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High-order harmonic generation in a driven two-level atom: Periodic level crossings
and three-step processes
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We investigate high-order harmonic generation in closed systems using the two-level atom as a simplified
model. By means of a windowed Fourier transform of the time-dependent dipole acceleration, we extract the
main contributions to this process within a cycle of the driving field. We show that the patterns obtained can
be understood by establishing a parallel between the two-level atom and the three-step model. In both models,
high-order harmonic generation is a consequence of a three-step process, which involves either the continuum
and the ground state, or the adiabatic states of the two-level Hamiltonian. The knowledge of this physical
mechanism allows us to manipulate the adiabatic states, and consequently the harmonic spectra, by means of
a bichromatic driving field. Furthermore, using scaling laws, we establish sharp criteria for the invariance of
the physical quantities involved. Consequently, our results can be extended to a broader parameter range, as,
for instance, those characteristic of solid-state systems in strong fields.
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I. INTRODUCTION

The generation of high-order harmonics of a strong la
field (I;1014 W/cm2) in gaseous samples, where cohere
light in the extreme ultraviolet regime is obtained from i
frared input radiation, originated a breakthrough in nonlin
optics. In these systems, composed by atoms or small m
ecules, high-order harmonic generation~H.H.G.! is a well-
understood issue@1# . These highly nonlinear spectra exhib
very particular features: a frequency region with harmon
of roughly the same intensities, the ‘‘plateau,’’ and a sh
decrease in the harmonic yield at the plateau’s high-ene
end, the ‘‘cutoff.’’ Since the early 1990s, not only these fe
tures have been investigated, but also the HHG time pro
@2,3#, physical mechanisms@4,5#, and the propagation of th
harmonic radiation in gaseous media@6#. These studies cul
minated with countless proposals of how to control high h
monics, as diverse as, for instance, polychromatic@7–9# or
static @10# fields, ultrashort pulses@11#, or additional poten-
tials @12#, many of them having even been realized expe
mentally @13#.

One of the first models proposed to describe high-or
harmonic generation in atoms or diatomic molecules wa
two-level atom@4#. Within this framework, a particularly im-
portant paper is@14#. Therein, it is shown that these harmo
ics are a consequence of the population transfer between
field-dependent states obtained from the diagonalization
the two-level Hamiltonian. This physical mechanism has
been investigated in detail, and there is a very simple rea
for this apparent lack of interest: it turned out that an at fi
sight completely different physical picture is far more su
cessful in explaining high-order harmonic generation
these systems. This picture, known as ‘‘the three-s
model,’’ portraits high-order harmonic generation as a p
cess in which an electron leaves an atom at an instantt0 ~the
first step!, propagates in the continuum being accelerated
1050-2947/2002/66~1!/013402~15!/$20.00 66 0134
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the field ~the second step!, and recombines with the groun
state of its parent ion@5# at a later timet1, emitting a high-
order harmonic photon~the third step!. This model has
shown that the interplay between a bound state and the
tinuum, which is not present in a two-level atom, is essen
for a correct physical description of high-order harmon
generation. Thus the three-step model has established
as the paradigm for describing this phenomenon~see, e.g.,
@15# for a comparison of both models!.

Until very recently, only gaseous systems were believ
to be possible high-order harmonic sources, due to the h
intensities involved. However, nowadays, this picture h
changed. With the advent of short pulses, there are solid-s
materials which can survive the necessary intensity regi
namely 101221014 W/cm2 @16#. This has led to theoretica
studies on high-order harmonic generation in materials s
as thin crystals@17# or carbon nanotubes@18#. Another ex-
ample of a new and unexpected effect is, for instan
carrier-wave Rabi flopping, which has been recently m
sured experimentally@19#.

Furthermore, apart from this entirely new parame
range, even for considerably lower driving-field intensitie
as, for instance,I;106 W/cm2, one may in principle extend
the frequency of far-infrared radiation (v;1 GHz) in up to
two orders of magnitude by using adequate materials.
instance, for GaAs/AlxGa12xAs wells intersubband transi
tions ofv0;1 THz may serve this purpose@20#. Apart from
these solid-state materials, HHG involving larger molecu
is becoming a problem of interest@21,22#.

For these complex systems, it is not entirely clear whet
bound-to-continuum transitions still yield the most adequ
description of high-order harmonic generation. In fact, rec
studies have shown that, for aromatic molecules, transiti
involving solely bound states are far more important
high-order harmonic generation than the interplay betw
the ground state and the continuum@22#. Thus theoretical
©2002 The American Physical Society02-1
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approaches in which the continuum is not taken into acco
may be possibly used to describe this phenomenon in
tems as, for instance, quantum wells@20,23–26#. Further-
more, descriptions of nonlinear optical processes in so
are widely based on the Hartree-Fock semiconductor Bl
equations. Under special conditions, such as low doping d
sity, equal effective masses in both subbands involved,
allel subbands, and not too wide wells, these equations
formally identical to those describing the evolution of a tw
level atom. Otherwise, collective effects must be taken i
account and this analogy is lost@20,24–26#.

A common characteristic of all the above-stated syste
is their intrincated internal structure, with the presence,
the external parameters are varied, of several level cross
In particular concerning HHG, the periodic level crossin
caused by the temporal dependence of the laser field are
important@14#. Thus, in order to control the harmonic spe
tra also in this context, one needs to understand the inter
between the population transfer at these crossings and h
order harmonic generation.

Even in the simplest case for which these level crossi
occur, namely a two-level atom, it is only clear that most
the population transfer between the field-dressed states t
place at the level crossings. However, this does not nece
ily mean that the population transfers, within a field cyc
which contribute to the generation of a particular group
harmonics, occur at the level-crossing times. Unanswe
questions in this framework concern not only these tim
but also how they depend on the external-field paramet
such as its intensity and frequency, and how one can use
information to control the emission spectra of a ‘‘closed
nonionizing system. Another interesting issue concerns
existence of a one-to-one correspondence between the t
step model and the two-level atom. This was proposed
@14# due to the different time scales involved in the proce
and in@20# due to a formally identical expression describi
population transfers in both models. In these referen
however, there is no proof that this correspondence re
holds.

The answer to these questions is the main objective of
work. The paper is organized as follows: in Sec. II we brie
discuss the theoretical background for the studies perfor
in this paper. In the following sections we present our resu
In Sec. III, we concentrate on a detailed analysis of the po
lation transfers and the time profile of harmonic generat
for a monochromatic field. Subsequently~Sec. IV!, we pro-
vide concrete examples of how an additional driving fie
may alter the periodic level crossings, and consequently
harmonic emission of a closed system. Furthermore, we
dress the scaling behavior of the physical quantities invol
~Sec. V!, establishing sharp criteria for their invariance. F
nally, in Sec. VI we close the paper with some conclud
remarks.

II. BACKGROUND

A. Two-level atom

The simplest case for which level crossings occur, an
widely used approximation for describing physical system
01340
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is a two-level atom@27#. Within this picture, the time-
dependent wave function is given by

uc~ t !&5C0~ t !uf0&1C1~ t !uf1&, ~1!

where Cn(t)5^fnuc(t)& denotes the overlap of the tota
wave function with thenth state of an arbitrary basis. Th
evolution of the system is described by the time-depend
Schrödinger equation,

i
d

dt S C0~ t !

