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On the influence of pulse shapes on ionization probability
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Abstract. We investigate analytical expressions for the upper and lower bounds for the
ionization probability through ultra-intense short-pulse laser radiation. We take several different
pulse shapes into account, including, in particular, those with a smooth adiabatic turn-on and
turn-off. For all situations for which our bounds are applicable we do not find any evidence for
bound-state stabilization.

1. Introduction

The computation of ionization rates or probabilities of atoms through low-intenbitg (

3.5x 10*® W cm~2) laser radiation can be carried out successfully using perturbation theory
around the solution of the Sdbdinger equation without the presence of laser fields [1]. With

the advance of laser technology, nowadays intensities of up‘fo¥@m-2 are possible and
pulses may be reduced to a durationof{ 10~1° s)*. Such intensities are no longer in the
region of validity of conventional perturbation theory. The new regime is usually tackled by
perturbative methods around the Gordon—Volkov solution [3] of the &tthger equation
[4-10], fully numerical solutions of the Satdlinger equation [11-16], Floquet solution [17—

19], high-frequency approximations [20] or analogies to classical [21] and semiclassical [22]
dynamical systems. All these methods have their drawbacks. The most surprising outcome
of the analysis of the high-intensity region for short pulses (the pulse length is shorter
than 1 ps) is the finding by the majority of the atomic physics community (see [23-26]
and references therein) of so-called atomic stabilization. This means that the probability of
ionization by a pulse of laser radiation, which for low intensities increases with increasing
intensities, reaches some sort of maximum at high intensities and commences to decrease
until ionization is almost totally suppressed. This picture is very counterintuitive and doubts
on the existence of this phenomenon have been raised by several authors [7, 9, 10, 27, 28],
who do not find evidence for it in their computations. So far no support is given to either
side by experimentalists For reviews on the subject we refer the reader to [23-26].
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* For a review and the experimental realization of such pulses see, for instance, [2].

* Experimental evidence for some sort of stabilization is given in [29], but these experiments deal with intensities
of 103 W cm~2, which is not the ‘ultra-intense’ regime for which the theoretical predictions are made.
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Since all of the above methods involve a high degree of numerical analysis, which
are difficult to be verified by third parties, it is extremely desirable to reach some form of
analytical understanding. In [30—33] we derived analytical expressions for upper and lower
bounds for the ionization probability, meaning that the ionization probability is certainly
lower or higher, respectively, than these values. The lower bound, in particular, may be
employed to investigate the possibility of stabilization for an atomic bound state. In [33]
we analysed the hydrogen atom and found that for increasing intensities the lower bound
also increases and hence that the existence of atomic stabilization can be excluded in the
sense that the ionization probability tends to one. The shortcoming of our previous analysis
[33] is that definite conclusions concerning the above question may only be reached for
extremely short pulsesr (< 1 au), which are experimentally unrealistic. In the present
paper we analyse these bounds in further detail and demonstrate that atomic stabilization
can also be excluded for longer pulses.

Some authors [8, 14] put forward the claim that in order to ‘observe’ atomic stabilization
one requires pulses which are switched on, sometimes also off, smoothly. This seems very
surprising since stabilization is supposed to be a phenomenon specific to high intensities and
with these types of pulses emphasis is just put on the importance of the low-intensity regime.
It further appears that among the authors who put forward these claims, it is not commonly
agreed upon whether one should associate these pulse shapes with the laser field or the
associated vector potential. We did not find a proper and convincing physical explanation
as to why such pulses should produce such surprising effects in the literature. Geltman [10]
and also Chen and Bernstein [27] do not find evidence for stabilization for these types of
pulses with smooth turn on (and off) of the laser field. However, these results have also
been disputed (Set al 1996 [14]) with regard to numerical convergence problems [10]
and the possibility to allow distortions of the electron trajectory, which is believed to be
necessary for the occurrence of stabilization [27].

In order to also address the validity of these claims within our framework we extend
our previous analysis to various types of pulses commonly employed in the literature in this
context and also investigate the effects that different frequencies might have. Once more
we conclude that our arguments do not support atomic stabilization.

Our paper is organized as follows. In section 2 we briefly recall the principle of our
argument and our previous expressions for the upper and lower bounds for the ionization
probability and discuss them in more detail for the hydrogen atom. We then turn to an
analysis for specific pulses. In section 3 we state our conclusions. In the appendix we
present the explicit computation for the Hilbert space norm of the difference of the potential
in the Kramers—Henneberger frame and the one in the laboratory frame for any bound state.

