2>, 3
In the strong-field approximatioiSFA), the transition

amplitude for the NSDI process, caused by laser-assisted ifhe amplitude(1) can be written as
elastic rescattering, is given 13,23

M=- f_x dtf_t a f d*k Vi Vo exdliSy(t,t' k)], (4)

o t
- _ 17.1(V) V) ’
M= f_w dtf_x dt <’ﬂplp2(t)|V12U1 (LE)V1 with the action
2
® u© tt’ t), 1 , 1 o t

2 (LUl D s ,k>=—5[E | o aes [ oA

n=1-t t'
whereV; and U(lv)(t,t’) denote the atomic binding potential +|Egt’ + |EgJt. (5

and the Volkov time-evolution operator acting on the first
eIectron,U(zo)(t,t’) is the field-free propagator acting on the
second electron, and,, is the electron-electron interaction
through which the second electron is freed by the first
Equation(1) can be interpreted as follows. Initially, both
electrons are bound in their ground statg(t’)), which is
approximated by the produdi’(t'))®|y¢(t')) of the
one-electron ground statéz;sf)”)(t’)>:e‘|E0n“'|z,/;f)”)> with ion-
ization potentialgE,|. At the timet’, the first electron is Vo = (P2 + A1), p1 + ADVik + A, 4F)  (6)
released through tunneling ionization, whereas the secon

electron remains bound in its initial state. Subsequently,

the first electron propagates in the continuum, gaining en- Vio = (k + A(t")|Vq| D). 7)

ergy from the field. At the later timé, it undergoes an , - .
inelastic collision with its parent ion, dislodging the sec- " this paper, for the binding potentig}, we choose a Cou-

ond electron in this process. The final electron state idomb potential and for the wave function(r) ground-

taken either as the product state of one-electron Volkowtate hydrogenic wave functions.

states or as a two-electron Volkov staf&8], with

asymptotic moment@, andp,. The two-electron Volkov

state exactly accounts for the electron-electron Coulomb

repulsion, in addition to the interaction with the laser For sufficiently low frequencies and high laser intensities,

field. Eqg. (4) can be evaluated to a good approximation by the
The SFA is commonly made in semianalytical calcula-method of steepest descent, which we will also refer to as the

tions of laser-atom processes affected by high-intensity lowsaddle-point approximation. Thus, we must determine the

frequency laser fields. Briefly, it consists in neglecting thevalues ofk, t’, andt for which Sy(t,t’,k) is stationary, so

influence of the binding potential on the propagation of thethat its partial derivatives with respect to these variables van-

electron in the continuum, and the action of the laser field onish. This condition gives the equations

the bound electron. In addition, there are other physical in- o

gredients of the exact transition amplitude which aoépart [k +A(t")]*=-2Eq, (8a)

of the approximatioril): for example, when the first electron

tunnels out or when it returns to the ion or in both instances,

it may promote the secon@bound electron into an excited 2 [P+ AMPP=[k+AM]? - 2By, (8b)

bound state, from which the latter will tunnel out at a later n=1

time. This process tends to produce electrons with low mo- .

menta, as discussed below. Moreover, except in the initial _

wave function, the presence of the ion is not accounted for. Jt, drik +A(7)]=0. (89

Expanding the Volkov time-evolution operator in terms of ] ]
\Volkov states, Equations(8a) and (8b) express energy conservation at the

ionization and rescattering times, respectively, while Bg)
determines the intermediate electron momentum such that
Vs o — S V)rer the first electron returns to the ion. Obviously, the solutions
UML) = | dk[g O )], (2} t/(s=1,2,..) of Eq.(8a cannot be real. In consequentg,
andkg are complex, too.
Equation(8b) describes energy conservation in the rescat-
where tering process. From the point of view of the first electron,

Here A(t) denotes the vector potential of the laser figid,
=(p1,p,) the final electron momenta, arld the drift mo-
mentum of the first electron in between ionization and recol-
lision. We use the length gauge, and we employ atomic units
throughout. The binding potenti&; of the first electron and
the electron-electron interactiok;, enter through their
form factors

B. Saddle-point and uniform approximations

2
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rescattering is inelastic, since it donates energy to the second In this paper, we will use a more general uniform approxi-

electron. Let us ignore, for the moment, the ionization potenmation [43], which has been successfully applied to above-

tial |[Ey;| and consider linear polarization. Thek=-A(t’),  threshold ionization[41], high-order harmonic generation

andk andt’ are real. For givent’, Egs.(8a) and(8c) then  [44], and in an exemplary fashion to NSEB0]. The uniform

determine the rescattering tihand the momenturk. Inthe  approximation is nearly as simple as the standard saddle-

space of the final momenta=(p,,p-), EQ. (8b) is the equa- point approximation, but much more powerful. It requires

tion of the surface of a six-dimensional sphere with its centethe same input as the former, namely, the amplitullets

at (-A(t),-A(t)) and its squared radius given bk =i,]j) and the action&; (s=i,]) for each pair(i,j) of saddle-

+A(t)]2-2|Ey,. We only consider time$ such that the lat- point solutions. In the classically allowed region, the transi-

ter is positive. Then all possible electron momenta that aréion amplitude then is given by

classically accessible in the process where the first electron is —_ —

ionized at the timet’ are located on the surface of this Mi.j = \2mAS/3 exliS +in/4)

sphere. The union of all these spheres upon variatioti of —

contains all final electron momenta that are in this sense X{ALIy5(AS) +J-1/5(AS)] + AAJz5(AS)

classically accessible. Below, we will frequently refer to it as - J_,5(A9]},

the “classically accessible region.” Leaving this region along

any path in thép,,p,) space, we experience a sharp “cutoff”

in the yield. Quantum mechanics allows a nonzero yield out-

side the classically allowed region, which, however, de- _

creases exponentially with increasing distance from its AA=(A -iA)2, A=(IA - A)/2. (10

boundary. Formally, this is accomplished by the fact that th

exact solutions of the saddle-point equatig8s which are

always complex, exhibit rapidly increasing imaginary parts

For a detailed analysis of the solutions of E§) for the

closely related case of above-threshold ionization, cf. 172

Ref.[39]. J.(2) ~ (_Z> coSz ¥ val2 —wl4), (11
In the standard saddle-point method, the actinin the m

matrix element(4) is expanded to second order about theof the Bessel functions for large

AS=(S-§)2, S=(§+9)2,

St the two saddle points are sufficiently far apart, the param-
eterASis large, and the standard saddle-point approximation
'(9) can be retrieved with the help of the asymptotic behavior,

solutions to the saddle-point equatio(®, whereupon the In the classically forbidden region, one of the saddles is
integrations can be carried out with the result avoided by the contour. This is accounted for by taking an
appropriate functional branch of th@nultivalued Bessel
MEPA =" A exp(iSy), (9a) functions, which will automatically be selected by requiring
s a smooth functional behavior at a Stokes transifi4s,44.