C1~ t !
D 5HS C0~ t !

C1~ t !
D , ~2!

whereH is the Hamiltonian matrix, which, in our case, d
scribes an atom in an external laser field. We use ato
units throughout. The basis statesufn& are chosen according
to the problem at hand. We are particularly interested i
basis which yields sharp, well-separated level crossings
the strong-field regime.

A widely used basis are the field-free-states, also kno
as the ‘‘diabatic basis.’’ In this case, the Hamiltonian is giv
by

HD5S 2v10/2 x10E~ t !

x10E~ t ! v10/2
D , ~3!

wherev10 is the transition frequency between the field-fr
bound states,E(t)5E0f (t) is the external field, andx10 the
dipole matrix element̂f0

Dux̂uf1
D&, where ufn

D& denotes the
field-free, ‘‘diabatic’’ basis states. This basis is very conv
nient for studying level crossings in the low-intensity las
field regime. For strong laser fields, however, the field-fr
states are too strongly mixed, such that a more appropr
basis is needed. Such a basis, which will be called by
‘‘exchanged basis,’’ is obtained applying the unitary transf
mation

UD→E5
1

A2
S 1 1

21 1D ~4!

onto the diabatic basis. The transformation~4! was used in
@14# to interchange the diagonal and the nondiagonal te
of the Hamiltonian~3!. In this case, the exchanged-basis e
ergies«6

E 56x10E(t) cross, and the coupling which caus
the crossing is effectively given byv10/2. The crossings oc-
cur within a time intervalt02tc,t,t01tc , wheretc is the
time for which the off-diagonal and diagonal terms of t
Hamiltonian become equal andt0 is the time for which the
field vanishes. For strong enough fields, the times over wh
the crossings take place are much smaller than the perio
the driving field. Thus, to first approximation, one may a
sume that the crossings take place instantaneously att0. In
the following we callt0 ‘‘crossing times.’’

Another important set of basis states are these which
agonalizeH. This basis is the so-called ‘‘adiabatic basis,’’
the sense that the states ‘‘follow’’ the field, and is obtain
by means of the unitary transformation
2-2
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HIGH-ORDER HARMONIC GENERATION IN A DRIVEN . . . PHYSICAL REVIEW A66, 013402 ~2002!
UD→A5S cosx sinx

2sinx cosx
D , ~5!

with x521/2arctan@2x10E(t)/v10#. This gives

HA5UD→AHUD→A
T 5S «2

A 0

0 «1
A D , ~6!

where the field-dressed energies are given by

«6
A 56

1

2
Av10

2 1@2x10E~ t !#2. ~7!

Applying UD→A to the diabatic basis states, one obtains
field-dressed, ‘‘adiabatic’’ states

uf0
A~ t !&5cosxuf0

D&1sinxuf1
D& ~8!

and

uf1
A~ t !&52sinxuf0

D&1cosxuf1
D&, ~9!

whose energies are, respectively,«2
A and«1

A @28#. In order to
compute the harmonic spectra, one needs the Fourier tr
form of the time-dependent dipole. This quantity is given,
its length and acceleration form, by

x5x10@g~ t !cos 2x1h~ t !sin 2x# ~10!

and

ẍ52v10
2 x12v10x10

2 E~ t !@h~ t !cos 2x2g~ t !sin 2x#,
~11!

respectively, with g(t)5C0*
A(t)C1

A(t)1C1*
A(t)C0

A(t) and
h(t)5uC0

A(t)u22uC1
A(t)u2, where Cn

A(t)5^fn
A(t)uc(t)& de-

notes the projection of the wave functionuc(t)& onto an
adiabatic state. The equations above are the superpositio
two distinct terms, namely the crossed terms and the po
lation difference between the adiabatic states. Since
population differenceh(t) roughly ‘‘follows’’ the field, it
contributes mainly to the generation of low harmonic
whereasg(t) is expected to be responsible for the high h
monics. This has been confirmed by numerical studies~not
shown!.

An interesting feature is that, in the extreme limitE0
→`, the transformation~5! formally corresponds to Eq.~4!
and the dipole length~10! becomes proportional to the popu
lation difference between the adiabatic states. However,
should keep in mind that, only in this limit, the states o
tained using Eq.~4! on the field-free states and the adiaba
states are formally equivalent. In general, this is not the c

In the subsequent sections, we work mainly in the ad
batic basis, and refer to crossings of the exchanged-b
energies. For the adiabatic energies, there are avoided c
ings. The results discussed in this paper have been obta
from the numerical solution of Eq.~2! in the adiabatic basis
by means of a fourth-order Runge-Kutta method. Unl
stated otherwise, the driving field is turned on instan
neously.
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B. Windowed Fourier transform

For both open and closed systems, high-order harmo
generation is always related to abrupt population transf
Depending on the group of harmonics, they occur at parti
lar times, which give the main contributions to high-ord
harmonic generation within a field cycle. For an atom in
strong laser field, for instance, these times are well-kno
and correspond to the return timest1 of an electron which
left an atom at a previous timet0. For a closed system, th
timest0 correspond to the level-crossing times and the tim
t1 are still an open question to some extent. A very use
method to extract these latter times from the time-depend
dipole is performing a Fourier transform with a tempora
restricted window function. For an arbitrary functionf (t8),
this transform is

F~ t,V,s!5E
2`

1`

dt8 f ~ t8!W~ t,t8,V,s!, ~12!

wheret,V, ands denote the time and harmonic frequency
which the window function is centered, and its tempo
width, respectively. We consider a Gabor transform,
which the window function is given by

W~ t,t8,V,s!5exp@2~ t2t8!2/s2# exp@ iVt8#. ~13!

The usual Fourier transformF(V), which yields no temporal
information, is recovered fors→`. The temporal widths
corresponds to a frequency bandwidthsV52/s. For a tem-
poral width smaller than the periodT52p/v of the driving
field, the peaks in the time-resolved spectrauF(t,V,s)u2
yield the recombination timest1. This method has been ex
tensively used in the literature, in the three-step mo
framework@3#.

III. GENERAL PICTURE

We shall now investigate the connection between HH
and the periodic level crossings in detail and draw a gen
physical picture of the mechanisms involved. The simpl
physical situation for which one can do this is a monoch
matic field

E~ t !5E0sin~vt !, ~14!

where E0 and v denote the field strength and frequenc
respectively. In this case, the timetc is given by the condi-
tion

vtc5
v10

2x10E0
. ~15!

If the field amplitudeE0 is large enough, thenvtc!1, and
the avoided crossings of the adiabatic states are w
separated. Thus the crossing timest0 are well-defined and
there is efficient population transfer att0. Hence one expects
the corresponding spectrum to exhibit a wide plateau an
sharp cutoff.

The avoided crossings occur at the timest05np/v for
which the field is vanishing. Thus one expects the populat
2-3
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C. FIGUEIRA de MORISSON FARIA AND I. ROTTER PHYSICAL REVIEW A66, 013402 ~2002!
transfers between the statesufn
A(t)& to occur at these times

This is partially confirmed by Fig. 1, where the populatio
of the adiabatic states are plotted as functions of time
fact, the pronounced peaks at the timest0 clearly show that
most population transfer takes place at these times. T
are, however, several smaller peaks, which are symme
with respect to the timest1M5(2n11)p/2v for which the
field is maximal. These peaks show that population tran
also occurs at other times, and can be seen in deta
Fig. 1~b!.