2. The upper and lower bounds

For the convenience of the reader we commence by summarizing briefly the main principle
of our argument. Instead of calculating exact ionization probabilities we compute upper
and lower bounds for them, meaning that the exact values are always smaller or greater,
respectively. We then vary these bounds with respect to the intensity of the laser field and
study their behaviour. If the lower bound tends to one with increasing intensity, we can infer
that stabilization is definitely excluded. On the other hand, if the upper bound tends to zero
for increasing intensities, we would conclude that stabilization is present. In the case where
the lower bound increases, but remains below one, we only take this as an indication for
a general type of behaviour and interpret it as not providing any evidence for stabilization,
but we cannot definitely exclude its existence. In the case where the lower bound becomes
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negative or the upper bound becomes greater than one, our expressions obviously do not
allow any conclusion.
The non-relativistic quantum mechanical description of a system with potéhtiathe
presence of linearly polarized laser radiation is given by the@&lthger equation involving
the Stark Hamiltonian
oY (x, 1)
"
For high, but not relativistic, intensities the laser field may be approximated classically. We
furthermore assume the dipole approximation. In the following we will always use atomic
unitsh = e = me = ca = 1. For a general time-dependent Hamiltonxy) the ionization
probability of a normalized bound state is defined [6, 30] as

PW) = A=PSYI? =1 IPLSY | (2.2)

The gauge invariance of this expression was discussed in [33]. |Hefaedenotes as usual
the Hilbert space norm, i.ely|? = (Y, v¥) = [|y(z)|?d®x. We always assume that
Hy = lim,_, ., H(t) exists andy is then understood to be a bound staterbf. P,
andP_ denote the projectors onto the space spanned by the bound statesasfd H_,
respectively, and is the unitary ‘scattering matrix’

S= lim expit, H) U(ty, 1) exp(—it_H_). (2.3)

ty—+o0

(—3A+V+zE®) (. t) = H@) ¥ (. 1). (2.1)

Here the unitary time evolution operatéf(r,,t_) for H(¢), brings a state from time_

to t.. Note that by definition 6<X P(y¥) < 1. Employing methods of functional analysis

we derived in [30-33] several analytical expressions by which the possible values for the

ionization probability may be restricted. We emphasize once more that these expressions
are not to be confused with exact computations of ionization probabilities. We recall here

the formula for the upper

T 2
P,(Y) = { /O [(V(x —c(t)e) = V(@)yldt + |c(Ollp |l + Ib(f)IIIZWII} (2.4)
and the lower bound
Py =1— {/O IV (@ — e)es) — V(@) dr

n 2|b(7)|
21, + b(1)? 21, + b(1)?
which were deduced in [33]e, is the unit vector in the-direction andi, is the binding
energy. Here we use the notation

2
[(V(z—c@®)e) = V(@Ny| + IIPZ’ﬁll} (2.5)

b(t) = /f E(s)ds c(t) = /Ib(s) ds (2.6)
0 0

for the total classical momentum transfer and the total classical displacement, respectively.
Note that for the vector potential in thedirection we haveA(t) = —(1/¢)b(t) + constant.

It is important to recall that the expression for the lower bound is only valid if the classical
energy transfer is larger than the ionization energy of the bound statéb?.e.) > —1,.

Our bounds hold for all Kato small potentialsin particular, the Coulomb potential and its
modifications, which are very often employed in humerical computations, such as smoothed

1 Potentials are called Kato small if for eachwith 0 < a < 1 there is a constank < oo, such that
IV < all—Av]| + by holds for ally in the domainD(Ho) of Hy = —A /2, see for instance [35, 36].
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or screened Coulomb potentials, are Kato small. However, the delta potential, which is
widely used in toy-model computations because of its nice property of possessing only one
bound state, is not a Kato potential.

