
PHYSICAL REVIEW A OCTOBER 1998VOLUME 58, NUMBER 4
Importance of excited bound states in harmonic generation
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We discuss the mechanism of harmonic generation for a one-dimensional model atom with several bound
states in a strong, driving laser field. We extract the bound- and continuum-components of the harmonic
radiation and investigate their temporal and spectral characteristics. We compare the bound-bound contribu-
tions from a fully numerical solution of the Schro¨dinger equation with the results from a two-level atom, and
study the influence of effective ionization rates in the latter. In the generation of the low harmonics, bound-
bound transitions play a decisive role. However, a two-level atom model is not adequate for reproducing their
characteristics. High-harmonic generation is almost entirely determined by bound-continuum transitions, the
transitions involving the ground state being dominant.@S1050-2947~98!11009-0#

PACS number~s!: 32.80.Rm
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I. INTRODUCTION

Radiation of high harmonics from atoms driven by stro
laser fields is at present a subject of growing interest, ma
for the potential applications of the emitted tunable, sho
pulse, high-brilliance, coherent, high-frequency radiati
The atomic process of high-harmonic generation~where
‘‘high’’ means more than 10th order and up to over 100
order! is at present modeled most successfully by a ‘‘thr
step’’ physical picture@1–3#. This model explains most o
the experimentally observed spectral features@4#, namely the
extended ‘‘plateau’’ consisting of many harmonics wi
comparable intensities, and its sharp high-frequency ‘‘c
off,’’ which are clearly in contradiction with perturbativ
theories concerning the external laser field. Within this p
ture, the ‘‘first step’’ is ionization, the ‘‘second step’’ i
propagation of the free electron in the laser field, and
‘‘third step’’ is the collision between the returning electron
wave packet driven by the external laser field and the ato
core potential. The result of this collision is harmonic ge
eration. Around this main idea@1#, three-step theoretica
models for harmonic generation were developed@2,3#, where
just a single-bound-state atom is taken into account, t
neglecting transitions between atomic bound states. The
dicted maximum energy of the harmonics at the ‘‘cutoff’’
«cutoff5u«0u13.17Up , which corresponds to the maxima
quasiclassical rescattering energy of the electron,u«0u being
the ionization potential andUp the ponderomotive energy.

However, harmonic spectra can also be described with
completely different physical picture, namely a driven tw
level atom@5,6#, for which bound-continuum transitions d
not exist. Recently, however, the inclusion of a ‘‘three-ste
like’’ recombination mechanism in the bound-state popu
tions of a two-level atom was able to reproduce a plateau
sharp cutoff at\v1013.17Up , where«12«05\v10 is the
energy difference@7#.

In the present paper, we address the question of whe
the two pictures of rescattering and bound-level transiti
can be compatible and what are their respective range
applicability concerning harmonic generation, for atoms w
several bound states. The goal of these studies is to
some insight in the process of generation of harmonics w
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several bound states are involved, and to include informa
about their phase~in other words, the complementary tem
poral structure of the harmonics!, with the eventual aim of
being able to control this emission for tailoring harmon
pulses of desired characteristics. The atomic harmonic g
eration results are the basis of further computations of
propagation of harmonic radiation: phase matching is m
sensitive on the intensity dependence of the emitted ato
harmonics@8#. The models we consider have been and
widely used in such propagation studies@9#: although a 1D
atom does not yield quantitatively accurate rates, it conta
the essential physics of the problem~in linearly polarized
laser light!. We base our discussion on the fully numeric
solution of the time-dependent Schro¨dinger equation, which
we regard as the full, ‘‘benchmark’’ solution. This approa
has the advantage that it includes all bound-bound, bou
continuum, and continuum-continuum transitions, thus inc
porating time-dependent effects such as ground- and exc
state depletion, ionization, and recombination. As a first s
we must define and isolate the different mechanisms
investigate their contribution to harmonic generation. To fi
approximation, we project the time-dependent wave funct
onto the field-free bound states, the remainder being an
fective time-dependent continuum.

Using spectral and time-frequency analysis, we perform
detailed investigation of the radiation emitted by the ato
The case of a system with two bound states and a contin
is investigated in detail and compared with a two-level at
model. In previous work@10# we considered the case of a
atom with a single bound state. We used time-frequen
analysis in order to compare the fully time-dependent so
tion of the Schro¨dinger equation with the three-step mod
@2#. The time profiles of the plateau and cutoff harmon
were strikingly similar for both models, corresponding to t
semiclassical return times for the electronic wave packet
the present case, however, for an atom supporting more
one field-free bound state, such a coincidence is not alw
observed, especially for the lower order plateau harmoni

The paper is organized as follows: in Sec. II we discu
the theoretical methods used, namely the time-depen
projections, the wavelet transform, and a two-level at
model with and without ionization. In Sec. III we present o
2990 © 1998 The American Physical Society
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results. We have taken several model potentials to inve
gate two bound states in a short-range potential~Sec. III A!,
one deeply bound and many weakly bound states in a lo
range~soft Coulomb! potential ~Sec. III B!, several deeply
bound ~and many weakly bound! states in a deep soft
Coulomb potential~Sec. III C!, and the same potential as
Sec. III C, but with its Coulomb tails cut off~Sec. III D!. In
Sec. IV we state our conclusions.

