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Phase-dependent effects in bichromatic high-order harmonic generation
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We address high-order harmonic generation with linearly polarized bichromatic fields, concentrating on a
modulation in the harmonic yield as a function of the relative phase between the two field components, and on
an offset phase shift of this modulation for neighboring cutoff harmonics. These effects have been recently
observed in experiments where the relative phase between the two driving fields was controlled. Using the
three-step model and the fully numerical solution of the time-dependent Schro¨dinger equation, we discuss the
phase-dependent modulation and show that the offset phase is inherent to a particular set of semiclassical
trajectories for the returning electron. These trajectories are identified using classical arguments and isolated by
means of the saddle-point method, which allows a detailed investigation of their interference. Thus, by adding
a second driving field whose amplitude lies within an adequate parameter range, one is able to single out a set
of trajectories according to its behavior with respect to the relative phase. This effect is already present at the
the single-atom-response level.

PACS number~s!: 42.50.Hz, 32.80.Rm, 32.80.Qk, 42.65.Ky
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I. INTRODUCTION

The emission spectrum of a gaseous sample exposed
strong laser field covers a long frequency range with h
monics of roughly the same intensities, the so-called ‘‘p
teau,’’ followed by an abrupt decrease in the harmonic yie
the so-called ‘‘cutoff’’ @1#. A very intuitive and successfu
description of these features is given by the so-called ‘‘thr
step model’’@2–5#: an electron leaves the atom through tu
neling or multiphoton ionization, propagates in the co
tinuum and, depending on its emission time, may be dri
back by the field and recombine with its parent ion, such t
harmonic radiation up to the extreme ultraviolet~XUV ! re-
gime is emitted. Within this picture, the cutoff correspon
to the maximum kinetic energy of the electron upon retu
and is given, for monochromatic fields, byVmax5u«0u
13.17Up , where u«0u and Up are the ionization potentia
and the ponderomotive energy, respectively. This model
scribes existing experiments in some respect even quan
tively and has also been successfully tested against o
theoretical methods, such as the fully numerical solution
the time-dependent Schro¨dinger equation@6#, with strikingly
similar spectral and temporal profiles, for monochroma
@7–10#, bichromatic @11,12#, and short-pulsed laser field
@13#. One of the strongest experimental evidences that
physical picture of semiclassical electron trajectories is c
rect has been provided recently in Ref.@14#. Therein, the
trajectories in question have been isolated using effects
lated to the propagation of the harmonic radiation in
gaseous medium. These experiments have also shown
one can in principle manipulate the harmonic spectra by
ploiting particular characteristics of harmonics correspo
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ing to specific trajectories, for instance their different sen
tivity to propagation and phase matching.

For a similar reason, i.e., the possibility of coherent co
trol of XUV emission, high-order harmonic generation wi
bichromatic fields has attracted a lot of attention in the p
few years, both theoretically@11,12,15–18# and experimen-
tally @19–21#. In fact, by changing the shape of the bichr
matic field, one can in principle manipulate the electron m
tion in the continuum, suppressing or enhancing particu
groups of harmonics. Already for the simplest case, name
linearly polarized laser field, one can strongly influence
harmonic spectra by varying the field amplitudes, and, in
case of commensurate frequencies, the relative phasef be-
tween the driving fields. In previous publications, we ha
shown that the introduction of a second driving field m
result in several maximal- and minimal-energy trajector
for the returning electron, which correspond to cutoffs in t
emission spectra@11,12#, such that the plateau presents
much more complex structure in the bichromatic than in
monochromatic case.

Several parameters determine the prominence of a cu
in the spectrum: the total field strength at the electron em
sion time t0, the excursion time of the electron in the co
tinuum, and the interference between different semiclass
trajectories. The first parameter is of extreme importan
since the electron leaves the atom with a probability rela
to the quasistatic ionization rate@22#, exp@2C/uE(t0)u#. A
very effective way to control the field strengthuE(t0)u is
changing the relative phase between the laser field com
nents of different frequencies. For instance, in@11# we pro-
vide an example for which the harmonic yield decreases c
siderably for a chosen interval of the relative phase wh
this parameter was particularly weak. Also the interferen
between the semiclassical trajectories depends very stro
on the relative phase. In principle, slight changes inf may
radically alter this interference pattern, so that variations

t-
0
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orders of magnitude in the harmonic yield are observed,
isolated groups of harmonics@12#.