The role of these population transfers in HHG can
understood using the Gabor transform of the dipole accel
tion. The peaks in the Gabor spectra give the main contr
tions for high-order harmonic generation within a field cyc
For the cutoff harmonic, there is a single peak att1M which
splits into two for the plateau harmonics. This peak g
further apart as the harmonic frequency decreases, var
from t1M to the times at the immediate vicinity of th
avoided crossings. These results are displayed in Fig. 2.

The physical interpretation of these features is rat
simple. At the times the level crossings occur, i.e., att0
5nT/2, there is a population transfer from the adiabatic st
uf0

A(t)& to uf1
A(t)&. The system remains inuf1

A(t)& until a
further time t1, decaying back touf0

A(t)& and emitting a
harmonic of frequencyV5Nv5«1

A 2«2
A . The explicit ex-

pression relating the timet1 to the harmonic frequency
would then be

FIG. 1. PopulationsuCn
A(t)u2 of the adiabatic states as function

of time, for transition frequencyv1050.409 a.u., external field pa
rametersv50.05 a.u., E050.6 a.u., and dipole-matrix elemen
x1051.066 a.u. Part~a! shows this feature for several cycles of th
driving field, whereas part~b! depicts the population of the excite
adiabatic state only within half a cycle. The times are given in un
of the field cycleT52p/v. The driving field is turned on linearly
within two periods.
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vt15arcsin@6A~Ng1!22~g2!2#, ~16!

with g15v/(2x10E0) and g25v10/(2x10E0). The physical
significance ofg1 andg2 will be discussed later in this pape
~Sec. V!. In order to obtain a harmonic at the maximu
possible frequencyVM ~i.e., the cutoff harmonic!, the popu-
lation transfer between the time-dependent states must o
at the times for which the energy difference«1

A 2«2
A is maxi-

mal, i.e., att1M5(2n11)p/2v. As the harmonic energy de
creases, there are two possible times for this popula
transfer to occur, a shorter and a longer one. The interfere
between these two possible quantum paths originates
well-structured two-level atom plateau, with sharp harmo
peaks. This process repeats itself every half cycle of the d
ing field. This picture is supported by the fact that all pea
in the time-resolved spectra satisfy Eq.~16! and thus can be
traced back to population transfers between the adiab
states. The times given by Eq.~16! for the parameters o
Fig. 2, together with the corresponding harmonic energ
are written in Table I.

An analogous picture is observed within the three-s
model framework. The cutoff harmonic can only be gen
ated by an electron which returns to its parent ion with ma
mal kinetic energy. This maximal energy corresponds to
particular return time, which appears as a single peak in
Gabor yield. Within the plateau, there are two possible s
of electron trajectories corresponding to the same harmo
energy, such that this single peak splits into two@3#. In our
case, the ‘‘first step’’ would be the population transfer fro
uf0

A(t)& to uf1
A(t)& at t0, the ‘‘second step’’ would be the

system followinguf1
A(t)& adiabatically in a time intervalt

5t12t0, and the ‘‘third step’’ would be the population trans

s

FIG. 2. Gabor spectra of the dipole acceleration@Eq. ~11!# as
functions of time, for field strengthE051 a.u., field frequencyv
50.05 a.u., transition frequencyv1050.409 a.u., and dipole ma
trix element x1051.066 a.u. The cutoff harmonic lies atVM

543v. The time width of the window function was chosens
50.1T. Its center was chosen at the cutoff harmonics, as well a
harmonic energies which roughly correspond toV50.8VM , V
50.6VM , and V50.4VM . All time-resolved spectra have bee
normalized. The times are given in units of the field cycleT
52p/v. The driving field is turned on linearly within two periods
2-4
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fer from uf1
A(t)& to uf0

A(t)& at t1, with subsequent harmoni
generation. The corresponding physical picture is illustra
in Fig. 3.

Another interesting feature is that the population transf
between the adiabatic states are not strictly periodic wit
p/v. Indeed, superposed to them, there are oscillati
which occur within much larger time scales, their perio
comprising several cycles of the driving field@29#. These
oscillations are also present in the dipole length and ac
eration as a global enveloping function, whose amplitu
form, and periodicity depend on the field strengthE0, the
field frequencyv, and on the dipole matrix elementx10 in a
nontrivial way. These structures seem not to influence
harmonics globally, but mainly the substructure of the sp
tra and the hyper-Raman lines@30#.

In Fig. 4, we show these enveloping functions for t
populations of the adiabatic states@Fig. 4~a!#, the dipole ac-

TABLE I. Level-crossing timest0, population transfer timest1,
and the corresponding harmonic energyV for the parameters o
Fig. 2. The times are given in units of the periodT52p/v. The
harmonic orders, together with the approximate harmonic ener
in units of the cutoff frequencyVM , are given in the remaining two
columns. This pattern repeats itself every half-cycle of the driv
field.

t0 /T t1 /T Harmonic order V/VM

0.5 0.25 43 1
0.5 0.14 0.36 35 0.8
0.5 0.09 0.41 25 0.6
0.5 0.05 0.45 17 0.4

FIG. 3. Schematic representation of high-order harmonic g
eration in a two-level atom. The population transfers at the le
crossings occur at the timest0 and the main contributions to HHG
occur at the timest1 . The timest1M , t11, andt12 correspond to the
generation of the cutoff and plateau harmonics, respectively.
main physical processes are indicated by arrows in the figure,
the corresponding energies can be read in the vertical axis.
adiabatic energies are given in units of the maximal energy«M

A and
the time in units of the field cycle. The field parameters are cho
in such a way that the ratio between the cutoff energyVM52«M

A

and the transition frequency isVM /v10510.
01340
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celeration@Fig. 4~b!#, and the Gabor spectra of the plate
and cutoff harmonics@Fig. 4~c!#. One should note that this
enveloping function is the same for the Gabor transforms
all groups of harmonics displayed. Furthermore, it does
affect the splitting of the peaks, such that the populat
transfer times are always given by Eq.~16!.

IV. BICHROMATIC DRIVING FIELDS

In this section we consider a bichromatic driving field

E~ t !5E01sin~vt !1E02sin~nvt1u!, ~17!

with two main purposes. First, we wish to confirm the phy
cal picture in which the main contributions to a particular s
of harmonics, within a field cycle, occur at the timest1 such
that the corresponding harmonic frequency is the differe
«1

A 2«2
A between the energies of the adiabatic states. Sec

we are interested in understanding how an additional fi
can be used to distort the avoided crossings between
adiabatic states in such a way that the harmonic emission
be controlled. In the bichromatic case, depending on the fi

es

g

-
l

e
nd
he

n

FIG. 4. Global structures as functions of time, for~a! the popu-
lations uCn

A(t)u2 of the adiabatic states,~b! the dipole acceleration

ẍ(t), and~c! the Gabor spectra of the cutoff and plateau harmon
The time width of the window function iss50.1T. The field
strength, the field frequency, the transition frequency, and the dip
matrix element were chosen asE050.6 a.u., v50.05 a.u.,v10

50.409 a.u., andx1051.066 a.u., respectively. These paramet
give g150.0391, g250.3197, and a cutoff frequency atVmax

527v. All Gabor spectra have been normalized to the maxim
value obtained with the window function centered at the cutoff. T
field is turned on linearly within two periods. The time is given
units of the field cycle.
2-5
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parameters, the spectra may have several cutoffs, which
given by the maxima of«1

A 2«2
A . Consequently, the main

contributions to the generation of the cutoff harmonics ta
place at the timest1M for which these maxima occur.