II. THEORETICAL METHODS

A. Fully time-dependent projections

As our point of reference we take a fully time-depende
numerical computation, solving the Schro¨dinger equation for
a one-dimensional model atom in a time-dependent exte
laser field. We consider both short- and long-range poten
supporting more than one field-free bound state. The o
dimensional case is particularly interesting and widely u
for modeling harmonic generation in linear polarization@11#,
since it requires much less computer time than thr
dimensional computations, being therefore amenable to
expedient, and accurate numerical solution. Furthermore
use of a short-range potential implies a very good applica
ity for three-step models.

We use atomic units throughout. The time propagation
performed in the velocity gauge, using the standard fin
difference Crank-Nicolson method. The time-depend
Hamiltonian is

H5
p2

2
2pA~ t !1V~x!. ~1!

The vector potential of the driving laser field is in the dipo
approximationA(t)5Ā(t)cos(vLt), with Ā(t) its envelope.
The electric field is thenE(t)52dA(t)/dt. In Eq. ~1! the
purely time-dependent phase termA2(t) has been eliminated
through a unitary transfomation. The emission spectrum
taken to be proportional to the modulus square of the Fou
transform of the dipole acceleration, which is calculated
ing Ehrenfest’s theorem@12#. The dipole acceleration opera
tor is

ẍ̂52
dV~x!

dx
1E~ t !. ~2!

The time-dependent wave functionuc(t)& can be expanded
into the field-free-bound-state basis

uc~ t !&5(
n

Cn~ t !un&1ufc~ t !&, ~3!

where the bound states are denoted byun&, the remaining
continuum part of the wave function byufc(t)& and Cn(t)
5^nuc(t)&. The average dipole accelerationẍ(t)

5^c(t)u ẍ̂uc(t)& can therefore be split into

^c~ t !u ẍ̂uc~ t !&5 ẍbb~ t !1 ẍbc~ t !1 ẍcc~ t !, ~4!

with the bound-bound, bound-continuum, and continuu
continuum contributions being, respectively,
ti-
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ẍbb~ t !5(
n,m

Cm* ~ t !Cn~ t !K mU 2dV~x!

dx UnL
1E~ t !(

n
uCn~ t !u2, ~5!

ẍbc~ t !5(
n

2 ReFCn~ t !K fc~ t !U 2dV~x!

dx UnL G , ~6!

and

ẍcc~ t !5^fc~ t !u ẍ̂ufc~ t !&. ~7!

TheE(t) term in Eq.~2! contributes only to an enhanceme
in the fundamental in the spectrum of the full acceleratio
However, for the bound-bound and continuum-continuu
contributions~4! and~6!, there is a somewhat artificial intro
duction of a term proportional to the field. This term doe
however, not introduce any important contributions, as w
be shown in Sec. III.

It should be noted that each term of the expansions ab
is in general not invariant under unitary transformation
This can be easily verified by applying a transformationJ
on uc(t)&, such that the wave function in the new represe
tation is written asucJ(t)&5Juc(t)&. For the amplitudes
Cn(t) one obtains

CnJ~ t !5(
j 50

n

^nuJu j &Cj~ t !1^nuJufc~ t !&, ~8!

with the continuum being

ufcJ~ t !&5ucJ~ t !&2(
n

CnJ~ t !un&. ~9!

The nondiagonal terms correspond to couplings betw
different basis states introduced by the transformation
these couplings are zero, Eq.~8! is diagonal and therefore
each contribution to the time-dependent spectra remains
variant. This is the case of, for instance, purely tim
dependent transformations. Under gauge transformations
instanceJ5e2 ixA(t) ~from the velocity gauge to the lengt
gauge!, the nonzero couplings can lead to different resu
@13#. Particularly in the velocity gauge, we could obser
unphysical behavior for the amplitudesCn(t). Therefore we
always performed the transformation to the length gauge
fore calculating our projections numerically. The misleadi
results obtained using the velocity gauge are presented
discussed in Sec. III E. Obviously, the expansion into afield-
free bound-state basis yields just an approximate picture
the bound-state subspace, since in a real atom the hi
excited bound states are strongly distorted by the field
coupled to the continuum. Moreover, the projectio

^c(t)un&^nu ẍ̂um&^muc(t)& are not equivalent to the respec
tive second temporal derivatives of the dipole length proj
tions, d2^c(t)un&^nux̂um&^muc(t)&/dt2, since the projection
operatorsun&^nu do not commute with the full Hamiltonian
~1!. Therefore, for an atom with two bound states, a dir
comparison betweenẍbb(t) of Eq. ~5! and the dipole accel-
eration of a two-level atom is questionable. This error is n
introduced if we compare the bound-bound projections a



t

se
g
th
is

en

at
m

d

-

n
e

th
l

x

ua-

nt
lizing
cy

le
ore,
ced

r-
s of
ree-
cy

har-
ing
e.

er
n-

ed
tly
ps

le
ro-
er
is
ue
m-

ow

a-

e-
nd-
m
he

2992 PRA 58FIGUEIRA de MORISSON FARIA, DO¨ RR, AND SANDNER
the two-level atom dipole in the length form, used as a tes
Sec. III A.

B. Two-level atom

We shall address now the driven two-level atom ca
with and without ionization, with the objective of comparin
the power spectra obtained in this physical picture with
bound-bound contributions from the full 1D atom, as d
cussed in the preceding subsection. For a ‘‘closed’’~nonion-
izing! two-level atom in an external fieldE(t), the time-
dependent wave function and Hamiltonian are giv
respectively@14#, by

uc~ t !&5C0~ t !u0&1C1~ t !u1& ~10!

and

H5HA1HI . ~11!