The transition occurs at
S$=S(tsts ks, (90) Re (1t ki) = Re Sy(tj,t/ k), (12)
Voo V and signifies that one of the saddles drops out of the steepest-
kVk ; : o
A= (2T (9c)  descent integration contour. The energy position of such a
\,delﬁg (t,t",k)|s transition approximately coincides with the boundary be-

: . , tween the classically allowed and forbidden energy regions.
Here the indexs runs over thaelevantsaddle points, which Beyond the Stokes transition

are visited by an appropriate deformation of the real integra-

tion contour, viz., thet,t’,k) plane, to complex values, and My = V2iAS/7 expliS)[AK (— IAS) +iAAKy(— IAS)].
S,;(t,t’,k)|s denotes the five-dimensional matrix of the sec- (13)
ond derivatives of the actiofb) with respect ta,t’, andk,
evaluated at the saddle points. This approximation can onlpgain, the result of the saddle-point approximation may be
be applied when all the saddle points are well isolated. Howrecovered using the asymptotic form

ever, as already mentioned, the saddle-point solutions come 12

in pairs, whose two members approach each other very K,(2) ~ (E) exp(- 2) (14)
closely near the classical cutoffs, i.e., near the boundaries of g 2z

the classically allowed region. Furthermore, beyond the clas; . . L
sical cutoffs, one of the two saddle points would yield anfor largez. Inserting Eq(14) into Eq.(13), itis easy to show

exponentially increasing contribution. This saddle point isth"’lt only one saddle point contributes to the saddle-point

not visited by the aforementioned deformed integration con&PProximation in this energy region.

tour. Hence, this solution has to be discarded from the sum

(9a8). Such a procedure leads to cusps in the cutoff region, Ill. DISTRIBUTION OF ELECTRON MOMENTA

which are particularly problematic for nonsequential double

ionization. A detailed analysis of this problem is given in  In the following, we will evaluate the matrix elemen,;
Ref. [30]. [Eq. (10) or (13)]. We will restrict ourselves to the two short-

0
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est orbits, as explained below at the end of Sec. Il A. Its A. The “classically allowed” regime of parallel momenta
modulus square specifies the distribution of the asymptotic Rewritten in terms of the parallel and perpendicular mo-

momenta of the two electrons generated in the process Qf .. components,, andp,,, the saddle-point equations
NSDI. Following the analysis of the experimental data, Weg?) read

decompose the electron momenta into components parall
and perpendicular to thdinearly polarized laser field, so 2= _
thatp,=(py,Pn.)(N=1,2). In a typical reaction-microscope [k+ A coset’] 2Boi, (173
experiment, the momentum of one electron and the momen-
tum of the doubly charged ion are measugasually, it is not
possible to record all six componentd hereafter, the mo- 2 [P + Ag cos wt P =[k + Ag cos wt]? = 2|Eq,| - X pi,
mentum of the othefundetecteylelectron is calculated from  "™* n=1
the assumption of momentum conservation. Even in the case (17b
where all six components of the final electron momenta were
known, plotting the results would require to integrate overwith
some of them. In most experiments, the momentum compo- L
nents(of the detected electrypnransverse to the laser polar- _ : i NG — Lo
ization are either not recorded at all or binned into certain k= w(t—t’)AO(Sln wt=sinat)X=kx. (179
intervals. Correspondingly, we will compute the momentum
correlation function by either integrating entirely or partly Equation(17b) defines a circle in thépy, po) plane with its
over the transverse momenta. Hence, we shall calculate aenter atpy=p,=—A, coswt and the square of its radius
integral of the type given by the right-hand side. Fegr, , =p,, =0, its interior
is the projection onto the(py,p,) plane of the six-
[ , ) dimensional surface mentioned below E®. Inside any
D(py,p2) = | d°Pp110d%pay[Misl?, (19 such circle, the rescattering process is classically allowed.
The radii decrease with increasing transverse kinetic en-

where the integration extends over some range of the finaf'9'€S of the final electrons. In e_ffec_:t, t_he transverse ki-
netic energies add to the second ionization potenEgl,

momenta, i.e., of their magnitudes and/or their relative ori- . . .
up to the point where the classically allowed region

entation. . ,
We consider the monochromatic linearly polarized IaserShrml.<S to ZEro. Note that both the center and the 'radu. of
field the Clrcles_ defined apove depe_nd on the rescattering time
t. The union of all circles defines the entire classically
allowed region in the(py,p,) plane[47]. Depending on
the intensity and the second ionization potent&,], it
_ o ) may or may not include the origip;=py=0 [49].
which satisfiesA(t+T/2)=-A(t) with T=27/w. Electrons The presence of the cutoffs at the boundary of the classi-
generated by a recollision event at a time within the intervaba| region and their dependence [@n pose a serious prob_
~T/4<t<T/4 (moduloT) tend to populate the third quad- |em for the application of the standard saddle-point approxi-
rant of the(py;, pz) plane, while those fronT/4<t<3T/4  mation in computations of momentum distributions. In fact,
(moduloT) mostly populate the first quadrant. In each time the integration over an interval of transverse momenta will
interval, there are two contributing saddle-point solutions,ead to a situation with many Stokes transitions, whose en-
referred to above asandj, which have to be added coher- ergy positions vary continuously. As a direct consequence,
ently in the matrix elemenM,;. If the laser intensity is the artifacts coming from the breakdown of the saddle-point
sufficiently low, the two populations are practically disjoint. approximation at the cutoffs will affect the resulting yield
However, with increasing laser intensity, the classical boundover a large interval of longitudinal momengg,. Therefore,
aries expand, and the two populations begin to overlap sigthe uniform approximation is not only a desirable but also a
nificantly in the region where the momenpg, and p,; are  necessary tool for the computation of the momentum distri-
small. In this case, in principle, we have to superpose all fouputions for NSDI in terms of quantum orbits. This problem is
contributions coherently, viz., in Eq15 we have to inte- discussed in detail in Ref30].
grate|M,(-T/4<t=<T/4)+M,,(T/4<t<3T/4)|°. Rather, For fixed final momenta, the saddle-point equations
we will neglect their interference by taking/;,;(-T/4<t  (17a—(17¢) may have a large number of relevant solutions,
<T/4)|?+|M;,;(T/4<t=<3T/4)|2. This simplifies the calcu- which can be ordered by the length of their “travel time”
lation significantly, because it allows us to take advantage oRegt—t’). Below, we will consider the pair of the two short-
the symmetry [M(t,t’,p)|=|M(t+T/2,t'+T/2,-p)|. This  est quantum orbits, i.e., those two having the shortest travel
procedure is justified by the fact that the relative phase betime. Due to spreading of the associated wave packets, usu-
tween them is a rapidly oscillating function. Indeed, we haveally these two make the dominant contributiof&0]. Of
checked for the case whepg,=p, that the exact and the these, the longer orbit is associated with a “slow-down col-
approximate calculations produce virtually identical resultslision,” that is, an electron along this orbit is decelerated by
definitely so, when the transverse momenta are integratethe laser field when it is approaching the crucial collision
over. with the bound electron. In classical one-dimensional model