Experimentally, this phase control has been achieved
cently for high-order harmonic generation in helium and
gon, using a linearly polarizedv22v field of comparable
intensities@21#. The intensity of the low-frequency field wa
kept fixed, whereas the high-frequency field and the rela
phasef were varied. The wavelength of the low-frequen
field was approximatelyl5800 nm and intensities of th
order of 1015 W/cm2 have been used. In this experiment, t
harmonic yield as a function of the relative phasef, with all
other parameters kept constant, exhibits the following m
features:~i! The intensity of the cutoff harmonics is modu
lated. A shift of 2p in the relative phase between thev and
2v fields corresponds to two periods of the modulation
each harmonic.~ii ! The modulation itself shows an offse
phase shift as the harmonic order is varied: if the modula
of the nth harmonic presents a maximum as a function of
for a certain phasef0, then this maximum will be slightly
shifted, i.e., it will be atf01df for the (n11)th harmonic.
These effects are present within a relatively broad range
intensity ratios I 2v /I v @21#. The theoretical modeling o
these experiments reproduces these findings reasonably
however, without providing a physical explanation for eith
the modulation or its phase shift. In@21#, as a first approxi-
mation, the cutoff energy was taken as the monochrom
value Vmax5u«0u13.17Up and the ponderomotive energ
was related to the low-frequency field only, such thatUp was
chosen asUpv5I v/4v2.

In this paper we give a simple explanation of these effe
based on the analysis of classical trajectories, within
three-step model and single-atom-response framework
particular, we isolate the relevant semiclassical trajecto
using the saddle-point method, computing the harmo
spectra as the interference between these trajectories. Be
the experimental facts, the conclusions drawn from the c
sical and semiclassical computations are checked agains
results from a fully numerical solution of the time-depende
Schrödinger equation for a one-dimensional model ato
with a single bound state, whose energy corresponds to
argon ionization potential. We use atomic units througho
The paper is outlined as follows: in Sec. II we present o
theoretical methods, namely the classical or ‘‘simple-ma
model ~Sec. II A!, the saddle-point method~Sec. II B!, and
the time-dependent Schro¨dinger equation~Sec. II C!. In Sec.
III we present and discuss our results and in Sec. IV we s
our conclusions.

II. THEORY

A. Classical model

In order to determine the emission and return times
the kinetic energy of the returning electron, we take the
merical solution of the classical equations of motion of
electron in the field

EW ~ t !5eŴ x@E01sin~vt !1E02sin~2vt1f!#, ~1!

wheref denotes the relative phase andE0i the amplitude of
06341
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each driving wave. Since all the ensuing motion takes pl
along the polarization axis, the problem can be treated
dimensionally. At the initial timet0, the electron leaves the
atom with zero velocity, propagates in the continuum un
the influence of the laser field only, and returns to the site
its release at a later timet1, such thatx(t1)50. During the
process, canonical momentum is conserved. Therefore,
kinetic energy of the electron upon return is given by

Ekin~ t1 ,t0!5
1

2
@A~ t1!2A~ t0!#2, ~2!

with A(t) being the vector potential, related to the extern
field by E(t)52dA(t)/dt. This yields a harmonic energy

VH5u«0u1Ekin~ t1 ,t0! ~3!

by the recombination to the ground state. Following th
simple picture, the kinetic energyEkin(t0 ,t1), the emission
time t0, and the return timet1 can be associated to a classic
trajectory for the returning electron. The cutoff frequenc
are determined by the condition that the kinetic energy
extremal upon return, namelydEkin(t1 ,t0)/dt150. The
emission and return times are connected by the revisi
condition. We use this model either for a single electro
varying the emission timet0 within a cycleT52p/v of the
low-frequency driving field and calculatingEkin(t1 ,t0),
which is subsequently plotted as a function of the emiss
and return times, or we consider an ensemble of electr
whose emission time is varied randomly from 0 toT. In this
latter case, we select electrons that satisfy the condi
x(t1)50 within a particular set of harmonic energies, giv
by Eq.~3!, and we look at electron counts as functions of t
relative phasef. The contribution of each single electron
weighed with the quasistatic ionization rate@22,23#

G;F25/2u«0u3/2

uE~ t0!u GA2/u«0u21

expF225/2u«0u3/2

3uE~ t0!u G . ~4!