The amplitudesCn(t), n50,1 areCn(t)5^nuc(t)& , as de-
fined in the preceding section. The indices 0 and 1 rel
respectively, to the ground and excited state. The ato
Hamiltonian is

HA5u0&«0^0u1u1&«1^1u, ~12!

with «n the field-free energies, such thatHAun&5«nun&. The
atom-field interaction is represented by

HI52x10E~ t !~ u1&^0u1u0&^1u!, ~13!

x10 being the matrix element̂1uxu0&. The dipole moment
and acceleration operators are given, respectively, by

x̂TL5x10~ u1&^0u1u0&^1u! ~14!

and

ẍ̂TL52v10
2 x̂TL12v10x10

2 E~ t !~ u0&^0u2u1&^1u!, ~15!

with the energy differencev105«12«0. The amplitudes
Cn(t) are the solution of the following system of couple
differential equations:

i
d

dtS C0

C1
D 5S «0 x10E~ t !

x10E~ t ! «1
D S C0

C1
D . ~16!

We solved Eq.~16! numerically using a standard fourth
order Runge-Kutta method.

Introducing now ionization@6,15#, we choose an atom
with a ground state in the tunneling ionization regime a
the excited state in the over-the-barrier ionization regim
with time-dependent ionization rates, respectively,g0(t) and
g1(t). The ground-state ionization rate was chosen as
quasistatic tunneling formula@16# for the one-dimensiona
case

g0~ t !5D1 exp„2D2 /uE~ t !u…, ~17!

whereD1 and D2 are positive real parameters. For the e
cited state we took

g1~ t !5D3 exp~2D4 /uE~ t !u2!, ~18!
in

,
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whereD3 andD4 are adapted as discussed in Sec. III. Eq
tion ~16! will now be solved with the energies«n replaced by
the complex quantities«̃n5«n2 ign(t)/2. Harmonic genera-
tion is due to transitions involving the time-depende
dressed states, whose energies are obtained by diagona
the Hamiltonian~11!. The instantaneous transition frequen
between these dressed levels is given by

v01D~ t !5„$«02«12 i @g0~ t !2g1~ t !#/2%214x01
2 E~ t !2

…

1/2.
~19!

The cutoff frequency is the maximal value of Re@v01D(t)#
@5,6#. The energy width introduced by ionization in princip
can cause an increase in the cutoff frequency. Furtherm
harmonics can be generated by the nonlinearity introdu
by the functional forms ofg0 andg1.

C. Fourier and wavelet analysis

By calculating the power spectra, all the temporal info
mation about harmonic generation is lost. Certain feature
harmonic generation that are present in, for instance, th
step models@17# can only be revealed by a time-frequen
analysis. Several groups@9,10,21# have employed time-
resolved spectra for analyzing the time dependence of
monic generation. These spectra are obtained by perform
a Fourier transform with a temporally restricted envelop
We choose the time width of the window function narrow
than a period of the external laser field. In this way the co
tribution from a particular group of harmonics to the emitt
radiation can be determined. This procedure differs sligh
from the time-frequency analysis performed by most grou
@9,21#, which take this width larger than the laser periodT
52p/vL in order to investigate the time profile of a sing
specific harmonic. In principle, the harmonic generation p
cess is almost periodic, with the period of the driving las
frequency, or rather with half this period. This periodicity
observed only approximately in the results that follow, d
to turn-on transient and ionization effects in the actual co
putation.

We perform a wavelet transform with a Gaussian wind
function ~Gabor transform!, which is given by

W~ t,t8,V,s!5exp@2~ t2t8!2/s2#exp@ iVt8#, ~20!

of width s and centered at a harmonic frequencyV
5NvL . The wavelet transform of a functionf (t) is defined
as

W~ t,V,s!5E
2`

1`

dt8 f ~ t8!W~ t,t8,V,s!. ~21!

The usual Fourier transform, in which all temporal inform
tion is lost, is obtained fors→`. Just as for the time-
dependent dipole in Sec. II A, one can split the tim
dependent power spectra into the corresponding bou
bound, bound-continuum, and continuum-continuu
contributions. We thus obtain the wavelet transform of t
dipole acceleration~4! and its projections,

uW~ t !u25uWbb~ t !u21uWbc~ t !u21uWcc~ t !u2

12Re$Wbb~ t !Wbc* ~ t !1Wbc~ t !Wcc* ~ t !

1Wbb~ t !Wcc* ~ t !%, ~22!
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where not only the separate contributions but also their r
tive phases play an important role, since there are cros
terms.

III. RESULTS AND DISCUSSION

A. Short-range potential

In order to test the two-level atom against the fully tim
dependent solution of the Schro¨dinger equation, we chose
Gaussian short-range potential

VG~x!520.76 exp~2x2/4!. ~23!

This potential supports two field-free bound states, at«05
20.499 a.u. and«1520.099 a.u. We consider an extern
field of frequency vL50.05 a.u. and amplitudeE0
50.08 a.u., which is clearly in the tunneling regime for t
ground state. These conditions are comparable to the
considered in@6#, i.e., ground state in the tunneling regim
excited state in the over-the-barrier regime, and dipole m
trix element̂ 0uxu1&51.066 a.u. According to the three-ste
models, the expected cutoff for the present case should b
V549vL , which is in very good agreement with the spe
trum for the full acceleration, shown as the dotted line in F
1. In fact, the dotted line beyond the harmonic 21 superpo
exactly on the solid line, which gives only the boun
continuum part of the spectrum, resulting fromẍbc(t), Eq.
~6!. At low energy the bound-continuum part underestima
the full results, while the bound-bound part gives the dom
nant contribution. The bound-bound spectrum present
completely different cutoff~at roughly V535vL) and no
clear indication of a plateau, in contrast to the full dipo
acceleration.