2

A(t) = A coqwt)X, (16)
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calculations, these orbits have been shown to be particularh 4 4
efficient for NSDI[20]. A detailed discussion of these orbits 31 (&) 31 (d)
is given in Ref.[30]. o f 8 f
S0 =3
B. No electron-electron repulsion in the final state = 4 = 4
N N
In this section, we neglect the Coulomb repulsion of the o-2 . o-2
two final-state electrons, so that the final state is the produc i :i
state of one-electron Volkov state$g//;,\i:)2(t)>:|¢//:J\i)(t)> ) )
V)
® [4h, (1) o 3 3 (b) 3/ ()
The form factorV,, then is given explicitly by o 2 w 2
1 - 4 3o 5
Vpk — (277)9/2 f d3r 1d3rzel[pl+A(t)].r1e—|[k+A(t)].r1 E p i i
_ g 2 g o
x@P2r A0 (1) 1) Y1) + (p1 > P2), (18) -3 -3
. . o . -4 -4
where Vs, is the electron-electron interaction in question
that is responsible for freeing the second electron. ; g f
Let us consider an electron-electron interaction of the 5 (© 5 M
form 8 1 8 1
o 0 o 0
V1= VI 1,12) =v1r1 = 1) Va(ry), (19 %_1 %_1
wherev,(r) only depends on the interparticle separation. g d .
In a truly microscopic description, there would be no po- -3 -3
tential V,, but we may want to interprét,, as aneffective -4_4_3_2_1 5T 533 -4_4_3_2_1 0T 533
potential that incorporates the presence of the(ighich is p1/[Up]"2 p1y/[Up]'"2
positioned at the origin Then, the form factof18) can be
rewritten as FIG. 1. Momentum correlation functigii5) of the electron mo-
_ - menta parallel to the laser field for nonsequential double ionization
Vpk = [D12(p1 = k) +D1(p2 k)] computed with the uniform approximation using the contact inter-

_ action(21). The field frequency i&»=0.0551 a.u. and the pondero-
Xf dr 7P P2 k=AW (1) D (r,),  (20) motive energyUp=1.2 a.u., which corresponds to an intensity of
5.5x 10" W/cn?. The first two ionization potentials arfEq,|
whereT ,,(p) is the Fourier transform of5(r). Of course, =0.79 a.u. andEq,|=1.51 a.u. corresponding to neon. Pa@l
Vpk is symmetric upon the exchange pf< p,, but this Ehows the yield for the. case where the transversg momg,qt(an. .
does not hold if only individual components are inter-‘l'z) are completely |_ntegrated over, w_hereas in the remaining
changed, viz.py < p, Wherei=x,y, or z. Only in the case panels they are restricted to certain intervals. In panés

. ~ - and (o), is integrated, while &p;,/[U,]¥?<0.1 and
wherev,(r) is _of very short range, so that,(p) is con- 0.4<E)1)L/[FB:]1/2<0.5 grespectively, |np]bLafEE|l;]d) o
stant, does this exchange symmetry hold component bg), both transverse momenta are confined to the intervals

component. On the other hand, this additional symmetr b [[UJ2<05 05<p.. /[UT2<1 and 1 p.. /[U.TV2

holds regardless of the shape V. The effect of these <1P5Mre[sppgctive|3}. + 055pn. /[Up] ’ o /[Up]

symmetries will be encountered below. '
In the next two sections, we will consider the two extreme

cases for the interactiol,(r4,r,): the contact interaction In Fig. 1, we d|splay_the momentum dlstrlbuth(ﬂs’s)_
with zero range and the Coulomb interaction with infinite compu?ed for this potential with the umforr_n apprOX|m§1t|on,
range for various ranges ofp,,| (n=1,2 and with the relative
' angle betweem,, andp,, integrated over. In Fig. (&), the
1. Contact interaction transverse momenta are entirely summed over. The features

obtained, i.e., regions_of circular shape around the two
maxima atpy;=py=+2\U,, are in excellent agreement with
_ _ those in Ref[28].

Vil o) = ra = ra)dlra), (21) The saddle-point equatiati7b) shows that the transverse
which confines the electron-electron interaction to the posikinetic energies add to the second ionization potential. In
tion of the ion. For this interaction, the form factorg, and  consequence, the higher the second ionization potential is
Vo are constants. In this case and only in this case, one doesd the lower the intensity, the more closely are the momen-
not have to resort to the saddle-point approximation: the matum correlation functions concentrated around the momenta
trix element (1) can be obtained analytically up to one py=p,=2yUp. This effect can be verified by comparing
quadraturg13,51]. For any other potential, the exact evalu- panels(a) and (f): in (f) both transverse momenta are large
ation requires a numerical computation of multiple integralssuch that the total transverse kinetic energy is betwégn

First, we investigate the three-body contact interaction
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g

.

Viary,ro) = |r— (22

2=

p2y/[Up1"2

2
— 1
=] 0
This appears to be a more realistic description of the inter- & \ 7; ‘
action, by which the first electron releases the second. In ar 3
ab initio Born-series calculation, this interaction constitutes -4 _
the lowest order. The ion is not accounted for, that is, the ~ ~4-3-2-10 1 23 4 AG218 1263
potential V,(r,) of Eq. (19) is absent. The corresponding Pu/tUp] Pru/lUp]
form factor

and 2.2%Jp, while in (a), where all transverse momenta are 4 4
summed over, the result is dominated by the contributions 31 (2) 31 (d)
from the smaller ones. In pan@d), one transverse momen- <« 2 o 2 A
. . . . . . = 1 — 1
tum is very small. Hence, the distribution is broader, as if the FY \ JEN b
intensity were higher and/or the second ionization potential< \ = 1
smaller than it actually is. Pane(gl) and (e), where both 8 5 ISP v
transverse momenta are restricted to very small or moder 4 _3
ately small values, have an appearance very different from 4 4
the other panels. The distributions are ring shaped and con 4
centrated near the boundary of the classically allowed region 3 (b) 3 (€)
while the region aroungy =p,=2yUp is almost unpopu- = 2 o 2
lated. Below, in Sec. IV, we will be able to understand these+. 1 ] — 1 \
features qualitatively as well as quantitatively from classical 2“ 0 . 2 2& 0
considerations. =-1 -1 ‘
o o ' Q_2
. . -3 -3
2. Coulomb interaction 4 4
In this section, we perform a similar analysis for the Cou- 4 4
lomb interaction 3 (€) 31 (f)
2
1
0
-1
-2
-3