In the following we will consider a realistic example and take the potemtigd be the
Coulomb potential and concentrate our discussion on the hydrogen atom. In this case it is
well known that the binding energy for a statg,,, is E, = —1/2n?, || p.¥00ll®> = 1/3n?
and [|z¥o0ll? = 2(vu00|r2|¥moo) = gn?(5n” + 1) (see for instance [34]). We will employ
these relations below. In [33] it was shown that the Hilbert space norm of the difference
of the potential in the Kramers—Henneberger frame [37, 38] and in the laboratory frame
applied to the state

N, ) =(V(x—-y) — V@)V (2.7)

is bounded by 2 wheny = 190 for arbitrary y = ce,. We shall now investigate in
more detail how this function depends enln order to simplify notation we ignore in the
following the explicit mentioning oé,. In the appendix we present a detailed computation,
where we obtain

N2(e, 100) = 2+ (1+ |e| )&V Ei(le]) + (1~ [e| ") € Ei(=e]) + |72|(e*2‘6' - 1).
(2.8)

Here Eix) denotes the exponential integral function, given by the principal value of the
integral

o0 e—l‘
Ei(x) = —/ - dr for x>0. (2.9)
Now considering the asymptotic behaviour 8f we obtain as expected limo N = 0
and lim_ . N = +/2. Noting further thatV is a monotonically increasing function of
(one may easily compute its derivatives with respect,tdut we refer here only to the
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Figure 1. The Hilbert space norm of the difference of the potential in the Kramers—Henneberger
frame and in the laboratory frame applied to the siaigy versus the classical displacement
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plot of this function in figure 1), it follows that our previous [33] estimate may, in fact,

be improved toN (¢, Y100) < ~/2. The important thing to notice is that, sind&c, ¥100)

is an overall increasing function @f it therefore also increases as a function of the field
strength. The last term in the bracket of the lower bouhd)) is a decreasing function

of the field strength, while the second term does not have an obvious behaviour. Hence
if the first term dominates the whole expression in the bracket, thus leading to a decrease
of P,(y¥), one has in principle the possibility of stabilization. We now investigate several
pulse shapes for the possibility of such a behaviour and analyse the expressions

B i 2N(c(0). Y100 | 2 Ib(@)| |
Pr(Y100) = 1— {/(; N(c(1), I/floo)dt-i-m‘l‘ﬁ“rm} (2.10)
T 2
Py (Y100) = { /0 N(c(t), Y100 df + % + |b(T)|} . (2.11)

Here we have simply inserted the explicit values for, || zyr100ll and || p,¥100ll into (2.4)

and (2.5), and understamd(c, ¥100) to be given by the analytical expression (2.8). The
formulae presented in the appendix also allow, in principle, the computatidf(Qfi,,;,,)

for different values ofn,/ and m. However, forl # 0 the sum over the Clebsch—
Gordan coefficients becomes more complicated and due to the presence of the Laguerre
polynomial of degreen in the radial wavefunctionR,; this becomes a rather complex
analytical computation. We will therefore be content with a weaker analytical estimate
here. In fact, we have

4
NZ(c(t), Yu00) < 2(Wnoo, V ()*Wnoo) = el (2.12)

In the appendix of [33] this statement was provendet 1. The general proof for arbitrary
n may be carried out exactly along the same line. Therefore, we obtain the following new
upper and lower bounds:

2 4 1 1 2@ )
Pry(Yruo0) =1 —{ —= _ 2.13
1w (¥n00) {n3/27:+b(1')2—l/n2n3/2+n\/§b(‘t)2—l/n2} (2.13)
2
]2 le(T)] 5n2 +1

Puw(IpnOO) - {mt + n—«/:__% +n 6 |b(T)|} (214)

which are weaker than (2.11) and (2.10), in the sense that
Pry(Yn00) < Pr(¥n00) < P(¥00) < Pu(¥000) < Py (Vn00)- (2.15)

In order for (2.13) to be valid we now have to haker)? > 1/n2. We will now turn to a
detailed analysis of these bounds by looking at different types of pulses. Our main purpose
in the present manuscript for considering states of the #ypg with n £ 0 is to extend our
discussion to pulses with longer duration, see also section 2.3. The reason that longer pulse
durations are accessible for states with highés then dependence in estimate (2.12) and

its effect in (2.14) and (2.13).