In order to obtain the level-crossing timest0, as well as
the times t1M , one needs the extrema6«M

A of the field-
dressed energies«6

A . For the bichromatic field~17! they are
given by

cos~vt !1nzcos~nvt1u!50 ~18!

and

sin~vt !1zsin~nvt1u!50, ~19!

wherez5E02/E01 denotes the field-strength ratio. Equatio
~18! gives the extrema which coincide with those of the fie
and thereforet1M , whereas Eq.~19! gives those which cor-
respond to the avoided crossings, and thereforet0. Depend-
ing on the frequency ration, the field-strength ratioz, and
the relative phaseu, these times, as well as the correspon
ing extrema, can be very different. In this paper we w
provide concrete examples for av22v field, i.e., with n
52, relative phasesu150 andu25p/2, and arbitraryz. For
these specific parameters, Eqs.~18! and ~19! have a simple
form, with analytical solutions.

A. Relative phaseuÄ0

In this case, Eq.~18! reduces to

cos2~vt !1
1

4z
cos~vt !2

1

2
50, ~20!

which yields two sets of times, namely

t1M5
1

v
arccosS 2

1

8z
6

1

2
A 1

16z2
12D . ~21!

The solutions corresponding to the positive root exist for
field-strength ratios, whereas the remaining solutions
only present forz.0.5. Further in this section, it will be
shown that the first set gives the absolute maxima of«6

A ,
which correspond to the cutoff in the harmonic spect
whereas the second set yields local maxima at much lo
energies.

The expression giving the avoided crossings, on its tu
can be written as

sin~vt !@112zcos~vt !#50. ~22!

This equation yields the crossing timest05np/v, and t08
5(1/v)arccos@21/(2z)#. The crossing timest0 do not de-
pend on the field-strength ratio and are the same as in
monochromatic case, whereas the crossing timest08 clearly
do. Furthermore, these latter times are only present foz
.0.5.

Figure 5 gives concrete examples of how the adiab
energies«6

A depend on time, for different field-strength r
tios. In contrast to the monochromatic case,«6

A is not peri-
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odic within half a cycle of the driving field. This is not su
prising, since the periodicity of the field-dressed energie
effectively determined byE2(t) @cf. Eq. ~7!#. For a mono-
chromatic field,E2(t)5E2(t1p/v) always holds, whereas
in the bichromatic case this is only true for odd frequen
ratiosn. This is clearlynot the case addressed in this pap
For the phasef50, one observes that«6

A (t)5«6
A (2p/v

2t), if both times are taken symmetrically with respect
t05np/v. This property already reflects itself in the expre
sions fort0 , t1M , andt08 derived in this section.

Furthermore, one clearly sees that, as predicted in
~22!, for z,0.5, the second driving wave only distorts th
avoided crossings, making them broader att05(2n
11)p/v and sharper att052np/v. For z50.5, the broad
crossing starts to split, originating the crossings given at
times t08 . This splitting also leads to the second set
maxima predicted by Eq.~21!, which corresponds to a set o
harmonics of relatively low frequencies.

One must now understand which consequences this e
has on the physical quantities involved. With that purpo
we choose the strengths of both driving waves such that«M

A ,
and therefore the cutoff energy, remains unchanged an
equal to the monochromatic cutoff energy, for variable fie
strength ratioz. This gives

E015
E0

A12b2~112bz!
, ~23!

with b5cos(t1M).
The population transfers between the adiabatic states

functions of time, also exhibit very similar asymmetries
the ones observed in the field-dressed energies. The pop
tion transfers at the broad crossings, for instance, take p
at longer time intervals than those at the sharp crossin
making the oscillations inuCn

A(t)u2 asymmetric with respec
to the timest1M . This asymmetry increases with increasin
z. An example is provided in Fig. 6~a!. A similar feature

FIG. 5. Energies of the adiabatic states for a bichromatic fi
E(t)5E01sin(vt)1E02sin(2vt1u), for u50 and several field-
strength ratiosz5E02/E01. The timet is given in units of the field
cycleT52p/v and the field-dressed energies in units of the ma
mal energy «M

A . The field parameters were chosen such t
VM /v1058.
2-6
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HIGH-ORDER HARMONIC GENERATION IN A DRIVEN . . . PHYSICAL REVIEW A66, 013402 ~2002!
occurs for the dipole acceleration. This highly oscillati
function exhibits nodes at the level-crossing times. In
monochromatic case, these nodes extend over identical
poral regions every half-cycle of the driving field. Fo
bichromatic fields, however, with the distortion of the cros
ings by the second driving wave, this picture changes. Th
exist narrower and broader nodal regions, correspondin
the narrower and broader crossings, respectively. Thus
oscillations of the dipole acceleration get ‘‘squeezed’’ b
tween the broader nodes. This feature can be seen in
6~b!.

The Gabor transform of the dipole acceleration, taken
the cutoff and in the plateau, confirms this picture. In F
7~a! there is a clear displacement of the peaks in the tim
resolved spectra for the cutoff harmonics, with respect to
monochromatic case, and these peaks occur at the times
dicted by Eq.~21!. Similarly to the monochromatic case
these peaks split into two in the plateau region, being, h
ever, slightly asymmetric@Fig. 7~b!#. This asymmetry is re-
lated to the above-mentioned difference in the shapes of
crossings. Furthermore, for a larger field-strength ratio,
additional times can also be seen for a group of harmonic
the low-energy end of the plateau. The timest0 and t1M ,
together with the respective cutoff energies, are given
Table II for the specific parameters considered in this figu

B. Relative phaseuÄpÕ2

For this relative phase, Eq.~18! has the form

cos~vt !@122zsin~vt !#50. ~24!

FIG. 6. PopulationsuCn
A(t)u2 of the adiabatic states@part ~a!#

and dipole acceleration@part ~b!# as functions of time, for a bichro
matic field E(t)5E01sin(vt)1E02sin(2vt1u), with u50, v
50.05 a.u.,v1050.409 a.u.,x1051.066 a.u., and field-strengt
ratio z5E02/E0150.5. The field amplitudes were chosen accord
to Eq.~23!, with E051 a.u. The timet is given in units of the field
cycle.
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This equation has two types of solutions:t1M5(n
11/2)p/v, which do not depend on the field-strength ra
and yield the same maxima as in the monochromatic c
and t1M8 51/varcsin@1/(4z)#, which clearly depend onz and
exist only for z>0.25. This already hints at a complete
different situation as in the previous section, which will no

FIG. 7. Gabor spectra of the dipole acceleration as function
time, for a bichromatic fieldE(t)5E01sin(vt) 1E02sin(2vt1u),
with u50, v50.05 a.u.,v1050.409 a.u.,x1051.066 a.u., and
several field-strength ratiosz5E02/E01. The maximal field
strength is kept fixed according to Eq.~23!, with E051 a.u. The
cutoff energy lies atVM52«M

A 543v. The temporal width of the
window function iss50.1T. In part ~a!, the window function is
centered at the cutoff harmonics, and the field-strength ratio i
<z<0.8. In part~b!, the center of the window function is taken fo
different frequencies, andz50.8. All curves in the figure have bee
normalized to their maximum values.

