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The influence of electron-electron Coulomb repulsion on nonsequential double ionization of rare-gas atoms
is investigated. Several variants of the quantum-mechanical transition amplitude are evaluated that differ by the
form of the inelastic electron-ion rescattering and whether or not Coulomb repulsion between the two electrons
in the final state is included. For high laser intensity, an entirely classical model is formulated that simulates the
rescattering scenario.

DOI: 10.1103/PhysRevA.69.021402 PACS nuntder32.80.Rm, 31.90:s, 32.80.Fb

Multiple ionization of atoms by intense laser fields canneling of the first electron angi) its subsequent motion in
proceed via different quantum-mechanical pathways. Théhe laser field,(iii) the inelastic-rescattering collision with
atom or ion may be ionized step by step such that the tranthe second(up to this time bound electron, and(iv) the
sition amplitude is the product of the amplitudes for singlepropagation of the final two electrons in the laser field. It
ionization. If such a factorization is not possible, one speaksloes not contain, for example, the interaction of the electron
of nonsequential multiple ionization. Various physical in the intermediate state with the ion nor the interaction of
mechanisms may be envisioned to underlie the latter, buhe final electrons with the ion or with each other.
electron-electron correlation is a necessary precondition. In this paper, we incorporate the Coulomb repulsion be-

The actual presence of the nonsequential double ionizaween the two electrons in the final state into the basic
tion (NSDI) pathway was inferred long add] from data at quantum-mechanical transition amplitude of NSDI, and com-
1053 nm at rather low intensity, but the mechanism responpare with experiments. Moreover, we formulate a classical
sible for it could only be identified after the reaction- inelastic-rescattering model that reproduces the quantum-
microscope technique provided much more detailed informamechanical results for high laser intensity.
tion about the process than was available bef@k In The quantum-mechanical transition amplitude formalizing
principle, this technique is capable of analyzing double ionthe assumptions of the rescattering moddl1i§]
ization in terms of all six momentum components of the ion
and one electron, while earlier experiments were only able to o t
yield total double-ionization rates. To the extent that the pho- M=— J_wdtf_mdt'w
ton momentum can be neglected, this is synonymous with a
complete kinematical characterization of the process. As a ®|¢§)2)(t)>. )
result, rescattering has emerged as the dominant mechanism,
as it is for high-order harmonic generation and high-order; js pictorialized in the Feynman diagrams of Fig. 1: Ini-
22%:&:?222%3;&8'Zat'o[rs]' For a review of recent devel- a1y "hoth electrons are bound in théimcorrelatefiground
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An exact description of NSDI is, in practice, only possible states| 1/18 (t ))—e' on |l/’g )>' w_her(,a Eon IS the bmdmg

for helium and requires the solution of the six-dimensional®N€r9Y of thenth eleptrqn. At the time", the first eleptrqn 'S
released from the binding potentM) through tunneling ion-
r{'éation, whereas the second electron remains bound. Subse-

spatial dimension for each electr¢@.g], or neglecting the quently, the first electron propagates in the continuum de-

backaction of the outer electron on the infig}, or density-  Scribed by the Volkov time-evolution ope_ratpr(l\_’)(t,t’),
functional methods[10]. Classical-trajectory calculations 9@ining energy from the field. At the later timeit dislodges
[11] yield a reasonable agreement with the data far above th_@e secpnd electro_n in an inelastic CO||I$I0n mediated by the
threshold. The exact quantum-mechanical transition amplilnteractionVa,, which is accounted for in the lowest-order
tude has been analyzed in terms of Feynman diagfa@lls  BO'n approximation. Throughout the paper, we compare two
The basic diagram that contains rescattering has been evalfossible choices for this interaction: the Coulomb interaction

ated by several grougd3—15. It incorporates(i) the tun- Vig~|ri—ry| ™t and a three-body contact interactiaf;,
~d8(r;—ry)8(rq). The latter might be interpreted as afr

fectiveelectron-electron interaction on the background of the

- . i i (V) i
*Present address: Quantum Optics Group, Institutifeoretische  10N- For the final two-electron  statgyr, ;, (1)) with
Physik, Universita Hannover, Appelstr. 2, 30167 Hannover, Ger- asymptotic momenta,, p,, we take the correlate@utgo-
many. ing) two-electron Volkov stat¢l7]
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FIG. 1. Feynman diagrams corresponding to the transition am- -4
plitude (1), (a) without and(b) with electron-electron repulsion be- 4
tween the two electrons in the final state. The vertical wavy line and g
the dots in(b) indicate Coulomb interaction, which is exactly ac- g Q
counted for by the two-electron Volkov solution. The dashed verti- 3? 0 g
cal line represents the electron-electron interactigyby which the % 1 %
second electron is set free. o _2 a
-3
v — 1.V v =4
| (D)= (D) @) (1))
X1F1 (=i Lidlpllr[=p-1)) N N
—ryl2 ; ‘?:_‘ 'E’:_‘
xXe ™I (1+iy), (2 = -]
which exactly accounts for their Coulomb repulsiffig. & &
1(b)], and compare it with the product state of one-electron
Y : - -
Volkov states| ¢y (1)) [Fig. 1(@)]. Here p=(py—py)/2, r ‘a3210 234 ‘a3210 234
=r,—r,, andy=1/(2|p|) (Coulomb repulsion is turned off pu/Up1" Pu/[Up1"

by settingy=0). . . . . FIG. 2. Comparison of the double-ionization probability densi-
Inlorder to evaluate the multiple integrals in trzs)trar}smonties without (left-hand columin and with (right-hand columpn

amplltude\(/l), we ei/xpand _the Volkov propagatbr;™(t,t") electron-electron repulsion in the final state, as a function of the