The first and the second procedures have been use
@11,12# and @24#, respectively.

B. Strong-field approximation and saddle-point method

The classical model discussed in Sec. II A provides use
information concerning the cutoff law and the emission a
return times for the electron. However, it does not acco
for the quantum interference between two or more poss
trajectories for the returning electron, which lead to we
structured harmonic spectra@25–27#. For this purpose, we
use a closely related quantum-mechanical approach:
strong-field approximation~SFA! theory of high-order har-
monic generation@3,5,18#.

Within the SFA, thenth harmonic strength is defined a
the Fourier component of the time-dependent dipole@3,5,18#

Dn52 i E
0

Tdt

T
einvtE

0

`

dtS 2p

i t D 3/2

F~ps ;t,t!

3exp@2 iS~ps ;t,t!#,
5-2
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PHASE-DEPENDENT EFFECTS IN BICHROMATIC . . . PHYSICAL REVIEW A61 063415
F~ps ;t,t!5^c0uxups2A~ t !&^ps2A~ t2t!uxE~ t2t!uc0&,
~5!

wheret5t2t0 is the excursion time of the electron in th
continuum, uc0& is the atomic ground state, andps

5* t2t
t dt8A(t8)/t is the stationary momentum, for which th

quasiclassical action

S~p;t,t!5E
t2t

t

dt8H 1

2
@p2A~ t8!#21U«0UJ ~6!

satisfies the condition¹pS(p;t,t)50. The harmonic yield is
proportional ton4uDnu2. The double integral in Eq.~5! can
be solved using the saddle-point method~SPM!, with the
result @25,26#

Dn}(
s

ts
23/2@det~]2Ss!#

21/2Fs exp@ i ~nvts2Ss!#, ~7!

where det(]2Ss) denotes the determinant of the 232 matrix
formed by the second derivatives of the action with resp
to t0 and t at p5ps . For hydrogenlike atoms the product o
the dipole matrix elementFs can be approximated by (nv
2u«0u)1/2/n3. The sum in Eq.~7! extends over all relevan
saddle points which satisfy the conditions@18#

1

2
@ps2A~ t0!#252u«0u,

1

2
@ps2A~ t !#22

1

2
@ps2A~ t0!#25nv. ~8!

We will show in Sec. III that a good approximation forDn
can be obtained taking into account only four complex so
tions for pairs (t,t0).

C. Time-dependent Schro¨dinger equation

As our point of reference, we take the one-dimensio
time-dependent Schro¨dinger equation~TDSE! @6# for a
single electron subject to a binding potential and a bich
matic field ~1!. A one-dimensional~1D! model is not so de-
manding as a full three-dimensional computation and s
describes results for linearly polarized fields adequately
qualitative terms@28#. In the velocity gauge, this equatio
reads

i
d

dt
uc~ t !&5Fp2

2
1V~x!2pA~ t !G uc~ t !&. ~9!

The quadratic term inA(t) was removed by a unitary trans
formation. The binding potential was chosen

V~x!521.1 exp~2x2/1.21!, ~10!

such that the model atom has a single field-free bound s
with energy«0520.58 a.u. According to the experiment
conditions the lower frequency of the driving field is taken
v50.057 a.u. The power spectra are computed from
06341
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time-dependent dipole acceleration ẍ(t)5^c(t)u
2dV(x)/dx1E(t)uc(t)& @29#.

III. RESULTS

A. Upper and lower cutoff branches

For a monochromatic field, the maximum ofEkin(t1 ,t0) is
at the well-known value 3.17Up , and the semiclassical tra
jectories originating the cutoff obey aT/2 periodicity. For
bichromatic fields, however, this property is maintained o
if the higher frequency is anodd multiple of the lower fre-
quency. This is clear, since, for these types of fields,A(t
1T/2)56A(t). On the other hand, if the ratio between th
higher and the lower frequency is even, this symmetry
broken. Since the kinetic energy of the electron depends
A(t) according to Eq.~2!, this results in a splitting of the
cutoff energy into an upper and a lower branch named,
spectively,Vu andV l . This feature can be seen in detail
function of the field strength ratioE02/E015h, for f50, in
a previous publication@12#. These branches behave in stri
ingly different ways with respect to the relative phasef. The
energy of the upper cutoff branch practically does not v
with this parameter, whereas the lower branch is stron
phase dependent. These features are present for intensi
tios smaller than or of the order ofI 2v2v5I 2v /I v.0.2. For
higher intensity ratios there is a much more complicated p
tern for the cutoff energies as functions of the phase.
instance, the case of equally strong driving waves has b
discussed in@11,12#.