FIG. 2. Same as Fig. 1, but calculated for the Coulomb interac-
1 tion (22).
pkN( Y _ 22+(p1<_’p2) . .
P1—K)42|Egy +[p1+pa—k +A(t)]7} momenta are restrictdgpanels(d)—f)], we again observe, as
(23) in Fig. 1, that the most significant contributions to the yield
occur near the boundaries of the classically allowed region,
is a function of the electron velocitigs,+A(t) andk +A(t) whose area decreases for increasing transverse momenta.
just after and just prior to, respectively, the crucial rescatter? he shapeof the distribution in pane(f), where both trans-
ing event. verse momenta are large, then does not look very different
mentum distributiong15) for various transverse-momentum of p. , o )
ranges regardless of the relative orientation of the transverse All Panels of Figs. 1 and 2 exhibit inversion symmetry
momenta.(We postpone showing a few distributions for With réspect to the origin, that is, symmetry upon
fixedrelative angle till the very end of Sec. NIThese dis- (Pay, P2y) < (=Paj, —Pay). This is an immediate consequence of
tributions are shown in Fig. 2. The form fact@3) favors the symmet_ryA(t+T/ 2):_.A(t) of '_[he monochromatic laser
small p;—k and/or smallp,+A(t) [or small p,—k and/or field (16). With the exception of Flgs.@) and Zc), all pan-
small p,+A(1)], which is equivalent to small momentum els also show reflection symmetry with respect to the diago-

. nal py=p,. Since the action) is invariant upon inter-
transfer of the returning electron to the bound electron an@hanging all or some componentsmfandp,, the presence
the bound electron being set free with small velogig]. ’

- J b stilo or absence of this additional reflection symmetry is related to

for small p, and largep, (or largep, and smallpy), i.e., v, which were discussed below E@0). In panels(b) and
away from thep;;=p, diagonal, since the vector potential is (c) of Figs. 1 and 2, the transverse momentum components
near its maximum at the rescattering tinevhile the drift  of the detected electroelectron 3 are binned, while those
momentumk is small. When the transverse momenta areof the other electron(electron 2 are summed over. For the
summed ovefFig. 2@)], the result is in agreement with Ref. contact interactiori21), V, is constant and, therefore, trivi-
[28]. In Figs. 2b) and Zc), we restrict the transverse mo- ally symmetric upon interchanging all or only some of the
mentum of one of the electrons. In comparison with the caseomponents ofp; and p,. This is not so for the Coulomb
of the contact interaction in Fig. 1, this has a lesser effect omteraction(22). Hence, panelg¢b) and(c) of Fig. 1 do, and
the momentum correlations. The signature of the Coulomlaf Fig. 2 do not, exhibit reflection symmetry about the diag-
interaction—one electron having a small and the other @nal py=py.

large momentum—is rather stable against summing over Panels(b) and (c) of Fig. 2 show that the longitudinal
various parts of the transverse phase space. If both transvers@mmentum of electron {the one whose perpendicular mo-

V

043405-7



FIGUEIRA de MORISSON FARIAet al. PHYSICAL REVIEW A 69, 043405(2004)

mentum is restrictedhas a higher propensity to be_sm_all ‘I’fn\ib?(rl,rz,t): l//fg\i)(rl,t)wf)\;)(rz,t)
than the same momentum component of electron 2, in viola- _ _
tion of the reflection symmetry. This can be traced to the X1F1(=ig;Lii(pr=p -1)C(E), (24)

term (pl—k)'z.:[IO%L+(D1”—k)2]"1 of the form factor(23),  \yherer=r,~r,, p=(py-p,)/2,
the term that is related to the momentum transfer from the
returning electron to the rest of the systempff, is small, {=lpy-pal™, (25)
then the form factor is largest i, is small as well, since the 5, 1F1(a;b;2) denotes the confluent hypergeometric func-
drift mqmentumk of the returning electron is small. tion. The normalization factor is
In principle, the presence or absence in the data of the
reflection symmetry allows one to draw conclusions regard- C(O) =e ™Pr(1+i), (26)
ing the actual form of the interactiofl9). Indeed, experi-
mental data that resolve the transverse momentum of the? that
detected electron do show a violation of thg« py Sym- 2m¢
metry [36,37. However, there are experimental reasons that ICOP=—"——.
also lead to such a violation: the detector has a bias to detect exp2m() -1
the electron that arrives first, which is the faster one of therhe two-electron Volkov state has the simple fof@¥)
two electrons. since, owing to the dipole approximation, the laser field
Another important conclusion derived from the compari-couples only to the center of mass of the two electrons, while
son of Figs. 1 and 2 is that the influence of the electronthe Coulomb repulsion only affects their relative position.
electron interactiorV/;, on the correlation functions is most The prefactor(26) will be found to have strong influence on
pronounced if both transverse electron momenta are rehe NSDI yields, since it strongly favors unequal momenta.
stricted to small values. Except for the fact that both respect The corresponding form factdry,, originally defined in
the classical boundary, the distributions of Figg)land X&)  Eq. (6), is now to include the entire spatial part of the two-
on the one hand and Figs(d} and Ze) on the other could electron Volkov functior(24). Hence, in place of Eq18) we
hardly be more different. Notice, also, the dramatic differ-have
ence between Figs.(d and Xd), while there is compara- )
tively little difference between Figs.(& and 2d). For the V., = c@® &3 . dBr (PR T1gilP2tAM] T
contact interaction, which does not allow for any dynamics Pk (2m)902 e
(apart from energy conservatipnphase space is the all- 2 . .
important feature, while for the Coulomb interaction the dy- XVir 1, F )Y (r2)1Fa(i¢ 1, -i(pr=p -1).
namical form factor overshadows the consequences of phase (28)
space. These facts combined suggest that experiments for
different rare gases with restricted transverse momefita 1. Contact interaction
both electrongnight be best suited to unravel the differences ) ) )
between the electron-electron correlation in different atoms. FOr the contact interactio21), the Coulomb-repulsion-
One should note that the results obtained for theModified form factor(28) is just
Coulomb-type interaction are strongly dependent on the V. < C'(0) (29)
gauge employed. We use the length gauge. Computations of pk '
NSDI yields in the velocity gaugg23,25,26 give momen-  which is directly proportional to the prefact6). Note that
tum distributions that are more concentrated near the diagat does not depend on the electron momentum in the inter-
nal py=py and the originpy=p,=0. This is due to the fact mediate state, but only on the final-state momenta, so that it
that in the velocity gauge the form fact(®3) is lacking the  can be taken out of all integrals in E@). Its influence on
vector potentialA(t) in the second factor of the denominator. the momentum distributions is shown in the subsequent fig-
Hence, the mechanism described above, which favors urires, in which the cases of parallel, perpendicular, and anti-
equal momenta, is upset, and the form factor plainly deparallel transverse momenta are investigated.
creases for increasing momenia and p,. The absence of Figure 3 deals with the case of antiparallel transverse mo-
the vector potential implies that the form factor does notmenta, i.e., the electron momenta transverse to the field po-
depend on thénstantaneous moment the time of rescat- larization form an angle ot)=m. For this angle, electron-

tering (as it does in the length gaugéut on thedrift mo-  electron repulsion is expected to play the least important
menta role. If the magnitudes of the transverse momenta are com-

pletely integrated ovefFig. 3@)], the momentum distribu-
tion in the (py,py) plane looks very similar to the case
C. Electron-electron repulsion in the final state without repulsion[cf. Fig. 1(a)], except that it is slightly
broader in the direction perpendicular to the diagopal
In this section, we take into account the repulsion of the=p,,. If one of the momenta is restricted to relatively low
two electrons in the final state. We do so by replacing in thevalues [Fig. 3(b)], each maximum near %2J,, splits into
matrix element(1) the product Volkov state by the exact two, which are positioned symmetrically with respectpip
correlated two-electron Volkov state whose wave function=p,,. If this momentum range is shifted to higher values, the
is [38] two maxima start to merge originating a plateau that extends