In order to verify whether these features correspond t
two-level atom, we compare the bound-bound part with
corresponding two-level atom, with and without ionizatio
Without taking ionization into account, we do not observe
plateau structure at all in the emission spectra for the fi
parameters above. In fact, the only peaks observed co
spond to the fundamental, a few very weak harmonics~up to

FIG. 1. Power spectra for the short-range Gaussian pote
~23! and its two-level atom model. Dotted line: full acceleratio
solid line: bound-continuum part; squares: bound-bound part;
angles: two-level atom including ionization~for the latter two, only
the harmonic peak heights are shown, connected by a thin line!.
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the 5th!, and the resonance peak around the transitionu0&
→u1&. Harmonic spectra with an extended plateau struct
are only observed for much higher intensities, where any
atom would ionize practically instantaneously and the tw
level atom description is unrealistic. These results are
shown in the figure.

As a further step, we introduce ionization rates for t
bound-state populations as stated in Sec. II B. The tun
formula for the ground state yieldsD150.72 and D2
50.665 in Eq.~17!. For the excited state we chooseD3
50.05 andD450.0026 in Eq.~18!. The harmonic spectrum
obtained in this case is very different from the full solutio
spectrum or from the bound-bound part of the full solutio
Harmonics up to the 9th are visible, which is in agreem
with Eq. ~19!, but these harmonics are much weaker th
those of the full result. We conclude that the driven two-lev
atom is not a good model for computing the harmonic
sponse, not even for the low harmonics, which can be
tracted as the bound-bound part of the spectrum. A stron
nonlinear ionization rate within the two-level atom mod
can enhance the harmonics and prolong the plateau, but
the field-dependent ionization rate does not reproduce
full solution’s time dependence for the populations of t
bound states, obtained by the time-dependent projection
the unperturbed states, shown in Fig. 2. Actually, the r
g1„E(t)… of Eq. ~18! for the excited state is just an ad ho
adjusted quantity since a tunnel formula is not too appro
ate for this state whose binding energy«1520.099 a.u. is
only 2\vL . Choosing a step function as a model of t
over-the-barrier ionization process yields more harmon
since it is more nonlinear@6#, but it is arguably less realistic

The ground- and excited-state populations depicted in F
2 show reasonably similar behavior for the full solution a
the two-level atom model. The excited-state population
the full solution is quasiperiodic in time, with a zero at th
times for which the field is zero. There are small dips~after
the second cycle! at the times for which the field is maxima
The small dips in the excited-state population are mirro
by corresponding peaks in the ground-state population Th

ial

i-

FIG. 2. Bound-state populations. Solid heavy lines: full tim
dependent computation for the short-range Gaussian poten
Dashed heavy lines: two-level atom with ionization. Solid and d
ted light lines: full time-dependent calculation with projections
the velocity gauge~See III E!. The upper curves are for the groun
state, the lower ones for the excited state.
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dips, which are absent in the two-level atom results, are
indication that a nonlinear process is taking place around
peak field intensity, which involves just the two bound stat
Both the full and the two-level atom calculations conta
irreversible ionization, partially over-the-barrier ionizatio
the excited state having the function of an intermediate s
between the ground state and the continuum, and part
tunneling ionization. It must be noted that, even though
combination is present in the bound state part of the t
evolution for the full results, the bound-bound part of t
spectrum in Fig. 1 does not exhibit the cutoff
v1013.17Up observed by@7#.

The time-frequency wavelet gives a more detailed ana
sis of the harmonic generation process, including in part
harmonics’ phase information. In Figs. 3~a!–3~d!, we present
results obtained for low harmonics taking a time wid
s50.1T. In Fig. 3~a!, we plot the wavelet transform forV
57vL . In this case, the main contribution to harmonic ge
eration within a field cycle for the full solution occurs clos
to the field peak. The full and the bound-bound contributio
have very similar shapes, the same amplitudes, and co
dent peaks. However, the bound-bound wavelet transform
the fully time-dependent computation and the two-level at
wavelet transform are remarkably different. The two-lev
atom results exhibit peaks att50.5T modulo T/2, that is,
when the fieldE(t) is zero. The full or the bound-boun
results have also a small shoulder att50.5T mod T/2, but
their main peak is 90° out of phase with the two-level-ato
results, being att50.25T mod T/2. In order to test whethe
this discrepancy is introduced by the fact that the project
operators onto the bare bound states do not commute
the full Hamiltonian~1!, we performed the same calculatio
using the bound-bound projections and the two-level at
dipole, both in thelength form; the result is shown in Fig
3~b!. The bound-bound contributions from the full solutio
in the length and acceleration forms in parts~a! and ~b! ex-
hibit peaks at the same times. This shows that the error
troduced by the fact that@ un&^nu,H#Þ0 is of no qualitative
importance in this situation. Once more, the two-level at
results in part~b! present peaks at times different from th
xbb . The shape and location of the peaks obtained for
two-level atom are not sensitive to variations in the ioniz
tion ratesg0 andg1.