TABLE II. Times for the population transfers between the e
trema of the adiabatic states, with the approximate order of
corresponding cutoff harmonic, for a bichromatic field given by E
~17!, with relative phaseu50 and several field-strength ratiosz
5E02/E01. The field and two-level atom parameters are the sa
as those used in Fig. 7. No entry means that the correspon
maxima do not exist. This pattern repeats itself every cycleT
52p/v of the driving field.

z50.2 z50.5 z50.8

t0 /T t1M /T VM /v t0 /T t1M /T VM /v t0 /T t1M /T VM /v

0 0.20 43 0 0.17 43 0 0.15 43
0.5 0.80 43 0.5 0.83 43 0.36 0.42 9

0.5 0.85 43
0.64 0.58 9
2-7
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C. FIGUEIRA de MORISSON FARIA AND I. ROTTER PHYSICAL REVIEW A66, 013402 ~2002!
be discussed in detail. This also holds for the times at wh
the avoided crossings occur. They must now satisfy

sin2~vt !2
1

2z
sin~vt !2

1

2
50, ~25!

such that

t05
1

v
arcsinS 1

4z
6

1

2
A 1

4z2
12D , ~26!

all of them depending onz. This means that, in contrast t
the caseu50, one may shift all level-crossing times b
changing the relative intensities of the driving waves. The
of crossings given by the positive root in Eq.~26! exists only
for z>1, whereas the remaining crossings occur for allz.

In Fig. 8 we depict the adiabatic states as functions
time, for several values ofz, similarly to what was done for
u50. This figure illustrates how the relative phase can ra
cally alter the whole physical picture. Foru5p/2, already a
relatively weak high-frequency wave considerably disto
the avoided level crossings, as well as the maxima of
field-dressed energies. An interesting feature is that
avoided crossings now move with the field-strength ra
Furthermore, the maximal energies are no longer equal,
within a field cycle, there are two comparable and differe
cutoff energies. This can be directly seen by computing
extrema of the energies«6

A , which occur fort1M .
For field-strength ratioz,0.25, they give the energies

«M1

A 5
1

2
Av10

2 14x10
2 ~E012E02!

2 ~27!

and

FIG. 8. Energies of the adiabatic states for a bichromatic fi
E(t)5E01sin(vt)1E02sin(2vt1u), for u5p/2 and several field-
strength ratiosz5E02/E01. The timet is given in units of the field
cycle and the field-dressed energies in units of the maximal en
«M2

A . The field parameters were chosen such thatVM2
/v1058. The

times t1Mi
are indicated in the figure by the dotted and solid g

lines, respectively.
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«M2

A 5
1

2
Av10

2 14x10
2 ~E011E02!

2, ~28!

which correspond to the timest1M1
50.25T mod T, and to

t1M2
50.75T mod T, respectively. These times define sy

metry axes for the time-dependence of the adiabatic energ
For z>0.25, a further splitting of the set of maxima

t1M1
occurs, as predicted in Eq.~24!. There exist now two

sets of maxima, at the timest1M8 , whose energies are equ
and given by

«M1

A 5
1

2
Av10

2 14x10
2 E01

2 ~118 z2!2

64z2
. ~29!

These maxima are symmetric with respect tot1M1
. For these

times, the adiabatic energies now exhibit a minimum. T
causes, for largez, additional avoided crossings~cf. Fig. 8
for z50.8). The population transfers at these times are, h
ever, small, and play only a secondary role in the probl
addressed in this paper. For the sake of simplicity, even a
the second splitting, we shall refer to the lower-energy se
maxima as«M1

A . The other set of maxima does not split, a

the corresponding timest1M2
remain constant for allz. One

should note that the adiabatic energies, in theu5p/2 case,
satisfy «6

A (t)5«6
A (T/22t), if both times are chosen sym

metrically with respect tot1M1
or t1M2

. This also holds for
the population-transfer times derived in this section.

In order to investigate how the distortions in th
adiabatic-state energies influence the physical quantitie
interest, we shall keep the cutoff energyVM2

52«M2

A fixed,

and equal to the cutoff energy of the monochromatic ca
Thus the field strengthsE01 andE0 are related by

E015
E0

11z
. ~30!

As in the previous section, we can trace all distortio
observed in these physical quantities back to those obse
in time dependence of«6

A . For instance, the shifts in th
level-crossing timest0 predicted by Eq.~26! are also presen
in the main population-transfer times for the adiabatic sta
@Fig. 9~a!# and in the nodes of the dipole acceleration@Fig.
9~b!#. Another effect which is clearly seen in both quantiti
is the splitting of the maxima neart1M1

50.25T mod T. In-
deed, there exist now two sets of maxima which are symm
ric with respect to these times, forz>0.25.

We now investigate the Gabor transform of the cutoff a
plateau harmonics. In Fig. 10~a! we display the time-
resolved spectra, centered at the harmonic frequenciesVM2

52«M2

A , for different field-strength ratiosz. The monochro-

matic case is also displayed for comparison. As a gen
feature, forzÞ0, the peaks of the Gabor spectra att1M1

50.25T mod T vanish. This is a direct consequence of t
splitting of the extrema of the adiabatic energies caused
the high-frequency wave. Due to this splitting, the ener

d

gy
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HIGH-ORDER HARMONIC GENERATION IN A DRIVEN . . . PHYSICAL REVIEW A66, 013402 ~2002!
maxima neart1M1
lie outside the range of the window func

tion and do not contribute to the time-resolved spectra. F
thermore, as predicted in Eq.~25!, the peaks at the maxim
t1M2

50.75T mod T do not move in time asz is varied.

Taking now the window function~13! centered atVM1

52«M1

A @Fig. 10~b!#, one observes, as expected, a complet

different behavior for the peaks neart1M1
50.25T mod T.

For z,0.25, these peaks are exactly at these times. Foz
>0.25, as expected, they now occur att1M8
51/varcsin@1/(4z)#, which vary with the field-strength ratio
z. Furthermore, this second set of peaks splits for th
larger field-strength ratios, such that two sets of peaks wh
are symmetric with respect tot1M1

are now present. Othe
sets of peaks which can be seen in the picture correspon
the upper-plateau return times, which occur forV,VM2

and

are symmetric with respect tot1M2
50.75T mod T. These

peaks come from the splitting oft1M2
, which occurs in this

energy range~cf. Fig. 8!. The population-transfer times fo
the specific parameters of this figure, together with the c
responding harmonic frequencies, are given in Table III.