An example is shown in Fig. 1, whereEkin(t1 ,t0) is plot-
ted as a function of the emission and return times, for
<f<0.2p and h50.32. This corresponds to an intensi
ratio I 2v2v5I 2v /I v50.1. Each point„t0 ,t1 ,Ekin(t0 ,t1)… in
the curves shown fulfills the revisiting conditionx(t1)50,
thus characterizing a trajectory for the returning electr
Given an emission timet0 on the curve in the lower part o
the figure, the return timet1 in the corresponding curve in
the upper part of the figure is determined by the intersec
of the latter curve with a perpendicular line starting from t
lower curve att0. The return energy can be read from th
ordinate of the graph. The local energy maxima give
cutoffs, and each of these maximal-energy trajectories sp
into two, corresponding to a shorter and a longer excurs
time for the electron in the continuum. Thus, for a giv
Ekin(t1 ,t0), there may be many possible trajectories for t
returning electron. Quantum mechanically, the probabi
amplitudes related to the electron following each of the
trajectories interfere. The cutoff branchesVu and V l are
marked with thick solid arrows. For this field-strength rat
the energy of the upper cutoff branch is at roughlyVu
53.8Up , whereasV l varies from 2.6Up to 2.3Up for the
phase interval in question. In the figure and in the results
follow, the kinetic energy is displayed in units of the po
deromotive energy calculated for thewhole field, given by
Up5(nUpnv5E01

2 /4v21E02
2 /16v2, which clearly varies

with the intensity ratio. The ponderomotive energy cons
ered in@21#, Upv5E01

2 /4v2, is slightly smaller in this case
Roughly, the corresponding emission and return times for
5-3
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FIGUEIRA de MORISSON FARIA, MILOSˇEVIĆ, AND PAULUS PHYSICAL REVIEW A 61 063415
lower and upper branches are given by, respectiv
(t1l ,t0l).(0.85T,1.4T) and (t1u ,t0u).(0.35T,0.9T). Their
precise values depend on the relative phasef. For the pa-
rameters considered, the remaining cutoffs, marked w
dashed arrows, do not play an important role in the pres
problem, either for being too near the ionization threshold
due to very long excursion times for the electron, whi
results in a pronounced wave packet spreading.

A more detailed description of the process above can
obtained using the complex time formalism@25,26#. SPM
equations~8!, for u«0uÞ0, have only complex solutionst0
and t1[t. These solutions, for 0<t0<T and 0<t12t0<T,
are presented in Fig. 2. On the left-hand side we presen
imaginary part oft0 ~scaled to the optical cycleT) as a
function of the real part oft0, and, similarly, on the right-
hand side we present solutions fort1. The numbers on the
curves correspond to the harmonic ordern for which solu-
tions were found, for the same intensity ratio as in the p
vious figure andE0150.1 a.u. It is evident that the solution
S1 and S2 correspond to the lower cutoff branch, while th
solutionsS3 andS4 correspond to the upper one. The cuto
appear for values ofn which correspond to the closest poin
of the curvesS1 andS2 ~or S3 andS4). The physical mean-
ing of the imaginary parts of timest0 and t1 is connected
with the probability that the process in question occurs. T
follows from Eq. ~7! because, for one particular trajector
the logarithm of the harmonic yield is proportional
Im@nvt12S(ps,t1 ,t)#. Beyond the points denoted byn
550 for the solutionsS1 andS2 ~and also byn565 for S3