(27)
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FIG. 3. Same as Fig. 1, but including Coulomb repulsion of the  FIG. 4. Same as Fig. 3, but the transverse momenta are at right
two electrons in the final state. The transverse momenta of the twangles,¢=m/2.
electrons are antiparallefy= .

across the diagondFig. 3c)]. These features are physically Finally, in Fig. 5 we address the most extreme situation,
expected, since Coulomb repulsion is more pronounced fofhen both transverse momenta are paralfet0). A general
small electron momenta. The influence of Coulomb repulsiorieature in this case is the sharp decrease in the yield near
can also be seen very clearly if both transverse momenta ai& =Pz, With two distinct sets of maxima, symmetric with
restricted to small valug$ig. 3d)]. Indeed, there is a whole respect tapy=py, for all ranges of the transverse momenta,
region around the diagongl,=p,, for which the yield com-  restricted or not.

pletely vanishes in comparison with the case without repul- Figure 6 shows the corresponding results when the rela-
sion [i.e., Fig. Xd)]. An analogous, less extreme effect is tive angle ¢ is also integrated over. As expected, it looks

present for slightly larger momenf{éig. 3(e)]. In fact, as  much like an average of the momentum distributions of Figs.
compared to its counterpart without repulsifiig. 1(e)], 3-5.
there is a noticeable decrease in the yield along and in the

vicinity of py=py. For large transverse momenta, on the 2. Coulomb interaction
other_hand, Coulomb repulsion hardly makes any difference For the Coulomb interactio(22), the form factoV,, can
[cf. Fig. Jf)]. be evaluated with the help of the integfaB]
The case when the transverse momenta of the two elec- .
trons form a right angle, i.e¢p=/2, is intermediatgFig. dr S
4). If the transverse momenta are integrated over, the Téarl':l(""l"(kr_ k1)

(P11, P2)-momentum distribution considerably broadens in _ _

the direction perpendicular o, =p,;, as compared with the =4m(ad)" (a-k)? - k2. (30)
case without repulsion and with the previous case. If one Oﬁ'his yields

the momenta is restricted to small values, the distribution,

again, exhibits the two distinct sets of maxima observed in c()

the antiparallel situation, with the main difference that such Vik ~ (p1 - K)X2|Epd + [p1+pa— K + A(D)]A2
maxima are now more pronounced and occur even if one of

the momenta is not so smd#.g., in Fig. 4c)]. If both mo- x{l _(p1=K) - (pL=p2) ¢

menta are small, the yield looks almost identical to that ob- (p1—k)? " (Prpa)
served in the antiparallel case. As before, Coulomb repulsion (31)
has no noticeable effect, when both transverse momenta are

large [panel(f)]. Comparing this with the form factq23) without final-state
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FIG. 5. Same as Fig. 3, but the transverse momenta are parallel, FIG. 6. Same as Fig. 3, but the relative orientation of the trans-
$»=0. verse momenta is integrated over.

repulsion, we see that the former is now multiplied with thedimensional model calculations. Indeed, momentum correla-
normalization factof26) as well as with the factor in square tion functions calculated in this context from the numerical
brackets. The latter now does dependkgrso it cannot, in  solution of the time-dependent Schrédinger equafidg
principle, be pulled out of the integral. However, for given ook very much like those in panelsl) of Figs. 7-9. For

in the classically allowed regime, the two saddle-point soluthese very small transverse momenta, their relative orienta-

tions k of the respective pair of solutions are almost equakion hardly matters anymore, and the correlation function is
and, moreover, almost real. The contribution of the factor inogncentrated in the four small regioms, =0 pz\|=12\"Up
square brackets in E¢B1) is then_neghglble.as itis ra|§ed o and Py =0 le:iZ\/U_p on the axes. The very same feature
a complex power. In the classically forbidden regime, itScan be ob1served in the results of RE#2]

effect may be more significant, but in this regime the abso- Finallv. in Eia. 10 we present the results of intearatin
lute yields are very small. All in all, the dominant effect of th Y lati 9.+ tati P 9 9
the final-state repulsion is due to the normalization factorPVEr € refative orien a_lod;. . .

IC(9))2, as we observed already in EQ9) for the contact Panels(b) and(c) of Figs. 7-10 again exhibit the lack of

interaction. This has been confirmed by the identical resultde Py Pz Symmetry, which was discussed gbove In con-
obtained taking both the exact form fact@d) and the Cou- nection with Fig. 2. As above the asymmetry_ is stro_ngest in
lomb form factor without repulsion multiplied by this factor Panels(b), where the transverse momentym is restricted
(not shown. to the smallest values. The faci@(¢)|2, which incorporates
Once more, in Figs. 7-9, we investigate NSDI for thefinal-state repulsion, is invariant upga < p, component by
transverse electron momenta being antiparallel, perpendicgomponent, since it depends dp,—p,|. Therefore, the
lar, and parallel, respectively. The parallel case in Fig. 9 preasymmetry is not affected when final-state repulsion is
sents a very extreme example of the influence of Coulomiurned on.
repulsion: the momentum correlation function has shrunk to To conclude this section, we investigate the momentum
four spots, which are pushed away from the diagonal to theorrelation as a function of the relative angle between the
very edge of the classically allowed region. Figure 9 shouldnomenta of the final electroria the absence of final-state
be compared with the corresponding results for the contaaepulsion For the contact interaction, it does not depend on
interaction in Fig. 5, where this effect is much less dramaticthis angle at all; for the Coulomb interacti@®3), it is pre-
except in the case whebmthtransverse momenta are either sented in Fig. 11. We only show the case where the trans-
large [panels(f)] or small[panels(d)]. verse momenta are entirely integrated. The dependence on
The case where both transverse momenta are restricted tioe relative angle is weak: only a slight recess of population
small values can be compared with two-electron oneaway from the diagonal is observed when the relative orien-
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FIG. 7. Same as Fig. 1, but calculated for the Coulomb interac- FIG. 8. Same as Fig. 7, but the transverse momenta are perpen-
tion (22) and final-state Coulomb repulsion. The transverse mo-dicular, ¢=17/2.
menta of the final electrons are antiparallék .

tation turns from back-to-back to side-by-siffeom panel AE = AE(py, P2V

(a) to (b)]. In the other case@ot shown, correspondin_g to = Eft) = |Egd — %[plu +AM)]? - %[pz‘I +A1)]2.
panelg(b)—f) of the previous figures, the dependence is simi- (33)
larly weak if not weaker.