These results, together with the large difference in
magnitude of the harmonics, visible in Fig. 1, strongly su
gest that the process of generation of these low harmo
must be quite different in the two cases, even though the
results are recovered in their two-bound-state projectio
The generation of harmonics within the two-level-ato
model has been investigated by Gautheyet al. @18#. They
conclude that harmonics occur due to a crossing between
two dressed states. The wavelet transform for the parame
used in@18# exhibits indeed well-localized sharp peaks at
50.5T mod T/2. In our present case, however, the tim
width of the avoided crossing between the two dressed le
becomes comparable to~although still smaller than! the laser
field period and thus the peaks are no longer so sharp.
the full 1D atom results, on the other hand, the field is dr
ing the bound part of the electronic wave packet prima
within the two lowest bound states, as can be seen in Fi
~the slow decrease in the ground-state population is du
n
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irreversible ionization!. Since the frequency is low, the wav
packet follows adiabatically the Stark eigenstate of the
tential, which is distorted by the slowly time-varying electr
field. The largest field gives rise to the largest dipole and a
to the largest harmonic components in this dipole. The g
eration of harmonics of the bound part can also be viewed
arising from a ‘‘charge oscillation’’ of the wave packet b
tween dipoles of opposite parity in the atom. The sa
mechanism leads to even more dramatically visible effect
the emission of harmonics from a diatomic molecule wh
considering the two lowest bound even- and odd-parity sta
@19,20#. Classically, an electron driven by the field over
few a.u.~the spatial extension of the bound states! will gain
the largest energy when the field is largest. This suggests
the harmonics generated by this process should occur aro
the peak of the fieldE(t), an observation that is also i
accord with a calculation of the phase, for the molecular c
@20#. The small but sharp peaks close to maximum field o
served in the full solution populations~Fig. 2! are a further
evidence for this mechanism. The time between the t
small peaks in the excited-state population, of about 10 a

FIG. 3. Wavelet analysis of the time-dependent dipole over
cycle of the driving laser field for the short-range Gaussian pot
tial. ~a! and ~c!–~f! give the dipole acceleration, whereas~b! gives
the dipole length.~a! and~b! V57vL , s50.1T; ~c! V515vL ; ~d!
V517vL ; ~e! V537vL , s50.024T ~plateau harmonics!; ~f!
V549vL , s50.1T ~cutoff harmonics!. Solid line: full dipole ac-
celeration. Dashed line: bound-bound contributions. Dotted li
bound-continuum contributions. Dotted-dashed line: in~a! and ~b!
results from the two-level atom with ionization~multiplied by
3000!; in ~e! and ~f! continuum-ground-state contributions.
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is equal to the time it takes for a classical particle to
accelerated by the field from rest to a distance correspon
to the shift of the charge cloud at peak field. In our mod
we observed a related spatial displacement in the peak o
probability distribution of the bound-state part of the wa
function, ucb(t)&5C0(t)u0&1C1(t)u1&, which occurs
roughly within this time interval. It is only a small part of th
wave packet that performs this motion~while the majority
simply follows the field adiabatically! but this is the signifi-
cant part producing the lower plateau harmonics. T
mechanism is not taken into account in the two-level-at
model.

Considering now the wavelet transform centered at
low-frequency end of the plateau harmonics,V515vL ,
shown in Fig. 3~c!, one observes that the full wavelet h
significant contributions from both the bound-continuum a
the bound-bound parts. Increasing the center wavelength
slightly, to V517vL , the bound-bound part rapidly loses i
importance. In Fig. 3~d!, the bound-continuum and the fu
wavelet almost coincide, the bound-bound contributions n
being out of phase with the full solution. Thus the domina
contribution in the full results shifts from the bound-bou
part for the low harmonics to the bound-continuum part, o
just a few harmonics, as is evident also from Fig. 1.

Finally, in Figs. 3~e! and 3~f! we analyze the plateau an
cutoff regions. In Fig. 3~e!, we consider a window function
of time widths50.024T centered atV537vL , so that most
of the plateau harmonics are included. For this situation,
observe a near-perfect coincidence between the bo
continuum~dotted line! and the full ~solid line! results, in
accord with the results in Fig. 1. The main contributions
the bound-continuum part come from the ground-sta
continuum transition~dotted-dashed line!.

Fig. 3~f! shows the wavelet transform for the cutoff ha
monics,V549vL , with time width s50.1T. Here the full
result and the contributions involving the ground-sta
continuum transitions~dotted-dashed line! and the bound-
continuum transitionsẍbc(t) are almost identical. The pea
in part ~f! corresponds to the classical return time of an el
tron with maximum kinetic energy~see, e.g.,@17# or @10# and
references therein!. We observed small variations in the p
sition of this peak betweent50.4T and t50.5T, which is
reasonable since this return time is very sensitive towa
small variations in the electron energy, as discussed in@17#.
For all cases, the continuum-continuum transitions yield v
small contributions, in accord with the analysis of@22#.

B. Shallow long-range potential

In the following two subsections, in order to investiga
the influence of the potential shape on harmonic generat
we consider model atoms with the widely used soft Coulo
potential

VC~x!52a@~x/b!211#21/2. ~24!

We takea50.38 andb50.76, which leads to one boun
state of energy«0520.19 a.u. and several weakly boun
states ~binding energies of the order of 1022 a.u. and
smaller! in an external field of amplitudeE050.08 a.u. and
frequencyvL50.05 a.u. This case is very close, apart fro
e
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the potential shape, to the single-bound-state short-range
tential discussed in@10#, since in the presence of the extern
field the excited states are strongly coupled to the continu
For the parameters stated above, the cutoff predicted by
three-step model is atV545vL .