2.1. Static field

This is the simplest case, but still instructive to investigate since it already contains the
general feature which we will observe for more complicated pulses. It is also important to
study, because it may be viewed as the background which is present in most experimental
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set-ups, before more complicated pulses can be generated. For a static field of intensity

I = E2 we trivially have
b(t) = Eot c(t) = Eot? (2.16)

E(t) = Ey
Inserting these functions into (2.10) we may easily compute the upper

for0 <r <.

and lower bound. Here the one-dimensional integrals over time, appearing in (2.11) and

(2.10), were carried out numerically. The result is presented in figure 2, which shows that
a bound for higher intensities always corresponds to a higher ionization probability. The
overall qualitative behaviour clearly indicates that for increasing field strength the ionization
probability also increases and tends to one. In particular, curves for different intensities
never cross each other. Surely the shown pulse lengths are too short to be realistic and we

will indicate below how to obtain situations in which conclusive statements may be drawn

concerning longer pulse durations. In the following we will always encounter the same

gualitative behaviour.

I ’ :'

I

I
I

0.4t I

0.8

0.6 -

[
[
[
]
1]
[
[
[
[
1
[
[
"
[
[
]
¢
[
¢,
)
[]
]
]
¢
[
]
¥

|

02t
L
/ /

’
T

Figure 2. Upper (three curves on the left) and lower bourl &nd P,) for the ionization
probability of theyripo-state through a static laser fielh. The dotted curve corresponds to
Eq = 5 au, the broken curve tflp = 10 au and the full curve t&y = 20 au. The time is in

au.

2.2. Linearly polarized monochromatic light (LPML)
Now we have
. 2Ey . 1 Eo .
E(t) = EpSin(wt) b(t) = W sir? (Ea)t) c(t) = E(wt — sin(wt)) (2.17)
for 0 < t < 7. The result of the computation which employs these functions in order to
compute (2.10) and (2.11) is illustrated in figure 3. Once again our bounds indicate that for
increasing field strength the ionization probability also increases. Keeping the field strength
fixed atEqg = 2 au, a comparison between the casedfer 0.4 andw = 4 shows (figure 4),
as expected, the lower bounds for the ionization probability to be decreasing functions of
the frequency. The peak on the left-hand side, which seems to contradict this statement for
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Figure 3. Upper (three curves on the left) and lower bourRl &nd P,) for the ionization

probability of theyrpo-state through a linearly polarized monochromatic laser figld) =
Epsin(wt); o = 1.5 au. The dotted curve corresponds fp = 5 au, the broken curve to

Ep = 10 au and the full curve t&g = 20 au. The time is in au.
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Figure 4. Lower bound ¢,,) for the ionization probability of theyipoo-state through a
linearly polarized monochromatic laser fiell{t) = Egsin(wr), Eg = 2 au. The dotted curve
corresponds ta = 0.4 au and the full curve t@ = 4 au. The time is in au.

that region, is only due to the fact that the expression for the lower bound is not valid for
o = 0.4 in that regime. Clearly, this is not what is meant by stabilization, since for this to
happen we require fixed frequencies and we have to analyse the behaviour for varying field
strengths. The claim [14, 20] is that, in general, very high frequencies are required for this
phenomenon to emerge. Our analysis does not support stabilization for any frequency. As
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Figure 5. Lower bound for the ionizationH,,) probability of theyr»ggo-state through a linearly
polarized monochromatic laser field(r) = Egsin(wt), = 1.5 au Ep = 20 au. The time is
in au.

mentioned above, the shortcoming of the analysis of the boi@giog) and P;(¥100) is

that we only see an effect for times smaller than one atomic unit. Figures 4 and 5 also show
that, by considering® (v,00) for higher values of:, our expressions also allow conclusions

for longer pulse durations. For the reasons mentioned above, in this analysis we employed
the slightly weaker bounds (2.14) and (2.13).

2.3. LPML with a trapezoidal enveloping function

We now turn to the simplest case of a pulse which is adiabatically switched on and off.
This type of pulse is of special interest since many authors claim [8, 14] that stabilization
only occurs in these cases. We consider a pulse of durggiamich has linear turn-on and
turn-off ramps of lengtly’. Then

t/T for 0<r<T

E(t) = Epsin(wt) 1 1 for T<t<(g—T) (2.18)
(to—10)/T for (p—T) <t <1

b(to) = %{sin(wT) — sin(wtg) + sin(w (1o — T))} (2.19)

c(t0) = ETOT(z — 2cogwT) + 2 cogwto) — 2 cosw(tg — T))
W
—oT sin(wT) + wtpSiN(wT) + oT sin(w(tg — T))). (2.20)

The expressions fab(z) andc(z) are rather messy and will not be reported here since we
only analyse the weaker bounds. Notice that now, in contrast to the previous cases, both
b(tp) andc(rp) may become zero for certain pulse durations and ramps. We shall comment
on this situation in section 3. We choose the ramps to be of the form (m + %)Zn/a)