IV. CLASSICAL MODELS Here the first electron appears in the continuum with zero

The saddle-point equatior8) pinpoint the crucial stages \é?tlf))c;tyRaé ttr)e t'n}et accr:]c')r(r:ilmg to tr;ekt|m;-3egerédte’nt_lrate
of NSDI: initial tunneling of the first electron, inelastic scat- = R(E( ))’3,2 o W, on we take (t') ~ |E(t")| .
tering, and free propagation in between these two eventgfexm_z(2|E91|) /3EW)IT [54]' Starting from the posi-
Apart from the initial tunneling, the respective physics cantlon of the.IOI’], the,elec,tron IS .accelerated by the laser
largely be envisioned as classical, insomuch as the final eled®ld- The timet=t(t")>t’, at which the electron “23“_””3
tron momenta are classically accessible, and the better so th@ the ion with kinetic energyE(t)=(1/2)[k+A)], is
higher above threshold the inelastic rescattering takes placé@lculated classically along the lines of the simple-man
Therefore, in this section we will explore a completely clas-Model[55]. At this time, the electron dislodges the second
sical model. bound electron in an inelastic collision. Tfunction in

Let us then consider the following expression for theEd- (32) expresses energy conservation in this inelastic
NSDI yield (up to a constant factpsuch that two electrons collision. In fact, it is nothing but the saddle-point equa-

are generated with drift momenfs andp,: tion (8b) with realt,t’, andk. The actual distribution of
L L final momenta is governed by the form fact¢vy|?
F(p..p,) = | dtRt)S| Z[p; + A2+ =[p, + A(t)]2 yvhose _shape depends on tfedfective) electron-electron
(P1,p2) f ) (2[p1 OF+ 5P+ A] interaction potential.

Several features are absent in this model that are part of
+|Eqp) - Eret(t)>|vpk|2 the quantum-mechanical description:
(i) There is spreading of the electronic wave packet from
1 the ionization timet’ to the return time.
:fdt’R(t’)é(E(pi+p§l)—AE> Vol?  (32) (i) For givenp; and p,, there are several solutiorts
=t(t’) (cf. the discussion at the end of Sec. IlJ.An quan-
with tum mechanics, their contributions are added coherently in
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FIG. 9. Same as Fig. 7, but the transverse momenta are parallel, FIG. 10. Same as Figs. 7-9, but the relative orientation of the
¢=0. transverse momenta is integrated over.

the amplitude, while in the total classical yie(@2), the
probabilities corresponding to the various solutions are
added.

A. Contact interaction

In this case, the form factor is a constant independent of

(iii) Below the classical threshold, the argument of ghe N€ momentum of the returning electron as well as the mo-
function in Eq.(32) is nonzero for any ionization tir, and menta Qf the two flnal_ electrons. Therefore, the distribution
the yield is zero. Quantum mechanics admits larger energ .f the fmallmomenta IS gover.ned only by energy conserva-
transfer from the laser field to the charged particles, so th on at the instant of rescattering as expressed infthenc-
the yield remains nonzero, though it becomes exponentialliﬁOn ln'E_q.(32) gnd by the available phase Space. The mpdel
small when the parameters move farther into the nonclassic sufficiently simple that we can carry out the Integrations
regime. This implies that the classical model becomes al9Ve' the transverse momenta analytically. To this end, we
ready unreliable near the boundaries of the classical regior"@: for example, replace thfunction by its Fourier trans-

We want to evaluate the distribution of the momentum'©™
components parallel to the laser field for particular configu-
rations of the transverse components. This is governed by
distribution functions of the typél5). In most cases, we are
not interested in the relative orientation of the transverse mo-
menta, and we restrict their magnitudes to certain ranges.
This requires calculating Finite or infinite integrations ovep,, then can be carried out
straightforwardly, and the remaining integration overis
done with the help of56]

8(x) = f_m g—:rexp(— IAX).

2 2 Pl [P
D(pa, P25 P1, P2):277f0 dpnf dp3,
0

2r ) dA ip\ — 2 -1
x . deF(p1,p2). (34) J_oc (i)\+s)”eIp _1“(1;)p+ ’ (35

As in the quantum-mechanical considerations, we shall inwherex{=x"6(x), with 6(x) the unit step function and—
vestigate the two extreme cases for the electron-electron pa-0.
tential V. This procedure yields
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:
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-3

4

FIG. 11. Momentum correlation function for
the Coulomb form factof23) in the absence of
final-state repulsiotior specific relative angles:
o= (), ¢=m/2 (b), and ¢=0 (c). The other
parameters are as in Fig(al; in particular, the
transverse momenta are completely summed
over.

432101234 432101234 432101234
p1y/[Up "2

p1y/[Up1"2

D(py,P2y; P2, P3) = 272 f dt'R(t')[2AE + (2AE - P2 - P,

- (2AE - P?), - (2AE-P3),].

Note that this distribution is symmetric upqg, < p,. Spe-

cial cases include

D(py, P2y 0,°) = 4ﬂ2f dt'R(t")(AE).,

where the transverse momenta are entirely integrated
[as in panelga) of the figures of this papér

p1/lUp1"2

(36)

(37)

mum and therefore, are concentrated aroung=py
—+2VUP [57]. This is very visible in Flg 1d). The inte-
grated correlation functio(87) has its maximum at about the
same momenta. However, it is broader, since it receives ad-
ditional contributions from time$' where AE(t) is smaller,

as well as from smaller transverse momenta. If one trans-
verse momentum is binned with small values, the applicable
distribution is given in Eq(38). Comparing this with Eq.
(37), we see that large\E are now less favored and, in
consequence, the maximum of the distribution moves to

ovéswer values ofp,;, and the distribution is still broader. This

is clearly visible in panelgb) of Figs. 1 and 12. When both
transverse momenta are small such that|p, |<P, the

D(pyy,Pa; P2,®) = 4772J dt’ R(t')min[%PZ,(AEL],
(39

where one electron is binngdf. panels(b)], or

D(py,Pz; P% P?) = 4772f dt'R(t") 6(AE) 6(P? - AE)

X[AEO(P? - 2AE) + (P?> - AE)

X (2AE - P?)], (39

where both transverse momenta are restricted to the sam
range[cf. panels(d)]. The other distributions that we plotted
can be obtained similarly.

Q

Momentum correlation functions calculated from Egs.

(837)«39) are shown in Fig. 12. Generally, they agree very =

well with the quantum-mechanical results of Fig. 1. The mi- &

nor differences that exist are most visible in the case where
both transverse momenta are restricted to small intervals
[panels(d) and(e)]. Here, the classical model emphasizes the
boundary of the classical region projected onto thg, p,;)
plane even more strongly than the quantum calculation. Of
course, the latter extends into the classically forbidden re-
gion, but this is not visible on the scale of Fig. 1.