= [d%[ g (1)) (t')] in terms of the Volkov states, electron momenta parallel to the laser field. The interactignis

(r] ¢(kv)(t)>= (277)_3/Zexp[i[k+A(t)] -} exdiS(t)], with specified by the three-body contact interaction. Parameters are for

S(t)=—(1/2)f'd k+ A(7)]? the action of a free electron argon Eq;=0.58 a.u.,Eq,=1.015 a.u), the laser frequency is

in the presence of the laser field described by the vector0.057 a.u. (Ti:sapphirg. Panels (a8 and (b): 1=25

potential A(t). Since the Volkov solutions are plane waves X 10 Wcm 2 (Up=0.54 a.u), |p;,|=0.5 a.u. (Ref. [21]); (c)

(with time-dependent momentynthe spatial integrals yield and (d): as before, but withp,,[<0.5 a.u.;(e) and (f): 1=4.7

the two form factors X 10" Wem 2 (Up=1.0 a.u),|py. | or [pz, [<0.1 a.u(Ref.[22]).

Vo= (P2 + A(),pi+ AD|Vidk A1), g, (3  approach each other very closely near the classical cutoffs. In
this case, the standard saddle-point approximation becomes
Vo= (k+ At V] gy, 4 mappllcable. We herg employ a so—calle_d unn‘or_m approxi-
0=( ()IVI¥5") “@ mation[18,19, which invokes the same information on the
which, for the contact and Coulomb potentials that we conSaddles but works regardless of their separation. _
sider, can be obtained in closed form. The remaining inte-  BOth in the saddle-point and in the uniform approxima-
grals over the intermediate-state momentyrthe ionization ~ tion, the upshot of employing the correlated two-electron
time t’, and the rescattering timeare evaluated by saddle- Volkov state(2) is very S|mple: the result of the uncorrelated
point integration, which is justified for the high ponderomo- tWo-€électron Volkov state just has to be augmented by the
tive energiedUp of the experiments. factor 2my/[exp(2ry)—1] [20]. _ _

The standard saddle-point approximation reduces the five- 1N€ consequences are illustrated in the next figures,
dimensional integration ovek,t, andt’ to a sum over the whereV, is the contact interaction or the Coulomb interac-
complex solutiongk,te,t/(s=1,2,...) of thesaddle-point tion, respectively, and the parameters correspond to the data

S1*Sstg ey r .

equations. The transition amplitude for argon[Zl,ZZ (note [23]). and neor[24]. We follow the
presentation of the experimental data and decompose the
(21)5A, V, final-state momenta into their components parallel and per-
M (SPA— pks " kg0 oiSplts tg ko) (5) pendicular to thelinearly polarizedl laser field, so thap;
s ~/detS;§(t.t’.k)|s =(pj|.pi.)(i=1,2). Then we present density plots of the

double-ionization probability as a function of the parallel
is the coherent superposition of the contributions of all rel-components,; and p,, while the transverse components
evant saddle points. Here, the various exponentials in thp,, are partially or entirely integrated over.
amplitude(1) have been collected into the actigp(t,t’,k). In general, final states where the two electrons have simi-
The method was explained in detail in Reff$6,18. In res-  lar (vecto) momenta are suppressed by their Coulomb repul-
cattering problems, the complex solutions come in pairs thasion, since the two electrons are set free simultaneously by
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FIG. 3. Same as Fig. 2, but wit¥i;, specified by the Coulomb S . i,
interaction 9 12 5P y FIG. 4. Double-ionization probability densities for neoBy(

=0.9 a.u.,Eg,=1.51 a.u.),I=10°Wcm 2 (Up=2.2 a.u.), inte-
. . . . grated over all transverse momega]. Left panels:V,,=contact

the interactionVy,. In the (py,pz))-correlation plots, this  jyieraction; right panels?;,=Coulomb interaction. The upper four
tends to reduce the population on the diagonal. The effect ig,o computed from the quantum-mechanical amplit@ein the

most pronounced if both transverse momenta are small, anghsencd(a) and (b)] and presenci(c) and (d)] of final-state Cou-
still sizable if only one is sma[lpanels(c)—(f) of Figs. 2 and  jomb repulsion, respectively. The remaining parié and (f)] are

3]. When one transverse momentum is large, the effect igalculated from its classical analé§) without final-state electron-
only moderatg panels(a) and (b) of Figs. 2 and 3 electron repulsion.