(m being an integer) for the lower arild = (m + %)271/60 for the upper bound. Our lower
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Figure 6. Lower bound @;,,) for the ionization probability of therz4 go-state through a linearly
polarized monochromatic laser field with a trapezoidal and a sine-squared turn-on and turn-off
enveloping function: the upper and lower curve are of the same line type, respectively (full curve,
2-12-3 pulse, broken curved-10—5 pulse and dotted curve! —6-17 pulse),» = 1.5 au.
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Figure 7. Upper bound p;,,) for the ionization probability of the/s4 oo-state through a linearly
polarized monochromatic laser field with a trapezoidal and a sine-squared turn-on and turn-off
enveloping function, upper and lower curve of the same line type, respectively (full curve,
1-6-1 pulse, broken curved—4-3 pulse and dotted curvg—2-3 pulse),» = 1.5 au.

bound does not permit the analysis of half cycles since #@s) = 0. The results are
shown in figures 6 and 7, which both do not show any evidence of stabilization. They
further indicate that a decrease in the slopes of the ramps with fixed pulse duration leads to
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a smaller ionization probability. Once more (we do not present a figure for this, since one
may also see this from the analytical expressions), an increase in the frequency leads to a
decrease in the lower bound of the ionization probability for fixed field strength.

2.4. LPML with a sine-squared enveloping function

Here we consider

E(t) = Eosirt () sin(wr) (2.21)
Ey
b(t) = m(sszz + 20? cogwt) — 897 cogwt)
—w? co(w — 2Q)1) — 202 coN(w — 2Q)1)
—w? cos(® + 2Q)1) + 20Q coN(w + 2Q)1)) (2.22)
Eo

(—8wQ% + 320Q% — 20" sin(wt)

0 = 22w = 292w 1 29)2
+16w2Q2? sin(wt) — 32Q% sin(wt) — v’ sin((2Q2 — w)1)
—403Q sin((2Q — w)1) — 4’2 sSiN((2Q — w)1)
+a* sin(( + 2Q)1) — 40®Q sin((w + 2Q)1) + 4w’ Q? sin((w + 2Q)1))
(2.23)
for 0 < ¢ < t. At first sight it appears that both(r) andc(¢) are singular atv = +2€,
which, of course, is not the case since both functions are bounded as one may easily
derive. With the help of the Schwarz inequality it follows that alwayg)| < Y/?|/1,||
and |c(?)| < %t3/2||1p||. We first investigate the situation in which this pulse is switched
on smoothly but turned off abruptly. Figure 8 shows that the bounds become nontrivial

for times larger than one atomic unit in the same fashion as in the previous cases by
considering P, (¥,00) for higher values ofn. Figure 9 shows that also in this case the

. (\

0.6 r

04 F

0.2

0

0 20 40 60 80
T

Figure 8. Lower bound ¢,,) for the ionization probability of theyspoo-state through a
linearly polarized monochromatic laser field with a sine-squared enveloping fun&{ion=
Eqsin(wt) sin(Qr)2, w = 0.2 au = 0.01 au Eg = 20 au. The time is in au.
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Figure 9. Lower bound @) for the ionization probability of theysgoostate through a

linearly polarized monochromatic laser field with a sine-squared enveloping fun&{ion=
Eg sin(wt) sin(Q1)2, @ = 0.2 au = 0.01 au. The dotted curve correspondsBg= 5 au, the
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Figure 10. Lower bound ¢,,) for the ionization probability of they,go-state through a
linearly polarized monochromatic laser field with a sine-squared enveloping fun&{ion=

Eosin(wt) sin(Q1)2, w = 0.8 au = /135 au. The dotted curve correspondsite- 40, the

broken curve to: = 35 and the full curve ta = 30.

ionization probability tends to one and no sign of stabilization is found. Figure 10 shows
the lower bound in which the pulse length is taken to be a half cycle of the enveloping

function.