The classical model and the expressi@®—39) derived
from it explain the dependence of the correlation-function
distributions on the values of the transverse momenta and, it
particular, the peculiar behavior visible in panéd$ and(e)
of Figs. 1 and 12. In order to satisfy tlé&function condition
in EqQ. (32), AE must be smal(large) for small(large) trans-
verse momenta. Let us consider the case of large moment
first. For givent, the quantityAE is largest aroungby=py
=-A(t), and, as a function of, its absolute maximum is

1/2
Py U]
b BN R s WP R

(a)

112
Py, / U]"

(d)

4 3 2

10 I1/2 2
P, /U]

A b DM LA o 2 v ow s
1 P N TP WU P N 1

I P - N )

12
p,, /U]

A DN 4o 2N ow oA
ro A AT A

pzﬁ/[up]VZ
SO d o 2o

B

4 3 -2

R
p1/// [U ]

1/2

4 3 2

KN

12

112
P,/ 1U]"

A b D Ao =2 N oo
e Ao Al A 1

4 3 -2

470
P,/ [U ]

1/2

4 3 2

possible near rescattering times corresponding to this max{38) panels(b) and(c), and Eq.(39) panel(d).
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1() l

pertinent distribution39) shows that this requireAE < P2.

For Fig. 12,P?=0.25, soAE must be small. For timessuch

that E,¢ is much larger thanEgy, this requires thatp,

+A(t) andpy +A(t) be large, which produces the ring-shaped ¢

population. There are contributions, too, from tinteghere

Eet is Not much larger thatEy,|. They populate the interior

of the rings, but they are much weaker, since their ionization

times are significantly below the maxima Bft’). It is im-

portant to recall that the features just discussed only depen: SRE AR ST R RS | RN A RS T R

on phase space and on the highly nonlinear form of the in- pw/[up]”2 p,, /U ke

jection rateR(t’). Any deviation from the patterns depicted » 2
{(e /

P/ U]
A W N = O = N W »
p2///[Up]1/2
AE BB IBY &
1

in Figs. 1 and 12 is due to the form factdt, favoring
certain momenta over others. Hence a comparison of the
measured momentum correlations with those of Figs. 1 ancg
12 does yield information about the actual electron-electron >*
correlation mechanism.
With the method described above, arbitrary components <
of the final momenta can be summed over. In particular,
single-electron momentum distributions in coincidence with
NSDI can be computed by integrating over the momentum of
one electron. This will not be pursued in this paper.

2///

A G 2 0o = N 0 &

pz/// [Up]1/2
A W N =2 O = N W b

4 -3 2 1 0 iuzé 3 4
p,, /U]

B. Electron-electron Coulomb interaction

The distribution function34) can also be evaluated ana-
lytically in the presence of the Coulomb form fact®3),
which depends op? , p3,, and the relative anglé between
p, and p,. For arbitrary upper limits?? and P3, again all
integrals(up to the integration ovet’) can be carried out

172
p2/// [Up]
A W N = O = N W b
12
pz/// [Up]
A W N = O = N W b

analytically: First, the integral ove® leads to a compact 4 3 2 101 2 3 4 4 3 2 101 2 3 4

expression. Subsequently, the integration opgr can be p,,/1U]" p,,/1U]"*

carried out trivially by means of thé function in Eq.(32),

so that FIG. 13. Same as Fig. 12, but including electron-electron repul-
1, 2 ) sion in the final state. The transverse momenta are perpendicular,
E(pll + pZL) -AE=0, (40) ¢p=l2.

with AE defined in Eq(33). The remaining integral oves |

then leads to a result that is too lengthy to be written down, The results of such a calculation for the casew/2 are

but still analytical. The only integration that requires a nu-presented in Fig. 13. Comparison with the corresponding
merical effort is the integration over the ionization tirtle  quantum-mechanical calculation in Fig. 4 again shows agree-
Results of this procedure will be presented elsewhere. ment well into small details. Virtually the only discrepancies
are located near the diagonal, which the classical model
clears of any population even more efficiently than the

] ] guantum-mechanical version.
Finally, the Coulomb repulsion between the two electrons

in the continuum can be incorporated by replacing

|Vpk|2 - |Vpk|2|c(§)|2 (41 . . .

. ) . The COLTRIMS or reaction-microscope technidég al-
with the functionC(¢) from Eq. (26). This was exact for the |ows, in principle, recording all three components of the mo-
contact potentigicf. Eq.(29)] and approximate for the Cou- mentum vectors of two particles with opposite charges
lomb potentialcf. Eq.(31)]. Including this factor precludes, ejected in some reaction process. Insomuch as the momen-
in general, performing the integrati¢@6), for the contact as  tum imparted by the laser field can be neglected, this permits
well as for the Coulomb interaction, over the transverse moa complete kinematical analysis of laser-induced double ion-
menta in analytical form, owing to the functional form of jzation. Experiments so far have concentrated on the rare
IC())I>. There is one exception: if the final transverse mo-gases helium, neon, and argon. In a first round of experi-
menta of the two electrons are perpendicufar, -p,; =0,  ments, the momentum of the doubly charged ion was regis-
then {2=(py—pz)?+pi, +p5,, and we havep? +p3, tered for helium[7], neon[8], and argon/58]. The second
=AE by Eq. (40). In this case, the functiofC({)|?, which  stage focused on the correlation of the two electrons
cannot be integrated in analytical form, actually does no{11,35-37,59,6D Typically, the momentum components par-
have to be integrated over. allel to the(linearly polarized laser field of one of the two

C. Coulomb repulsion between the final-state electrons

V. COMPARISON WITH EXPERIMENTAL DATA

043405-14



ELECTRON-ELECTRON DYNAMICS IN LASER-INDUCED.. PHYSICAL REVIEW A 69, 043405(2004)

electrons and of the ion were recorded, regardless of thgal (22). However, the data are also compatible with panels
components perpendicular to the laser field. The momenturtb) and(c) of Fig. 2, which correspond to the Coulomb po-
of the second electron is then inferred from momentum contential for V,, and no final-state repulsion.

servation. In Figs. 1-10, our results corresponding to such an Another set of electron-electron correlation data in argon
analysis of the data are presented in the panels lalie)ed [37] has accomplished even tighter binning of the transverse
The most detailed results are available for argon, for whichnomenta. Here, too, fop ,|<0.3 a.u. the tendency of the
the correlation of the parallel components is analyzedyisiriputions to broaden away from the diagopal=p,; is
[36,37, while the transverse component of the momentum of,pvious. For the very smallest bin<dp,|<0.1 a.u.[Fig.