Panels(a)—(d) of Figs. 2 and 3 are for the parameters of
Ref. [21]. While inconclusive if one of the transverse mo- very simplest model — a contact interaction and no final-state
menta is largdpanels(a) and (b)], including the Coulomb repulsion — works best. This suggests that Yhe contact
repulsion leads to improved agreement if one of them ignteraction can be interpreted as a reasonable zeroth-order
small [panels(c) and (d)], but the resolution of the experi- effectiveinteraction that takes into account the presence of
ment does not allow one to settle either on Figd)2r on  the ion, which shields the long-range interaction between the
Figs. 3c) or 3(d). Closer scrutiny of Figs. @ —3(d) unveils  returning and the bound electron.
a lack of symmetry with respect to the diagonal, which, pos- The rescattering diagrams of Fig. 1, though fully
sibly, has been observed in RE21]. It arises since the Cou- quantum-mechanical, stimulate a classical interpretation. In
lomb form factor(3) is only symmetric under interchange of what follows, we recast their physical content into an en-
all momentum components;«p, [in the final state(2), tirely classical expression. First, let us enumerate the quan-
transverse and parallel momentum components can be intelum features inherent in the transition amplitudg (i) the
changed independentlyHigher intensity and more restricted electron enters the field via tunneling, which enforces, in the
transverse momenta are investigated in R2g], and for  saddle-point solution, complet{, ts, andks; (ii) the con-
very small transverse momeranels(e) and(f) of Figs. 2  tributions of the individual saddle points are added coher-
and 3 we do find the characteristic Coulomb pattern of Fig.ently in the sun(5); (iii) in principle, the atom can absorb an
3 reflected in the experiment. The data agree better with Figarbitrary number of photons from the laser field, that is,
3(e), which does not incorporate final-state repulsion, thardouble ionization still occurs, though at a much reduced rate,
with Fig. 3(f), which does. if the maximal kinetic energy of the returning electron is less

In neon[24], the p;, -integrated momentum correlation is than|Ey,; (iv) the electron wave packet spreads during its
quite well reproduced by the contact interact[d6]. Corre-  propagation in the continuum. However, we do not expect
sponding results without and with final-state Coulomb repulthe quantum feature#) and(iii ) to have a significant impact
sion are shown in Figs.(d) and 4b), and 4c) and 4d), on the yields of double ionization far above the threshold,

respectively. We find that taking into account the final-stateand featurgiv) is only relevant when long orbits contribute
Coulomb repulsiondoes notimprove the agreement. The [25].
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In order to check this surmise, we consider the classicalvas derived from the comparison of one-dimensional
model classical-trajectory and quantum calculatigi@$ However,
AT the quantum distributions are slightly wider and the low-
|Mclas42~j dt'R(t’ )5( Eoft)— [P1+AM)] dens!ty regions are enhanced in comparison with the (:_Ias§|—
2 cal distributions, reflecting the fact that the quantum distri-
butions extend into the classically forbidden region.
>|Vpk(t)|2- (6) In summary, we have investigated the effects of electron-
electron repulsion in the final two-electron state of nonse-
guential double ionization. The calculations allow us to con-

Here, the electron appears in the continuum with zero veloc . X
ity at the timet’ at the time-dependent ra®(t'), which clude that footprints of electron-electron repulsion have been

describes the quantum-mechanical tunneling protefsghe ~ ©Observed in experiments where the transverse momentum of
above featurdi); we will use a simple tunneling raf@e]).  one of the electrons is small, with better agreement when the
For each ionization timé’, the return timeg=t(t’), and  repulsion occurs during the rescattering process rather than
the corresponding kinetic energiBs,(t) and drift momenta in the final state of the ionized electrons. We suggest that
k(t) are calculated along the lines of the classical simp|eexperiments in whictboth electrons are restricted to small
man model[3]. They correspond to the saddle-point solu-transverse momenta would be most incisive. If the laser in-
tionst,, except that they are ref27]. The & function in Eq.  tensity is high enough, the quantum-mechanical momentum
(6) expresses the energy conservation in the inelastic collidistributions can be well reproduced in a purely classical
sion that sets the second electron free. The actual distributiomodel.

+A()]?
_[pz 2 ] _‘Eoz

of the final momenta is governed by the form fadMgk(t)F. Note addedVery recently, a paper by M. Weckenbrock
In Eq. (6), the probabilities of the various orbits=0,1,... et al.[28] was published, which addresses similar questions.
are added so that their contributions cannot interfere, in con-

trast to the quantum -mechanical amp“tl_{&é_ In F|gs 4e) We benefitted from discussions with A. BeCkeI’ E. Er-

and 4f), we present the result of the classical model wheremina, S.P. Goreslavski, D.B. Milesic, S.V. Popruzhenko,
the transverse momentum componepts are completely H. Rottke, and W. Sandner, and we are greatly indebted to E.
integrated over. They agree with the quantum-mechanical rd-enz for help with the code. This work was supported in part
sults of Figs. 4a) and 4b) quite well. A similar conjecture by the Deutsche Forschungsgemeinschatft.
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