C. Fourier spectra for the two phases

In the investigations performed so far, our main object
was to understand how an additional driving wave may d
tort the time dependence of the adiabatic energies and
time profile of harmonic generation. In this section, we a
dress the question of how these distortions influence the

FIG. 9. PopulationsuCn
A(t)u2 of the adiabatic states@part ~a!#

and dipole acceleration@part ~b!# as functions of time, for a bichro
matic field E(t)5E01sin(vt)1E02sin(2vt1u), with u5p/2, v
50.05 a.u.,v1050.409 a.u.,x1051.066 a.u., and field-strengt
ratio z5E02/E0150.8. The timet is given in units of the field
cycle.
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monic spectra. Furthermore, we are interested in extend
the cutoff, and, by doing so, guaranteeing that the harmo
in this energy region are strong enough for applicational p
poses. Clearly, the ideal scenario is to extend the cutoff

FIG. 10. Gabor spectra of the dipole acceleration as a func
of time, for a bichromatic fieldE(t)5E01sin(vt)1E02sin(2vt1u),
with u5p/2, v50.05 a.u.,v1050.409 a.u.,x1051.066 a.u., and
several field-strength ratiosz5E02/E01. The maximal field
strength is kept fixed according to Eq.~30! and equal toE0

51 a.u. The upper-cutoff energy lies atVM2
543v. The lower-

cutoff energy varies withz. All cutoff energies are given in Table
III, together with the population transfer timest0 and t1M2

. In part
~a!, the window function is centered at the upper-cutoff harmon
(VM2

52«M2

A ), and the field-strength ratio is 0<z<0.8. In part~b!,

the center of the window function is taken atVM1
52«M1

A . All
curves have been normalized to their maximum values. In part~a!,
the monochromatic case is also displayed for comparison.

TABLE III. Times for the population transfers between the e
trema of the adiabatic states, with the approximate order of
corresponding cutoff harmonic, for a bichromatic field given by E
~17!, with relative phaseu5p/2 and several field-strength ratiosz
5E02/E01. The field and two-level atom parameters are the sa
as those used in Fig. 10. No entry means that the correspon
maxima do not exist. This pattern repeats itself every cycleT
52p/v of the driving field. For z50.8, there are additiona
avoided crossings at 0.25T mod T.

z50.2 z50.5 z50.8

t0 /T t1M /T VM /v t0 /T t1M /T VM /v t0 /T t1M /T VM /v

0.53 0.75 43 0.56 0.75 43 0.58 0.75 43
0.97 1.25 30 0.94 1.08 23 0.92 1.05 24

0.94 1.42 23 0.92 1.45 24
1.25 1.45 24
2-9
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C. FIGUEIRA de MORISSON FARIA AND I. ROTTER PHYSICAL REVIEW A66, 013402 ~2002!
ergy without any intensity loss in the corresponding h
monic range.

With that purpose, we keepE01 and E02 fixed and com-
pare spectra obtained foru150 andu25p/2. These results
are displayed in Fig. 11. As a global feature, one obser
that, for u50, all harmonics behave in a very similar wa
with no distinct regions, as for instance a double plateau
the spectra. This is related to the fact that no splitting of
cutoff energy occurs in this case. The two maxima in«6

A

have the same energy, even though the level-crossing pa
is no longer periodic inT/2. On the other hand, foru5p/2,
there is a clear double-plateau structure. In fact, one
identify a completely different physical behavior for the ha
monics in the frequency regionsV,VM1

and VM1
,V

,VM2
. The double-plateau structure is due to the differ

cutoff energies which exist in theu5p/2 case.
Another generic feature is that the cutoff energy is e

tended foru5p/2. This is expected, since this quantity
given by the maximum energy difference between the a
batic states. For a field given by Eq.~17!, the maximal pos-
sible energy is obtained forE(t1M2

)5E011E02. This yields

the harmonic frequencyVM2
, discussed in the previous se

tion.
There exist, however, nongeneric features, which dep

on the absolute field parameters, as, for instance, its stren
Examples of such features are the intensity ratio between
upper and lower parts of the plateau foru5p/2, and the
intensities of the harmonics obtained foru5p/2, compared
to those obtained foru50. Thus, depending on the absolu
parameters used, it is not always possible to extend the c
energy without loss of intensity. In order to control HHG
a two-level atom in a more reliable way, a more detai

FIG. 11. Spectra computed from the dipole acceleration, for
bichromatic field E(t)5E01sin(vt)1E02sin(2vt1u), for u50, u
5p/2, and field strengthsE0151.0 a.u. andE0250.2 a.u. The
field is switched on linearly within two cycles. The remaining p
rameters arev50.05 a.u.,v1050.409 a.u.,x1051.066. The cut-
off frequency for u50 is roughly at VM546v, whereas for
u5p/2 the cutoff frequencies are approximately atVM1

535v and
VM2

552v. All cutoff energies are indicated by arrows in th
figure.
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study of these features for the particular system in questio
necessary.

These nongeneric features are mainly due to the fact
the population transfer at the level crossings is, in gene
given by more complicated expressions than in the mo
chromatic case. Indeed, these expressions depend on
shape and width of the crossing, and on the duration of
interaction. These shapes have been studied in@28,31#. Fur-
thermore, the global structures of the adiabatic-state pop
tions uCn

A(t)u2 have a stronger influence on the spectra in
bichromatic case than for monochromatic driving fields.

Thus the physical picture discussed in Sec. III holds in
more general framework, as, for instance, bichromatic d
ing fields. Nevertheless, the distortions in the level crossi
caused by additional fields may have consequences in
quantities involved, including the spectra, which are diffic
to predict. This does not mean that control cannot be p
formed at all, but, rather, that it can be done in a restric
context. In fact, one still has a very good predictive pow
over generic features, as, for instance, the double platea
the cutoff energies indicated in Fig. 11.

V. SCALING BEHAVIOR

In the results discussed in the previous sections, we h
used rather unrealistic frequencies and intensities for
driving fields, for which most physical systems would ioni
immediately. This choice of parameters allows us to obt
results with very little numerical effort. In order to exten
our computations to more realistic cases, as, for instan
solids, there are two possibilities. Either one slightly i
creases the effort to obtain the necessary precision, or
must find specific combinations of parameters for which
physical quantities involved remain invariant. This seco
approach has the advantage of providing additional ins
into the physics of the problem.

With that purpose, we analyze the scaling behavior
these quantities. We use scaling laws which have been
rived elsewhere@32#, in the context of stabilization of atom
in strong laser fields. We concentrate on the question
whether driving fields of much lower frequencies and inte
sities could originate similar spectra, with, for instance, t
same number of harmonics, or the same population-tran
times, in units of the field cycle. Therefore our starting po
will be the expression

sin~vt1!1zsin~nvt11u!56A~Ng1!22~g2!2, ~31!

which relates the harmonic energy to the energy differenc
the adiabatic states. This equation gives the populat
transfer times. Forz50, one has the monochromatic-fie
case@Eq. ~16!#, and, for zÞ0 and n52, the bichromatic
situation discussed in the previous section. Note that the
rametersE0 , v, v10, and x10 appear combined, asg1
5v/(2x10E0), or g25v10/(2x10E0). The denominators of
these expressions give the Rabi frequenciesVR52x10E0,
which scale like the energies@cf. Eqs. ~3! and ~6! for the
two-level Hamiltonian#. This keeps the Schro¨dinger equation
invariant under scale transformations.

e
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HIGH-ORDER HARMONIC GENERATION IN A DRIVEN . . . PHYSICAL REVIEW A66, 013402 ~2002!
We now consider the scale transformation

v→v85lv; v10→v108 5lv10; VR→VR85lVR ,
~32!

wherel denotes the dilatation factor. The invariance of t
Schrödinger equation also requires that the time scalest
→t85l21t, such that Eq.~31! will remain invariant.