the detected electron is binned into certain intervals. Thei etrih AN
- . . a) of Ref.[37]], the measured distribution in t ,
theoretical results for such a situation, but for the parametersfa)ne now [dgga]s show a pattern with four wgﬁ-llcl,e%g)rated

of neon, are displayed in pan€ls) and(c) of Figs. 1-10. In . o >
panels(d)—f), the transverse momenta of both electrons aré?atxk:ma Iocallteg onf tlr:].ﬁl“ ar71d 1pC2)H axE_s.hThls IS rle mllnlsgefnt
confined to certain ranges. Such data have not been puf)’—b € panels(b) of Figs. 7-10, which are calculated for
lished yet. In a recent experimef®1], the correlation of the aout the same binning and intensithough for neopand

transverse momenta was investigated, with the longitudind'¢lude both the final-state repulsion and the Coulomb po-
components summed over. tential Vi,. The contrast of the measured distribution, how-
In the experiments, characteristic differences have beefiVer, is much less pronounced than in Figs. 7-10. Allin all,
established between NSDI of argon and helium on the onéhe data agree better with a symmetrized version of Kig, 2
hand, and neon on the other. In argon, a significant numbéthich takes the Coulomb interaction fof,, but does not
of events is found where the momerg andp,, are either ~ include the final-state Coulomb repulsion.
both small or such that they correspond to back-to-back It is remarkable that, apart from the case last mentioned,
emission, so that they come to lie in the second or fourttthe data show little similarity with the model calculations
quadrant of thépy,, p,) plane[36,59. Very few such events that take the Coulomb repulsion fof,. In no case do they
are seen in neof5]. There is some consensus that these2dree with what one might have expected to be the optimal
events are caused by the recolliding first electron exciting thélescription: the Coulomb potential fdr;, plus final-state
second bound electron into an excited bound state fron¢oulomb repulsion.
which it tunnels out at a later timg0,61]. This mechanism
is nc_)t pgrt of .the .model con;idered in thi_s paper one VI. CONCLUSIONS
spatial dimension, it has been incorporated in RE3]). The
different behavior of helium/argon versus neon has been at- We have performed a systematic investigation of the
tributed to the different energy dependence of the pertinenglectron-electron dynamics in non-sequential double ioniza-
electron-ion cross sections for excitation and ionization oftion within the strong-field-approximation framework. We
the respective ionf62). have evaluated the SFA transition amplitudes by means of
For a detailed comparison between the results of the modhe uniform approximatiorid0,41, which, apart from being
els presented in this paper and the data, for precisely thealid in all energy regions, considerably simplifies the com-
conditions of the latter, we refer to Reg#2]. In what fol-  putations compared with a numerical evaluat[@5,26,31
lows, we will just compare the tendencies of our currentor the solution of the time-dependent Schrodinger equation
results with those derived from the data. For neon, the mof15,14.
mentum correlation functions calculated for the contact po- Our main concern is the effect of the electron-electron
tential and integrated over all transverse mom¢hig. 1(a); interaction on the correlation of the electron-momentum
see also Refl28]] agree quite well with the data of R¢B5] components parallel to the polarization of the laser field, for
(and also with those of Ref36]; see below. Note that these the case where the transverse components are either not de-
theoretical results do not include the Coulomb repulsion irtected at all or restricted to certain intervals. First, we ask the
the final state. For the case where the transverse momentuguestion of whether the effective interactigi,, which frees
of one electron is binned, data exist for argon only, while allthe second electron and is treated in lowest-order Born ap-
of our calculations are for neon. However, our model doegproximation, is of short range or long range. Second, we do
not crucially depend on the atomic species, and we plotteéthclude or we do not include the electron-electron Coulomb
all momentum distributions on the scalef/Up. Keeping  repulsion in the final two-electron state.
in mind that the distributions broaden when the second ion- The results of such investigations are at first sight very
ization potential decreasdgd3], we expect the tendencies surprising: When the transverse momenta are integrated over,
that emerge in our results for neon to apply to argon as wellthe apparently crudest approximation—where the electron-
Inspecting, then, the argon daftd6] where one transverse electron interaction by which the second electron is kicked
momentum is binned to the intervakQp |<0.5 a.u., we out is treated as an effective three-body contact interaction,
notice a slight but distinct broadening of the distribution and electron-electron repulsion in the final state is ignored—
away from the diagonab,=p,. This is similar to the ten- yields the best agreement with the data. Comparison of the
dency visible in panelgb) and (c) of Fig. 6, which do in- available data with the model calculations reveals some evi-
clude the final-state Coulomb repulsion. Note that these datdence of Coulomb effects only when one of the transverse
show no similarity with paneléb) and(c) of Figs. 10, which momentum components is very small, cf. the specific com-
also include the final-state Coulomb repulsion, but are calcuparison in Ref[42]. Unfortunately, the available experimen-
lated for the case whei,, is given by the Coulomb poten- tal data have not been analyzed to extract momentum corre-
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lations whereboth transverse momenta are small. In this employ the three-body contact interaction for the crucial
case, the four variants of the strong-fi@anatrix model that  electron-electron interactioN,, while it is definitely not
we investigate—three-body contact interaction vs Coulombvhen we take the electron-electron Coulomb interaction
interaction and Coulomb repulsion vs no Coulomb repulsior{51]. In reality, the presence of the ion will shield the funda-
in the final state—exhibit the most pronounced differencesmental electron-electron Coulomb repulsion to some extent,
Owing to this high sensitivity, one is led to surmise that suchwhich is taken into account in an extreme fashion by the
an analysis of the data might most clearly unveil the fundacontact interaction. This argument is supported by the good
mental dynamics. agreement of classical-trajectof@T) [34] calculations with
Another property of the correlation of the electron mo-both the experimental data and the results of our most rudi-
mentap,, parallel to the laser field that can be traced back tomentary model, since these calculations include all particle
the crucial electron-electron interactidy, is a lack of sym-  interactions at any stage of the process. The particular im-
metry upon the interchang®g, < py;, as discussed below Eq. portance of the ion is also surmised in a recent comparison of
(20). It occurs when the two electrons are not treated on athe experimental transverse electron-ion correlation with an
equal footing in the data analysis: the transverse momentur-matrix calculation[31].
of the detected electron is binned while the other one is in- The excellent agreement between the results of our
tegrated over. The symmetry then is violated for the casguantum-mechanice®-matrix calculations and those of the
whereV;, is given by a Coulomb potential and is observedcorresponding classical model of Sec. IV can be invoked to
when it is the contact interaction, regardless of whether ojustify such a classical calculation from the outset, provided
not the Coulomb repulsion between the final electrons ighe parameters are sufficiently far above the classical thresh-
taken into account. However, there are also experimentald. This has recently been done in a computation of NSDI
causes unrelated to this fundamental reason that lead toky a few-cycle laser pulse as a function of the carrier-
violation of the symmetry. envelope phas¢63]. The agreement also lends additional
The most relevant aspect of the contact-interaction modekredit to the three-dimensional CT results in the regime suf-
be it the quantum-mechanic&matrix formulation or the ficiently well inside the classical realm. A corresponding
classical version, might be its bare-bones character: arguablggreement between quantum and classical results has also
there is no simpler model that accounts for NSDI and incorbeen observed in the context of one-dimensional model cal-
porates tunneling, rescattering and energy conservation ieulations[20]. We can make contact with such models by
this process, and the consequences of three-dimensiondstricting the transverse momenta to values near zero. Of
phase space. In this sense, its results provide a benchmagqurse, recent measurements of NSDI at and below the clas-
An example that intricate structures may still be created bysical threshold[11] are outside the reach of the classical
these simple ingredients is provided by the momentum corapproach.
relations presented in Figs(d), 1(e), 12(d), and 12e): the
ring-shaped populations may suggest the action of a repul- ACKNOWLEDGMENTS
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