In @10# a striking agreement between the wavelet tra
forms for the ground-state-continuum projection and the
acceleration was observed, at the cutoff and for the wh
plateau region. These results are in agreement with a c
putation@23# for a three-dimensional long-range SAE mod
involving ultrashort pulses, at the cutoff harmonics, and a
with the results in@17#. The present results~not shown! for
the plateau and cutoff regions are again in agreement w
these calculations, showing their generic, potent
independent nature for an effective single-bound-state at
As in the short-range case adressed in@10#, the main wavelet
peak corresponds to a return time of aboutt50.45T, periodic
over 0.50T. If the high-lying excited states are taken in
account, we obtain a spurious peak atE(t)5E0 for the
bound-continuum wavelet. This feature is also observed
the next subsection~III C !. We regard it as unphysical, sinc
a projection onto a field-free bound-state basis is not a g
approximation for the weakly bound states.

C. Deep long-range potential

After discussing harmonic generation for models with ju
one or two bound states, we now wish to address the q
tion of whether the spectral features observed are presen
an atom with more than two strongly bound states.

We considera50.76 andb51.1 in the potential~24!,
resulting in a ground-state energy of«0520.501 a.u. This
case differs from the one considered in Sec. III B in the se
that also the first and second excited states, of energies
spectively,«1520.199 a.u. and«2520.108 a.u., are rela
tively deeply bound and strongly coupled~the dipole matrix
elements between the states are, respectively,^0uxu1&
51.19 and^1uxu2&53.02). The cutoff for this potential is
with the field parameters taken as in Sec. III A, atV
549vL .

In Fig. 4, for the part of the spectrum above the 13
harmonic, we observe a perfect agreement between the s
trum of ẍbc(t) including the three most deeply bound stat
~c! and the full acceleration spectrum~a!. The inclusion of
the higher excited states~b! makes the agreement muc
worse, indicating the inadequacy of the field-free basis
this intensity regime. The bound-bound transitions involvi
only the three strongly bound states~d! exhibit a cutoff at a
much lower frequency, the term proportional toE(t) in Eq.
~2! modifying only the background in this case. The ha
monic intensities are much lower than those of the full res
The spectrum ofẍbb(t) involving all the bound states~e!
~their number is finite within our discretization! yields a
smeared out cutoff, which is also observed by@6#. Moreover,
we observe that the spectra corresponding to continu
ground-state transitions are at least two orders of magnit
higher than bound-continuum spectra involving only the e
cited bound state parts. The harmonic yields from these c
tributions decrease with increasing bound-state energy. T
is shown in Fig. 4~f!, where the contributions from the tran
sitions involving the continuum and the bound stateu2& are
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presented. The contributions to theb-c spectrum from the
first excited stateu1& are one to two orders of magnitud
smaller than those involving the ground state. Similar res
were obtained by@24# in a time-dependent computation,
which the initial atomic state was taken as a coherent su
position of the ground and lowest metastable excited st
Indeed, in three-step models for high-harmonic genera
the excited bound states are usually neglected, which is
tified in view of the present results.

The corresponding wavelet analysis in Fig. 5 shows t
the bound-continuum part, which includes only the low
three bound states, and the full acceleration yield almost
distinguishable wavelet transforms for both~a! and ~b!. The
bound-continuum part including all bound states is also
agreement with the other two sets of results, apart from
spurious peak at maximal field (t50.25T modulo 0.5T).
This spurious~unphysical! peak is due to the contribution o
the high-lying excited states in the time-dependent pro
tions. This peak is not present in the harmonics of ene
higher than the cutoff, indicating that it arises only from t
high-plateau harmonics. Once more, in part~b!, the cutoff
return timet.0.4T is recovered for the full acceleration an
ẍbc(t).

For the lower-energy part of the spectra, however,
harmonics appear to be a ‘‘mixture’’ of bound-continuu

FIG. 4. Power spectra of the time-dependent dipole accelera
for the deep Coulomb potential.~a! full acceleration;~b! bound-
continuum part;~c! bound-continuum part from the three mo
deeply bound states;~d! bound-bound part from the three mo
deeply bound states;~e! bound-bound part;~f! bound-continuum
part for the second excited state only. All subsequent curves h
been shifted by215 y-axis units from their respective uppe
neighbors. The harmonic peak heights from curve~a! have been
repeated as the filled circles for all other five curves, as a poin
reference.
ts
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and bound-bound transitions, and it is difficult to draw co
clusions about which mechanism plays the most import
role. This is clearly observed in the wavelet transform ce
tered at the 7th harmonic~not shown!. In this case, the wave
let transform no longer exhibits theT/2 periodicity of the
driving field but there are other time scales present, pres
ably due to resonant processes involving several bo
atomic states. Concerning the term inẍbb(t), which is pro-
portional to the field, as briefly mentioned in Sec. II A
introduces an overenhancement of the peak at maxim
field (t50.25T modulo 0.5T) when all the bound states ar
taken into account. The reason is that the projections on
these states become large for maximal field. If just the th
most deeply bound states are taken into account, the ter
E(t) plays no important role in the wavelet transforms, t
result with and without this term being almost identica
Moreover, even though the excited statesu1& and u2& are
strongly coupled, the wavelet transform ofẍbc(t) for only
the two or only the three most deeply bound states presen
significant difference.