Once more it indicates increasing ionization probability with increasing field
strength and also for increasing values for Now following Geltman [10] and St al
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[14] we employ the sine-square only for the turn-on and off and include a plateau region
into the pulse shape. Then
siré(rt/2T) for 0<t<T
E(t) = Epsin(wr) { 1 for T <t<(rp—T) (2.24)
Sirt(r (1o — 1) /2T) for (0—T)<t<1
Eon2(1+ coSwT) — cogw (T — 19)) — cOwTp))

b(tg) = 2.25
(7o) 2wm? — 2w3T? ( )
Eom22w?
c(tg) = &(wnzm — w3Tzro — T coqwT) + o373 coqwT)
(2 — a)2T2)2

+wr’tocoSwT) — 0°T?t9coswT) — wr’T codw (T — 10))

+w3T3cosw(T — 10)) + 72 sin(wT) — 3w?T? sin(wT)

+72 sin(w(T — 10)) — 3?T? sin(w(T — 1)) — 72 SiN(wTp)

+30°T? sin(w1)). (2.26)

(Also in these cases the apparent poles(iry) andc(to) for w = +7/T are accompanied

by zeros.) The results of these computations are shown in figures 6 and 7, once more with
no evidence for bound-state stabilization. A comparison with the linear switch on and off
shows that the ionization probability for sine-squared turn-on and offs is lower. The effect
is larger for longer ramps.

3. Conclusions

We have investigated the ionization probability for the hydrogen atom when exposed to
ultra-intense short-pulsed laser radiation of various types of pulse shapes. In comparison
with [33], we extended our analysis to the situation which is applicable to any bound-state
Yum @nd, in particular, for thejigo-State we carried out the computation until the end for
the stronger upper (2.4) and lower (2.5) bounds. We overcome the shortcoming of [33]
which did not allow definite statements for pulses of durations longer than one atomic
unit by investigating the bounds for higher valuesnof A direct comparison between
existing numerical computations for smallin particularr = 1, and reasonably long pulse
durations, is at present not feasible. As our computations show (see also [39]) there is, of
course, a quantitatively different behaviour for different values.oflowever, qualitatively

we obtain the same behaviour (refer to figure 10) and therefore we do not consider this
to be of any physical significance. Furthermore, from arguments in [42] it follows that
precisely the higher Rydberg states are more likely to show any stabilization. Also in [39]
it was observed that the ionization probability decreases with increasing principal quantum
number for certain pulse shapes. It would be very interesting to carry our analysis further
and also investigate the effect resulting from varyingnd m, in order to compare with

[39, 40]. In principle our equations already allow such an analysis, but due to the sum
in (A.7) the explicit expressions will be rather messy and we will therefore omit them
here.

For the situation when the total classical momentum trarigfer and the total classical
displacement(z) are non-vanishing, we confirm once more the results of [33] and do not
find any evidence for bound-state stabilization for ultra-short pulses. This holds for various
types of pulses, whether they are switched on (and off), smoothly or not. We therefore
agree with Geltman in the conclusion that smooth pulses, in general, will only prolong the
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onset of ionization but will not provide a mechanism for stabilization.

There is however a particular way of switching on and off, such #aj = 0, but
c(t) # 0. These types of pulses are used for instance in [8, 14]. Unfortunately, our bounds
do not permit us to make any definite statement about this case, since the lower bound
is not applicable (in the sense that then the necessary concgﬁ?)q't) > —F for the
validity of the lower bound is not fulfilled) and the upper bound gives for typical values of
the frequency and field strength ionization probabilities larger than one. So, in principle,
for these types of pulses the possibility of bound-state stabilization remains. It would be
very interesting to find alternative expressions for the upper and lower bounds which allow
conclusions for this case.

For the casé(tr) = ¢(r) = 0 the upper bound®, remains an increasing function of
the field strength due to the properties of the Hilbert space norm of the difference of the
potential in the Kramers—Henneberger frame and in the laboratory frame applied to the state
V100. The weaker upper bound takes on the valg(y,00) = 4t2/n3, which at first sight
seems counterintuitive, since it implies that the upper bound decreases with increasing
i.e. for states close to the ionization threshold, and fixe€lassically this may, however,
be understood easily. For closed Kepler orbits, i.e. ellipses, with energies sufficiently close
to zero (depending om), for any pulse with smalb(t) andc(t), these quantities will be
very close to the actual changes, caused by the pulse, of the momentum and the coordinate,
respectively. So in this case ionization, i.e. the transition to a hyperbolic or parabolic orbit
will therefore be very unlikely. Also in the investigations in [42] stabilization is found for
this case. A detailed analysis [43] allowing for all possible values(oj andc(r) using
entirely different methods confirms the results of the present manuscript and our previous
investigations [33, 42].
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Appendix