FIG. 1. Classical emission and return times for an electron
bichromatic field given by Eq.~1! as functions of its kinetic energy
upon return,Ekin(t1 ,t0), for various relative phases 0<f<0.2p.
The vertical axes in the upper and lower parts correspond, res
tively, to the emission and return times, given byt0 and t1. The
field strengths are chosen such thatE02/E0150.32, the kinetic en-
ergy is given in units of the ponderomotive energy, and the em
sion and return times in units of the period of the low-frequen
field, T52p/v. The cutoff energies are marked with arrows co
necting both parts of the figure. The thick solid arrows correspo
to the upper and lower cutoff branches and the remaining cu
energies are indicated by dashed arrows. The influence of the b
ing potential was neglected.
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and S4) the imaginary parts increase in absolute value.
these imaginary parts are negative, Eq.~7! gives low emis-
sion rates, and, consequently, the position of the cutoff. O
erwise, they lead to an exponential increase in the harmo
yield. More precisely, in the application of Eq.~7! beyond
the denoted cutoff points, one of the solutionsS1 andS2 (S3

and S4) should be discarded as unphysical. Therefore,
n.65 only one trajectory contributes to the harmonic sp
tra. For 50<n<65 three trajectories contribute, while forn
,50 all trajectories contribute to the harmonic yield.

B. Harmonic spectra

The importance of each set of trajectories in the harmo
spectra can be inferred from the quantum-mechanical c
putation. The lower branch is considerably more promin
in the spectra, whereas the most energetic cutoff app
only as a small shoulder. Thus, the ‘‘cutoff’’ seen expe
mentally corresponds to the strongly phase-dependent s
trajectories. Figures 3 and 4 present some of these spe
for field strengthsE0150.1 a.u. andE0250.032 a.u., which
are within the experimental parameter range. For these
rameters and 0<f<0.2p, the upper and lower branches o
Vmax correspond to the harmonic frequenciesVu563v and
43.1v,V l,47.4v, respectively. Both cutoff branches a
indicated in the figure.

Figures 3~a! and 3~b! present results obtained solving th
TDSE ~see Sec. II C! and the SFA~see Sec. II B!, respec-
tively. Apart from a very good agreement between both
sults for lower and upper cutoff branches, one observes
energy displacement for the lower branch asf is varied,
whereas the energy of the upper cutoff branch remains p
tically inaltered. These results are in perfect agreement w
the predictions of Sec. III A obtained using the classic
model.

a

c-

-
y

s
ff
d-

FIG. 2. Complex solutionst0 and t1 of the SPM equations~8!
for a hydrogenlike atomic potential withu«0u50.58 a.u., the same
laser field parameters as in Fig. 1, and the relative phasef50. Four
solutions ~denoted byS1 , S2 , S3, and S4) are obtained for the
harmonic order 20<n<80. On each curve the beginning~20!, the
cutoff point ~50 or 65!, and the end~80! are denoted with the
corresponding value ofn.
5-4
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In Fig. 4 we compare the SFA results to the spectra
tained using the saddle-point method. The SPM results
obtained taking only four relevant complex solutions for t
times t0 and t1 in Eq. ~7! ~see Fig. 2!. The results agree
qualitatively with the TDSE and SFA results forn.30. This
shows that the main contribution to the harmonic yield n
both cutoff branches comes from the four complex trajec
ries which have been explicitly discussed in Sec. III A.

A more detailed investigation of the field strengthuE(t0)u
at the emission time explains part of the features observe
Figs. 3 and 4. Figure 5~a! displays this parameter for th
lower and upper branches, for intensity ratiosI 2v2v50.1
and 0.2. We show only the behavior for 0<f<p, since the
semiclassical trajectories obey a period ofp with respect to
the phase, due to the symmetryE(t,f1p)52E(t
2T/2,f). This property is discussed in detail in@12,30#.
From the figure it is clear that for a wide phase interv
namely for 0<f<0.8p, the lower branch presents a consi

FIG. 3. Harmonic yields as functions of the harmonic orden
calculated using the TDSE@part ~a!# and the strong-field approxi
mation @part ~b!#, for the same bichromatic field as in the previo
figures, with E0150.1 a.u. and relative phase 0<f<0.2p. The
numbers on the upper edge of part~a! give the corresponding ki-
netic energyEkin(t1 ,t0) in units of the ponderomotive energyUp .
The upper and lower cutoff branches are indicated by thick arr
in part~a!. For the phasesf50, f50.1p, andf50.2p, the cutoff
V l is indicated by a solid, dashed, and dotted arrow, respectiv
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erably larger field at the emission time, such that its prom
nence in the spectrum is justified. This prominence decrea
for the phase interval where both fields are comparable.
other important parameter is the excursion time of the e
tron in the continuum: the shorter the excursion time, the l

s

.