D. Effects of the Coulomb tail

In order to investigate quantitatively the effects of t
long-range Coulomb tails in the deep Couomb potential
Sec. III C, we now discuss and compare results obtai
with the same potential, where the Coulomb tails have b
cut off,

n

ve

f

FIG. 5. Wavelet analysis of the time-dependent dipole accel
tion over one cycle of the driving laser field for the deep Coulom
potential.~a! Plateau harmonics,V537vL , s50.027T; ~b! cutoff
harmonics,V551vL , s50.108T. Solid line: full dipole accelera-
tion. Dashed line: bound-continuum contributions from the th
most deeply bound states. Dotted line: bound-continuum contr
tions.
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VT~x!5VC~x!H 1, uxu,a0

cosnF p

L2a0
~x2a0!G , a0,uxu,L

0, L,uxu.
~25!

For regions close to the atomic core, this expression yie
the deep Coulomb potentialVC from Sec. III C. For uxu
.a0, its tails are cut off smoothly. We takea055, n56,
andL52a0, a0 being the excursion amplitude of the ele
tron (a05E0 /v2532). Thus within its excursion amplitude
the electronic wave packet will experience a very differe
potential tail betweeVC andVT . For the parameters abov
the ground-state energy«0 of VT is the same as the one fo
VC ~Sec. III C!, while the first and second excited state
energies ofVT are at «1520.192 and«2520.063. The
energies of the higher excited bound states are of co
quite different between the two potentials.~Also the matrix
element^1uxu2& is very different.! The truncated potentia
VT has only a finite number of bound states, seven within
discretization. We apply exactly the same field pulse as
the previous results shown.

The effects of Coulomb tails on harmonic generati
spectra have been discussed in several papers before@25#.
Mainly, however, these discussions were concerned with
liptically polarized driving fields, investigating harmonic e
ergies close to the ionization energy~‘‘threshold’’ harmon-
ics!. Unusual ellipticity dependence was observed, wh
origin was usually surmised to lie in the dominant effect
excited bound states. Coulomb corrections to the free wa
packet evolution within the context of multiphoton ionizatio
and above-threshold~high photoelectron energy! multipho-
ton ionization have also been addressed@26#, again mainly in
the context of elliptical polarization and thus concerned w
wave-packet spreading transverse to its principal excur
amplitude. In the present study, we are uniquely concer
with the longitudinalspreading of our~1D! wave packet in a
linearly polarized laser field. Even within this restricted co
text, one should expect quantitative differences in the h
monic yield, since the Coulomb tails affect atomic ionizati
@26# and the spreading of the electronic wave packet.

When comparing the harmonic generation spectra fr
VC and VT , there are no major differences visible on t
scale of Fig. 4~the results forVT are not shown in the fig-
ure!. However, there are quantitative differences of ab
one order of magnitude. TheVT harmonics at the cutoff are
slightly ~a factor 2 to 3! lower than theVC harmonics. On the
other hand, there are a few groups of harmonics, in the
teau ~around the 35th! and at threshold~around the 11th!
where theVT harmonics are about one to two orders of ma
nitude higher than theVC harmonics. Again, there is perfec
agreement between the full and theẍbc(t) high-energy spec-
tra for VT , where only the lowest three bound states
taken.

We now consider the wavelet transforms for the two s
of results. For the low harmonics, forV57vL and s
50.108T, we observe that the results forVT are much less
structured than the results forVC . The results forVT are
dominated by a single smooth peak, near 0.25T, periodic
modulo T/2, as was the case for the short-range Gaus
s

t

’
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r
r
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e
f
e-
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t

a-

-

e
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n

potential, discussed in Fig. 3. This suggests that the non
riodic wavelet yield ofVC for the low harmonics is inheren
to the long-range tail of Eq.~24!. However, for the potentia
~25! it is not clear whether the low harmonics are originat
by the bound-bound or bound-continuum transitions, sin
both contributions present well-defined maxima at peak-fi
times.

For the plateau region, forV537vL ands50.027T, VT
again exhibits much less structured temporal profiles t
VC , this time dominated by a peak near 0.50T. At the cutoff,
finally, very similar wavelet yields are obtained forVT and
VC , once more indicating the potential-independent nat
of the cutoff harmonics. The cutoff return time is slight
shifted between the different sets of results:VC yields 0.42T,
VT yields 0.47T, while VG gave 0.45T @10# for the ~single!
peak of the temporal signal. The width of the peak, howev
is much larger than these differences, and thus the wav
cannot really~neither in practice nor in principle! resolve
such a small difference. According to our analysis, the lo
range tail of the Coulomb potential influences mainly lo
and threshold harmonics, and, depending on the potentia
question, might affect particular groups of plateau harm
ics. The effect of truncating or not the long-range potent
even quantitatively, does not have a significant influence
the cutoff harmonics.