In this appendix we will provide the explicit calculation of the term
N2y, ¥) = (¥, V@) + (¥, V@ —9*¥) = 2y, V(e — ) V@)¥). (A1)

For y = ¥, the first term is well known to be equal tg/[L3(7 + )] [34]. We did not
find a computation for the matrix element involving the Coulomb potential in the Kramers—
Henneberger frame in the literature and will therefore present it here. Starting with the
familiar expansion of the shifted Coulomb potential in terms of spherical harmonics

1 N 4
=z — 1y :;<F)V 21 2

wherer. = min(|x|, |y|) andr. = max(|x|, |y|), we obtain

> 4
Wiz =yl Yl ) = Y [ @1, VioVin o
2 2+ 1
vl I+1 o v
><< / dr<L> R% + / dr(@) R,f,) (A.3)
0 |yl lyl r
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which by the well known formula from angular momentum theory

2+D2+ 1)
/ dQ Yltn Y[lml lemz = \/ 47_[(21 T 1) (lllg; 00|10) (1112; m1m2|lm) (A4)

leads to

00 lyl r I'+1 |y|
Z(ll/;OO|lO)(ll/;m0|lm)</ dr(—) R,,, +/ ( ) RZ) (A.5)
= 0 |y vl r

for (A.3). Here(l1lo; mimy|lm) denote the Wigner or Clebsch—Gordan coefficients in the
usual conventions (see e.g. [41]).
We shall now consider the term

<\Ijnlm’|w - yl_z}‘pnlm>~ (A6)
Employing (A.2) and the formula

2 +D2r+ 1)
4

k4] k+l’ A
- — | = (kI'; 00/{0)2Y; A7
—— 2 .kZ,. BTy 71 o (A7)

Once again applying (A.4) shows that (A.6) equals

- . _ Iyl F O\ HE2 © V'
> (Il'; 00)I0)?(11; Om|Im)(l; 0OC; 10)(/ dr(—) R3,+/ dr(—> R3,>.
0 [y ly| r

Ly

(A.8)
For s-states, i.e. = 0, we may carry out the sums over the Clebsch—Gordan coefficients
easily. In (A.5) the only contribution comes froth= 0 and we trivially obtain

lyl 00
(Wnoo| [z — y| ™ | Whoo) = | dr mRno + [ drR%,. (A.9)
0 lyl

In (A.8) the sum overl contributes only for/ = 0 and together with(il’; 00[00)? =
8,/ (2 4+ 1) it leads to

00 ly| r 2142 5 0 |y| 2 )
(Waoo|lz — yI7?|Woo) = Z </ dr <—> Ry +/ dr <—> Rnl)'
A [yl lyl r

1 ’ / !
Yiumy Yigm, = > G 5 Yo Ualz: mamzll'm') (alz; 000

yields

(A.10)
We turn to the case = 1 (with W00 = (2/+/47 )e"1*!) for which (A.5) becomes
1—_ g2yl
(W100| [ — Y| M| Wi00) = Tl (A.11)

As a consistency check one may consider the asymptotic behayigurs oo and|y| — O,
which give, as expected, 0 and 2, respectively. Using the series expansion for the logarithm,
equation (A.10) fom = 1 becomes

2 [yl oS
(W100]lz — Y| 72| W100) = o (/ dr In (:y:i>re—2r n & In (r + :y:>re‘2’),
yi=r 1yl r—ly

(A.12)
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Then using the integrals

/ dr In(L+ r)yre 2" = (1F 20)et>" Ei(F2c(1 £ 1))

g
—e %" (L+ (1+2cr) In(1 £ 1)) (A.13)
f dr In(1£r)re " = %((1 F 20)€" %" Ei(2c(F1 - 1))
—Ei(=2cr) — (14 2cr)e®" In(1£77Y) (A.14)
we obtain
(Waoo|l@ — y/217%|Waoo) = (1 — lyI~)e W Ei(lyD) + (1 — |yl ") Ei(—ly)).  (A.15)

As a consistency check we may again consider the asymptotic behaviour, thatis0
and |y| — oo, which gives correctly 2 and 0, respectively. Assembling now (A.1), (A.11)
and (A.15) gives as claimed (2.8). In the same fashion one may also comgyte/,;,,)

for arbitraryn, [ andm.
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