FIG. 4. Harmonic yields calculated with the saddle-po
method ~solid lines! compared to the strong-field approximatio
~stars connected by dashed lines! for the same bichromatic field an
ionization potential as in Fig. 3, for~a! f50, ~b! f50.1p, and~c!
f50.2p, as functions of the harmonic ordern.
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FIGUEIRA de MORISSON FARIA, MILOSˇEVIĆ, AND PAULUS PHYSICAL REVIEW A 61 063415
important wave packet spreading. For both cutoff branch
these times are comparable and vary with the relative ph
f. For phases smaller thanf.0.4p, the excursion time for
the lower branch is slightly shorter than that of the upp
branch. For the remaining phases, this pattern is rever
This can be seen in Fig. 5~b!, for the same intensity ratios a
in the previous part of the figure. Thus, this does not app
to play a significant role in this case.

C. Modulation and its phase shift

For both lower and upper cutoff branches, the TDSE co
putation yields a modulation for the harmonic intensities
functions of the relative phasef, which is periodic inp.
This p periodicity is due to the symmetry inE(t) mentioned
in Sec. III B.

In order to study the offset phase shift, we investigate t
modulation for consecutive harmonics near and slightly
yond the lower and upper cutoff branches. Figure 6~a! shows
this variation for harmonics nearVu obtained from the
quantum-mechanical computation, compared with the qu
static rate forE(t0u). The obvious coincidence between the
indicates that for the upper branch the harmonic yield is
termined by the quasistatic ionization rate, i.e., by the pr
ability per unit time that the ‘‘first step’’ takes place. This
related to the fact that these harmonics are mainly de

FIG. 5. Field strengthuE(t0)u at the emission time@part ~a!# and
excursion timest5t12t0 @part ~b!#, for the upper and lower cutof
branches, for intensity ratiosI 2v2v50.1 ~filled symbols!, and
I 2v2v50.2 ~open symbols!, as functions of the relative phasef.
The triangles connected by dotted lines and the circles connecte
solid lines correspond to the lower cutoffV l and the upper cutoff
Vu , respectively.
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mined by a single cutoff trajectory whose energy is alm
independent of the relative phasef. Thus, other mechanism
that may influence the harmonic yield and produce a mo
lation, such as pronounced interference effects or signific
variations in the harmonic intensities due to a shift in t
cutoff energy, do not play a significant role.

On the other hand, for the lower cutoff branch the TDS
computation clearly shows a phase shift of the modulat
for neighboring harmonics, which qualitatively correspon
to the feature reported in@21#. This phase shift is shown in
Fig. 6~b!, where the harmonic intensity is plotted as a fun
tion of the relative phase, for harmonics slightly beyondV l ,
namely atu«0u13Up . It is strongly related to the variation
of the cutoff energy withf. As a particular harmonic ap
proaches or gets further in energy fromV l , there is either an
increase or a decrease in the harmonic yield. For a gi
phase, this intensity variation depends on the harmonic
der, since different harmonics are unequally distant from
lower cutoff branch. Thus, neighboring harmonics pres
similar intensities for slightly different phases. For energ

by

FIG. 6. Harmonic yield from the TDSE computation for neig
boring cutoff harmonics compared to the quasistatic ionization r
as functions of the relative phasef, for a driving field as in Fig. 3.
Parts~a! and ~b! refer to the cutoff branchesVu and V l , respec-
tively. Part ~a! displays the harmonicsV563v, V564v, andV
565v, whose energies are slightly larger thanu«0u13.8Up , while
part ~b! shows the harmonicsV552v, V553v, and V554v,
with energies aroundu«0u13Up ~slightly beyond the cutoffV l).
The thick lines in the figure give the formul
225/2u«0u3/2/3uE(t0)u, related to the quasistatic rate@see Eq.~4!#, for
t05t0u @part ~a!# and t05t0l @part ~b!#.
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lower than or roughly atV l , there is also a pronounce
interference structure superposed to the global behav
which sometimes disguises this phase shift. This is not
prising since, in this energy region,V l splits into two sets of
trajectories for the returning electron which are tempora
and energetically very close. For energies of the order
u«0u13Up , these interference effects are practically abse

Figure 6~b! also shows that the modulation observed do
not follow the quasistatic ionization rate, given by the thi
line in the figure. In fact, the modulation observed is a co
sequence of other physical mechanisms in addition to
tunneling process at the emission time, namely the ene
variation of the lower cutoff branch and the interference
tween trajectories belonging to the lower and upp
branches. As already discussed, the phase dependenceV l

is responsible for the phase shift of the modulation. Anot
example of its influence on the harmonic yield is a p
nounced intensity drop seen in Fig. 6~b!, which occurs for
f.0.25p. For this phase, the energy difference between
group of harmonics chosen and the cutoffV l is most pro-
nounced.