E. Gauge dependence

As discussed in Sec. II A, the time-dependent projectio
are gauge-dependent and one has to be careful abou
choice of gauge. In the present low-frequency region,
projections make sense only when taken in the length ga
as has also been argued in@27# and @28#. In this subsection,
we present misleading results obtained in the velocity ga
as an example. We take the short-range potential from S
III A, which has two deeply bound states, and calculate
time-dependent projections in the velocity gauge. In t
case, the plateau- and cutoff-structure is recovered also

FIG. 6. Power spectra of the dipole acceleration for the Gau
ian potential. All projections~but one, see below! are performed in
the velocity gauge. Solid line: spectrum of the full acceleratio
~same as in Fig. 1!. Filled squares: bound-bound contributio
Circles: bound-continuum contribution. Crossed diamon
continuum-continuum contribution. Triangles: continuum
continuum contribution from length-gauge projection.
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the ẍbb(t) spectrum. This can be seen in Fig. 6, where
spectra forẍbb(t), ẍbc(t), andẍ(t) in the velocity gauge are
presented. The full line gives the ‘‘exact’’ result, the same
the dashed line in Fig. 1. The key point of the present fig
is that the various projection contributions~bound-bound and
bound-continuum! are much larger than the full result~the
continuum-continuum contribution is roughly of the order
magnitude of the full result!. This indicates that the projec
tions in the velocity gauge cannot be expected to yield m
physical information individually, since they cancel ea
other to a large extent when summed to give the full res

Moreover, performing the wavelet analysis for the pres
case, shown in Fig. 7~a! for the plateau harmonics, one ob
serves that theẍbb(t) contribution is similar to the fullẍ(t),
whereas theẍbc(t) wavelet is completely out of phase wit
the full result. This appears to lead to the conclusion that,
atoms with strongly coupled bound states, the bound-bo
transitions play a very important role in the generation
plateau harmonics. However, it must be noted that, as sh
in Fig. 7~b!, all the contributions~although most prominently
the bound-free contribution! reproduce the return timet
.0.5T at the cutoff.

Considering the ground-state and excited-state pop
tions obtained by projecting the velocity-gauge wave fu
tion, shown as the thin lines in Fig. 2, the former prese
maxima for timest50.25T modulo 0.5T, corresponding to

FIG. 7. Wavelet transform of the time-dependent dipole acc
eration for the Gaussian potential. The projections are performe
the velocity gauge.~a! Plateau harmonics,V537vL , s50.024T.
~b! Cutoff harmonics,V549vL , s50.1T. Solid line: full dipole
acceleration. Dashed line: bound-continuum contributions. Do
line: bound-bound contributions. Dotted-dashed line: continuu
continuum contributions.
e
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e
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maximum field strengthE(t)5E0. These results are obvi
ously unphysical, when viewed in a quasistatic field pictu
This justifies the gauge transformation introduced in
present analysis. Studies concerning the gauge depend
of time-dependent projections were also performed by@27#
within the context of population transfer.

IV. CONCLUSIONS

We wish to draw the following qualitative conclusions o
high-harmonic generation, based on the results within
projection method.

There is no significant qualitative influence on either lo
or high-harmonic generation from the long-range shape
the potential. In other words, for long-range potentials,
highly excited bound states do not play a significant ro
When observing 3D effects, however, as for example in
ellipticity dependence of harmonic generation@25#, the po-
tential tails may become important. For atoms with mo
than one bound state, both the bound-bound and
continuum-bound transitions play a role in the harmonic g
eration process. The generation of high harmonics co
sponds to a three-step physical picture, in which the m
contributions within a field cycle correspond to the semicl
sical return times, even for long-range potentials. For all
potentials studied, only the bound-free transitions originat
cutoff at the semiclassical energyu«0u13.17Up . Both spec-
tral and time-frequency analysis demonstrate that the m
contributions to high-harmonic generation come from tran
tions involving the ground state. This shows that the el
tronic wave packet not only rescatters with the atomic pot
tial, but really recombines to the ground state.

On the other hand, the low harmonics appear to be
result of several mechanisms, depending very much on
potential in question. Our analysis shows that indeed the
cited bound states play a significant role in the properties
these lower harmonics, in agreement with the interpreta
of some of the results in@25,26#.

Specifically, for an atom with only two deeply boun
states, the bound-bound transitions play the dominant rol
the generation of harmonics at the low-energy side of
plateau. Similar results were also obtained by@7#. However,
the plateau and cutoff atv1013UP reported in this publica-
tion are absent in our computation. It should be noted that
do take recombination into account for the amplitudesCn(t).
Only in the velocity gauge, for which the time dependence
the ground- and excited state populations yields unphys
results, are a plateau and a cutoff within this frequency
gime observed. The mechanism of harmonic generation
two-level atom leads to a temporal structure in the lo
harmonic generation, which is completely out of phase w
the main process of harmonic generation in a spatially
tended atom.

In the low-frequency regime we observe strikingly diffe
ent bound-bound and two-level atom spectra and wav
transforms. The spectra can be made to appear more sim
if one chooses much higher ionization rates in the two-le
atom model. This indicates that the high-frequency com
nents in the amplitudesCn(t) of the bound states from th
full solution are very different from the corresponding com
ponents in the amplitudes from the two-level atom mod
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due to the contribution of the continuum states in the dyna
ics of the driven atom, even though the dynamics involv
primarily only a charge oscillation between the lowest tw
bound states. A critical influence of the bound-state popu
tion transfers on harmonic generation was also observe
@29#, as well as ionization-related effects in the bound-st
population dynamics.

For the particular case of an atom with only two strong
coupled bound states, we conclude that the low harmo
are not well represented by a two-level atom. Even the
sertion of effective ionization rates yields a completely ina
propriate model for the low-energy spectral region. As
,
e
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ep
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by
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e

harmonic frequency increases, the three-step model beco
the appropriate picture for the high-harmonic generation p
cess.
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