This apparently trivial result has far-reaching cons
quences. In fact, it shows that, forany setE0 , v, v10, and
x10, the number of harmonicsN in the spectra and the cor
responding population-transfer timest̃ 15vt1 /(2p), given
in terms of field cycles, remain invariant, as long asg1 and
g2 are kept constant.

Since the unitary transformation~5! which gives the adia-
batic states also depends onE0 , v, v10, andx10 throughg1
and g2, it also remains invariant in this case. Thus this
variance must also hold for the populations of these sta
i.e., uCn

A(t)u25uCn
A(t8)u2.

Another quantity of interest is the dipole acceleration
quick inspection of Eq.~11! shows that this quantity does no
remain invariant under the above-stated transformations
fact, it scales asx10 multiplied by the square of the energ
The dipole matrix element scales asx10→x108 5l21/2x10.

Thus ẍ(t)5l3/2ẍ(t8).
The above-stated conclusions are confirmed by Fig. 12

this figure, we display the same physical quantities as in
4 for a completely different set of parameters which, ho
ever, yield the sameg1 andg2. The populationsuCn

A(t)u2, in
this case@cf. Fig. 12~a!# are, as expected, identical to tho
depicted in Fig. 4. This is true not only for the oscillatio
which are periodic inT/2, but also for the global envelopin
functions. The scaling withl3/2 is also observed for the di
pole acceleration@Fig. 12~b!#. The parameters used in th
figure are typical for quantum wells and solid-state syste
@24#.

Another interesting aspect concerns the resulting h
monic spectra. Even though, in absolute terms, these sp
have different cutoff frequencies and different global inte
sities, for equalg1 and g2 they have the same shape. N
only the number of harmonics is the same. In addition,
substructure in the spectra looks strikingly similar. The
features can be easily understood: the global intensity
crease is related to the decrease in amplitude of the di
acceleration and the identical shapes are a consequen
the fact that the populations of the adiabatic states, as we
all oscillations present in the dipole acceleration, remain
variant under the scale transformations discussed here.
is shown in Figs. 13~a! and 13~b! for several dilatation fac-
tors l. The corresponding field and two-level atom para
eters are given in Table IV.

On the other hand, the behavior of the system can alre
be altered by small variations ing1 andg2. For instance, in
Fig. 14 we consider a slightly larger field amplitude than
Fig. 4, which gives differentg1 and g2. In this case, one
observes a radically different pattern for the populatio
uCn

A(t)u2 @Fig. 14~a!# and the dipole acceleration@Fig. 14~b!#.
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As a direct consequence, the spectra do not exhibit the s
substructure@Figs. 15~a! and 15~b!#.

VI. CONCLUSIONS

The results discussed in the previous sections lead to
main conclusion that the three-step model and the two-le
atom are not completely different physical pictures for d
scribing high-order harmonic generation, as commonly
lieved. Indeed, in both models, this phenomenon takes p
as a result of a three-step process. Hints that a corres
dence between both physical pictures might exist have b
provided in the literature@14,20#. We go, however, beyond
such studies, giving evidence that a three-step mechan
exists in the two-level atom case and analyzing its feature
detail.

In the usual form of the three-step model, there is po
lation transfer from the atomic ground state to a state in
continuum, i.e., tunneling or multiphoton ionization. Th
electron then propagates in the continuum within a time
terval t5t12t0, gaining a certain amount of kinetic energ
which is converted into harmonic radiation at a timet1, when

FIG. 12. Global structures as functions of time, for~a! the popu-
lations uCn

A(t)u2 of the adiabatic states and~b! the dipole accelera-

tion ẍ(t). The field strength, the field frequency, the transition fr
quency, and the dipole matrix element were chosen asE056.71
31026 a.u., v52.531025 a.u., v1052.04531025 a.u., and
x10547.673 a.u., respectively. These parameters are typical
solid-state systems and giveg150.0391,g250.3197, which are the
same as in Fig. 4. They are obtained from those in Fig. 4 usin
scaling transformation withl51/2000. For this set of parameter
we have used a five times smaller time step than in the prev
figures and double precision. The dipole acceleration is given
atomic units and the time is given in units of the field cycle. T
field is switched on linearly within two cycles.
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there is population transfer from the continuum to the grou
state, i.e., recombination. In the two-level atom framework
very similar process takes place: there is population tran
from the field-dressed stateuf0

A(t)& to the stateuf1
A(t)& at a

time t0 for which an avoided crossing occurs. Subsequen
the system acquires energy from the field within the inter
t5t12t0, and, at a further timet1, when population transfe
from uf1

A(t)& back touf0
A(t)& takes place, this energy is re

leased in the form of harmonic radiation. Thus the main d
ference between the three-step model and the two-level a
physical pictures is that in the latter case, the three step
not involve a continuum state, but a field-dressed bou
state.

Further similarities are observed in the time profile
high-order harmonic generation. In both cases, the pop
tion transfers which contribute to the generation of a parti
lar set of harmonics occur at very specific times. In the us

FIG. 13. Harmonic spectrum for the same parameters as in
4 (l51), compared to those obtained for several field strengthsE0,
field frequenciesv, transition frequenciesv10, and matrix dipole
elementsx10, chosen such thatg150.0391 andg250.3197, i.e.,
the same as in Fig. 4. These parameters are displayed in Tabl
Part ~a! shows the whole spectra, whereas part~b! displays both
spectra for harmonic order 10,N,20, such that their substructur
can be seen. The field is switched on linearly within two cycles

TABLE IV. Field and two-level atom parameters, given
atomic units, together with the dilatation factorl. All parameters
have been chosen such thatg150.0391 andg250.3197.

x10 E0 v v10 l

1.066 0.6 0.05 0.409 1
9.535 8.38531024 6.2531024 5.112531023 1/80
47.673 6.7131026 2.531025 2.04531024 1/2000
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three-step model, these times are such that the energy
particular harmonic must be equal to the sum of the kine
energy of the electron upon return and the atomic ionizat
potential. The same line of argumentation holds in the tw
level case, but now the harmonic energy must be equal to
energy difference between the adiabatic states at these ti

Specifically for monochromatic driving fields, both mod
els share several features. Both in the three-step model a
the two-level atom case there is a single time correspond
to the generation of the cutoff harmonic. In the form
model, this time corresponds to the maximal kinetic ene
the electron may have, upon return, whereas in the la
model it gives the maximal energy difference between
adiabatic states. Also for both cases, this time splits into
sets of times as the harmonic energy decreases. The inte
ence between the corresponding population transfers o
nates the plateau in the high-order harmonic spectra. T
pattern repeats itself every half cycle of the driving fie
This is a direct consequence of the periodicity of the relev
physical quantities, namely the electron kinetic energy in
three-step model@33# and the adiabatic energies«6

A in the
two-level atom case. All these features are observed as p
in the Gabor transform of the dipole acceleration. In t
three-step model framework, analogous studies have b
performed in@3#.

g.