The offset phase shift is also present within the simp
man model, as described in Sec. II A for an electron
semble with randomly distributed start times 0<t0<T. This
confirms the classical origin of this effect since, due to
strong phase dependence ofV l , as f is varied different
amounts of electrons come fromV l andVu . Since electrons
with slightly different Ekin(t1 ,t0) are unequally distant in
energy from the lower branch, the corresponding elect
counts are also expected to be phase shifted with respe
each other. Figure 7 shows these counts as functions o
relative phase for different electron kinetic energies, wh
include contributions for one or both cutoff branches, d
pending on the phase in question. A more detailed beha
of V l with the phase will be discussed below. In Fig. 7~a! we
take into account the ionization rate given by Eq.~4!,
whereas in Fig. 7~b! we consider a constant ionization rat
The main difference between them is that, in Fig. 7~a!, one
of the two sets of peaks observed in Fig. 7~b! is strongly
suppressed. Thus,uE(t0)u influences the modulation, but no
its phase shift, only selecting the trajectories for which
field strengths at the electron start times are particula
strong.

The precise behavior ofV l and Vu with respect to the
phase as calculated with the simple-man model is show
Fig. 8 for several intensity ratios. Each point in the figu
corresponds to an extremal kinetic energy for the return
electron. Figure 8~a! confirms that the cutoff energiesVu are
very weakly influenced by the phase. The most import
feature observed in the figure is the displacement ofVu to-
wards higher energies for an increasing intensity of the hi
frequency wave. This effect has been discussed in a prev
paper@12#. On the other hand, for the cutoffV l Fig. 8~b!
shows a strong energy variation asf is changed. An inter-
esting feature is the energy minimum mentioned above
0.25p for intensity ratios of the order of or smaller tha
I 2v /I v50.2. For stronger 2v fields, the cutoffV l splits into
two, such that the interpretation of the results concerning
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phase-dependent modulation becomes considerably m
complicated.

The interference between the lower and upper cu
branches plays only a secondary role in this modulation
ing, however, present for phases in the interval 0.5p<f
<p, for which E(t0l) and E(t0u) are comparable and th
excursion timetu5t1u2t0u is shorter than that of the lowe
branch. Some information concerning these interferences
be obtained using the saddle-point method. In Fig. 9
present the spectra resulting from isolated pairs of traje
ries, compared to the results obtained taking into accoun
four relevant trajectories. Figure 9~a! displays these result
for f50, clearly showing that the lower cutoff branch
almost entirely determined by the trajectoriesS1 andS2. For
f50.9p @Fig. 9~b!#, on the other hand, one clearly sees
interference pattern in the harmonics of the lower cut
branch, originated by the trajectoriesS3 andS4.

IV. CONCLUSIONS

We investigate high-order harmonic generation w
bichromaticv22v fields, giving a physical interpretation
for the phase shift of the modulation observed experim
tally for neighboring cutoff harmonics@21#. Using the three-
step model and the fully numerical solution of the tim
dependent Schro¨dinger equation, we show that this feature
determined by the phase dependence of a set of semiclas
trajectories for the returning electron. With the introducti
of the high-frequency driving wave, the cutoff for the mon
chromatic case splits into two branches, which exhibit diff

FIG. 7. Harmonic yields for various harmonic energies betwe
V l andVu as functions of the relative phasef calculated from the
classical model. In part~a! the quasistatic ionization rate given b
Eq. ~4! and in part~b! a field-independent ionization rate was use
The calculation was performed with an ensemble of 53107 elec-
trons and randomly distributed start timest0 and phasesf. The
kinetic energy at the return timet1 was identified with the photon
energy. The same field parameters as in Fig. 6 were used.
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FIGUEIRA de MORISSON FARIA, MILOSˇEVIĆ, AND PAULUS PHYSICAL REVIEW A 61 063415
ent behavior with respect to the relative phase between
two driving fields. While the cutoff energy of the uppe
branch does not vary considerably with the phase, the cu
energy of the lower branch is strongly sensitive to this
rameter, giving rise to the phase shift of the modulati
Thus, using a two-color field, one can separate and identi
set of semiclassical trajectories already for a single at
whereas for a monochromatic field, this is only possible
ing propagation effects of the harmonic radiation in the g
eous sample@14#.

Using the saddle-point method, we are also able to m
precise statements on how the interference between va
trajectories influence the harmonic spectra, and reproduce
full quantum-mechanical results obtained with the TDSE
the harmonics close to the upper and lower cutoff branc
with astonishing precision. We show that in the high plate
and cutoff regions, the harmonic intensities are well d
scribed by four interfering semiclassical trajectories for
returning electron. In particular, a single trajectory is resp
sible for the upper cutoff branch, whereas the lower branc
the result of the interference of three different trajectorie

Another noteworthy feature is the difference of orders
magnitude between the harmonic yields of the upper
lower branches. This is a direct consequence of a stron
field at the electron emission time for the cutoffV l and
therefore an interesting example of how groups of harmon
can be enhanced or suppressed by manipulatinguE(t0)u. Fur-
thermore, the fact that the upper cutoff branch extends

FIG. 8. Cutoff energy as a function of the phasef for the upper
@part ~a!# and lower@part ~b!# cutoff branches, given in terms of th
ponderomotive energyUp . The solid squares, open circles, cross
and diamonds correspond to the intensity ratiosI 2v2v50.1,
I 2v2v50.2, I 2v2v50.3, andI 2v2v50.4, respectively. For inten
sity ratios larger than 0.2, there is a splitting of the lower cutoffV l .
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energies higher thanVmax5u«0u13.17Up , but that the lower
cutoff branch is more prominent in the spectra sheds so
light into several apparently conflicting theoretical and e
perimental findings for high-order harmonic generation
bichromatic fields. In a large number of theoretical inves
gations, an extension of the plateau towards higher ener
is observed, forv22v @11,12,16# and v23v @17# fields,
whereas other theoretical and experimental studies yie
shorter@18,19,21# plateau in comparison to the monochr
matic cutoff energyVmax. Our results suggest that thes
studies refer either to the upper or to the lower cutoff bran
so that no contradiction exists. In particular, a double plat
was observed in@18# for a bichromatic driving field of fre-
quenciesv and 2v, and the result found for the cutoff en
ergy is in very good agreement withV l .

We also propose an explanation for the phase modula
observed in the harmonic yield for upper and lower cut
branches. For the upper branch, this modulation is enti

,

FIG. 9. Harmonic yields calculated using the SPM equations~7!
and ~8! for a hydrogenlike atomic potential withu«0u50.58 a.u.,
and the same laser field parameters as in the previous figures,
sidering isolated pairs of semiclassical trajectories. Parts~a! and~b!
correspond to the relative phasesf50 andf50.9p, respectively.
The solid lines yield the contribution of the four relevant semicla
sical trajectories, while the long-dashed and short-dashed lines
respond to the pairsS1,2 andS3,4, respectively.
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determined by the quasistatic tunneling rate, whereas for
lower branch, it appears to be the combination of three m
physical mechanisms, namely the field strengthuE(t0l)u at
the emission time of the electron in the continuum, the
ergy variation of the cutoff energyV l with the relative phase
f, and the interference between the upper and lower cu
branches, which plays a role when the fields at the emis
time uE(t0l)u anduE(t0u)u are comparable for both branche

Finally, we would like to comment on the cutoff mea
sured in@21# for helium, whose energy was taken near t
15th harmonic of the low-frequency field. This strong redu
tion in the cutoff energy was related to poor phase-match
conditions@31#. For this gas, however, the ionization pote
,

B

.

s.

ep

in

a,

J

06341
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tial is roughlyu«0u.0.9 a.u., which corresponds to approx
matelyV515v, with the frequency of the laser used bein
v50.057 a.u. In this frequency region, the atomic intern
structure strongly influences the harmonic spectra, such
the application or interpretation of the results in terms of
three-step model is questionable@10,32#.
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