IV.

FIG. 14. Global structures as functions of time, for~a! the popu-
lations uCn

A(t)u2 of the adiabatic states and~b! the dipole accelera-

tion ẍ(t). The field strength, the field frequency, the transition fr
quency, and the dipole matrix element were chosen asE0

50.62 a.u.,v50.05 a.u.,v1050.409 a.u., andx1051.066 a.u.,
respectively. These parameters are slightly different from the o
in Fig. 4, but giveg150.0378,g250.3094. The field is switched
on linearly within two cycles. The time is given in units of the fie
cycle.
2-12
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Also for bichromatic driving fields, there are several ch
acteristics which are present in both models. A good exam
is the multiple cutoff structure. Indeed, the harmonic spec
in this case may exhibit several cutoffs, which, depending
the model in question, are given by the maxima of either
electron kinetic energy or of the energy difference betwe
the adiabatic states. The number of these cutoffs, as we
their energies or the corresponding population-transfer tim
are determined by the frequency ration, the field-strength
ratio z, and the relative phaseu. For both the three-step
model and the two-level atom, all peaks in the Gabor spe
can be traced back to the population-transfer times. In on
the other case, these population transfers occur either
tween the adiabatic states~Sec. IV!, or between the ground
state and the continuum@8#.

Similarities between the two models are also observed
the probability that the ‘‘first step,’’ i.e., population transfe
takes place. In the three-step model, this probability, per
time, is roughly given by the quasi-static tunneling rateP
;exp@2C/uE(t0)u# @34#. A strong fieldE(t0) at the ioniza-
tion time t0 yields strong harmonics at the recombinati
time t1. This relation is very useful for controlling harmon
spectra, as, for instance, the relative intensities of a dou
plateau~see, e.g.,@8,9# for concrete examples!. Within the
two-level atom framework and in the monochromatic ca
to first approximation, the field-dependent terms of the tw

FIG. 15. Harmonic spectrum for the same parameters as in
4, compared to the one obtained forE050.62 a.u.,v50.05 a.u.,
v1050.409 a.u., andx1051.066 a.u., respectively. These param
eters giveg150.0378,g250.3094, whereas the ones in Fig. 4 yie
g150.0391,g250.3197. Part~a! shows the whole spectra, where
part ~b! displays both spectra for harmonic order 10,N,20, such
that their substructure can be seen. The field is switched on line
within two cycles.
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level Hamiltonian can be linearized at the crossings@14#.
Thus the population transfer between the exchanged s
can be computed by means of the Landau-Zener mo
@28,35#. This probability is approximately given byP
;exp@2C8p/(2x10E0)#, such that the Rabi frequency, in th
two-level atom, plays a similar role asE(t0) in the three-step
model. In general, however, there is not always a sim
expression for the population transfer at a level cross
@28,31#, such thatP has to be computed according to th
problem at hand. For instance,P may be rather complicated
for bichromatic fields. This is a limitation for controlling
high-order harmonic spectra in this latter case.

A particularity of the two-level atom is that the very sam
distortions caused by the additional field in the field-dres
energies, as functions of time, are also present in
adiabatic-state populationsuCn

A(t)u2 and in the dipole accel-
eration. Specifically for the bichromatic field addressed
this paper, i.e., av22v field, the whole pattern is no longe
periodic inT/2, but in T. This is a consequence of the per
odicity of the adiabatic states, which changes with the ad
tional driving wave. A similar feature occurs in the three-st
model framework, due to an analogous change in the e
tron kinetic energy upon return~see, e.g.,@8,9# for a discus-
sion of this issue!.

An interesting issue which is not discussed in this pa
concerns the influence of ionization or feedback mechani
on the time profiles of harmonic generation by a two-lev
atom. In a previous paper it was shown that the main con
butions to harmonic generation from a two-level atom who
states decayed according to quasi-static ionization rates
curred at minimal field. These results did not agree with
bound-bound transitions computed from the numerical so
tion of the Schro¨dinger equation for a Gaussian potent
with two strongly coupled bound states@15#. The strikingly
different time profiles obtained in the present paper for HH
in a closed two-level atom suggest, however, that these
tures are stongly influenced by ionization. Therefore m
accurate descriptions of ionization and an adequate feed
mechanism from the continuum would be necessary in
two-level atom case with unstable levels. The influence
level widths on the population transfer between quant
states is discussed in@36#.

Finally, there are scaling laws which allow extending t
studies performed in this paper to a broader parameter ra
In fact, we have shown that the important parameters
determining the physical behavior of the system areg1
5v/(2x10E0), andg25v10/(2x10E0), which denote the ra-
tio of the field and transition frequencies to the Rabi fr
quency, respectively. As long asg1 andg2 are kept constant
driving fields of completely different strengths and freque
cies acting on systems of completely different energy g
can yield similar spectra. For bichromatic fields, addition
requirements for this invariance are fixed field-strength ra
z, field-frequency ration, and relative phaseu.

A concrete example of a system for which these prop
ties may be applied is, for instance, a quantum well w
v10;1024 a.u., andx10;100 a.u., subject to a field o
strengthE0;1025 a.u. and frequencyv;1025 a.u. @24#.
Transitions between two subbands in these systems are

g.

rly
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scribed very frequently by the semiconductor Bloch eq
tions in the Hartree-Fock approximation@25#. In case collec-
tive effects can be neglected, the corresponding Hamilton
reduces to a two-level one-particle Hamiltonian. In such
case, the results of the present paper are expected to b
plicable.

Summarizing, we investigated the physical mechanism
HHG in a two-level atom for monochromatic and bichr
matic driving fields, drawing a parallel between such
mechanism and the three-step model, and providing
amples of how to control the resulting harmonic spec
Such studies are motivated by the fact that, in order to
derstand HHG in more complex systems, one must first
dress the simplest case for which transitions involving bou
.,
.
,

t.

B
A

e,

,

.

l-
v.
e,

.
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r,
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states are important: a two-level atom. The present wor
meant to be a contribution to a deeper understanding of H
in this model, and a first step towards other systems wh
bound-bound transitions play a role. In fact, the three-s
process discussed in this paper is expected to exist for m
complex systems, which, in the presence of a periodic ex
nal field, exhibit several level crossings, analogous to th
discussed here.

ACKNOWLEDGMENTS

We thank M. E. Madjet for beneficial discussions,
Fring for useful comments on the manuscript, and S. W. K
and T. Chakraborty for providing references.
.

ys.

S.

A

.

ur-

G.

a,

ex-

d

@1# For a review on high-order harmonic generation, see, e.g
Salières, A. L’Huillier, Ph. Antoine, and M. Lewenstein, Adv
At., Mol., Opt. Phys.41, 83 ~1999!; T. Brabec and F. Krausz
Rev. Mod. Phys.72, 545 ~2002!.

@2# S.C. Rae, K. Burnett, and J. Cooper, Phys. Rev. A50, 3438
~1994!; P. Antoine, B. Piraux, and A. Maquet,ibid. 51, R1750
~1995!; P. Antoine, B. Piraux, D.B. Milosˇević, and M. Gajda,
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