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1. INTRODUCTION

The main features of the generation of high-order
harmonics of a strong laser field (

 

I

 

 ~ 10

 

14

 

 W/cm

 

2

 

) in
gases composed of atoms or small molecules are the
frequency region of harmonics of comparable intensi-
ties known as “the plateau,” followed by a drop in the
harmonic yield known as “the cutoff.” Other features
which are present in high-order harmonic generation
(HHG) are the times at which the main contributions to
this phenomenon take place and a phase difference
between the fundamental and the harmonic field, which
depends on the driving-field intensity. All these features
are very well explained by the so-called “three-step
model.” In this model, high-order harmonic generation
is a consequence of a three-step process, in which an
electron leaves an atom at the instant 

 

t

 

0

 

, propagates in
the continuum, gaining kinetic energy from the field,
and recombines with the ground state of its parent ion
at a later time 

 

t

 

1

 

, releasing this kinetic energy in the
form of high harmonics [1].

There is however another model that was exten-
sively used for describing HHG until the early 1990s,
namely, a driven two-level atom [2]. In this model,
HHG is not a result of the interplay between the contin-
uum and the ground state, but only bound states are
involved in the process. This physical picture has been
abandoned for a very simple reason: in comparison
with existing experiments, the three-step model has
proven to be far superior, thus establishing itself as the
paradigm for the theoretical description of this phe-
nomenon.

This is true for gaseous samples, which, until very
recently, were believed to be the only systems for
which HHG is feasible, due to the high intensities

involved. However, nowadays, with the advent of
ultrashort pulses, there exist solid-state materials which
can survive the necessary intensity regime [3]. Further-
more, alternative systems, such as thin crystals [4], car-
bon nanotubes [5], or larger molecules [6], have
attracted considerable attention as possible high-order
harmonic sources. For such materials, it is not clear
whether the three-step model in its present form, in
which bound-to-continuum transitions play a major
role, is applicable. Thus, transitions involving solely
bound states, and consequently a two-level atom, have
again become of interest. Indeed, such a system is the
simplest case in which population transfers between
bound states occur and therefore can be taken as a start-
ing point towards a description of HHG in more com-
plex systems.

Of the countless studies of HHG from a two-level
atom, relatively few were directly concerned with the
physical mechanisms involved [7–10]. In those papers,
HHG is related to abrupt population transfers between
the time-dependent states, which approximately follow
the field and are obtained from the diagonalization of
the two-level Hamiltonian. However, in [7–9], this
physical mechanism was only investigated to a limited
extent.

More specifically, in [7], the emphasis lies on the
existence of the plateau and how this feature depends
on the adiabatic-state physical picture. It is suggested
that the energy of the adiabatic states is converted into
high-order harmonics, and the times for which high
harmonics are generated are derived. However, the
physical mechanism responsible for the population
transfer to the adiabatic excited state is not discussed.

 

STRONG FIELD
PHENOMENA

 

High-Order Harmonic Generation in a Driven Two Level Atom: 
An Analogy with the Three-Step Model

 

C. Figueira de Morisson Faria

 

1

 

 and I. Rotter

 

2

 

1

 

 Max Born Institut für nichtlineare Optik und Kurzzeitspektroskopie, Max Born Str. 2A, 12489 Berlin, Germany

 

e-mail: faria@mbi-berlin.de

 

2

 

 Max Planck Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, D-01187 Dresden, Germany

 

e-mail: rotter@mpipks-dresden.mpg.de
Received October 9, 2002

 

Abstract

 

—We provide a summarizing account of several features which relate high-order harmonic generation
in a driven two-level atom to the well-known physical picture of an electron recombining with its parent ion.
The similarities observed in both models can be traced back to common physical mechanisms, namely, three-
step processes, which either involve the ground state and the continuum or the adiabatic states which follow
from the diagonalization of the two-level Hamiltonian. Furthermore, using scaling laws, one may extend the
parameter range to a physical situation for which the two-level atom picture can be applicable, as for instance
solid-state systems in strong fields.



 

986

 

LASER PHYSICS

 

      

 

Vol. 13

 

      

 

No. 7

 

      

 

2003

 

FIGUEIRA DE MORISSON FARIA, ROTTER

 

In [8], on the other hand, the population transfer
from the ground adiabatic state to the excited adiabatic
state is related to the existence of periodic level cross-
ings, which occur in the presence of a laser field.
Therein, it is also shown that well-separated crossings
are a necessary requirement for a wide plateau. How-
ever, in [8], the times which give the main contributions
to HHG remain an open problem.

Several features observed in these references, as for
instance the time scales involved in the process [8] or
the expressions describing population transfers
between the adiabatic states [7, 9], hint at the existence
of a one-to-one correspondence between the two-level
atom and the three-step model. In fact, in [8, 9], such a
correspondence is proposed. However, no evidence for
its existence is provided.

In [10], investigating the time profile of HHG from
a two-level atom, we extended the level-crossing pic-
ture and gave solid evidence for this one-to-one corre-
spondence by analyzing its range of validity, as well as
the similarities and differences between both models.
Furthermore, we have shown that, knowing the three-
step mechanism which occurs in the two-level atom
case, the spectra can be manipulated with additional
fields and, by means of scaling laws, have established
sharp criteria for the invariance of the physical quanti-
ties involved. These criteria, apart from shedding addi-
tional light on the physics of the problem, permit
extending the obtained results to a broader parameter
range.

In the present paper, we provide selected results of
[10] with a stronger emphasis on the one-to-one corre-
spondence between the three-step model and the two-
level atom. Furthermore, we include new aspects con-
cerning the relative phase of particular harmonics as a
function of the external field strength. The paper is out-
lined as follows. In Section 2, we recall the two-level
atom features which are necessary for the subsequent
discussion. The following sections are devoted to the
main properties of high-harmonic generation in such a
system, such as its time profile (Section 3), the above-
mentioned phase (Section 4), and the scaling behavior
(Section 5). Finally, in Section 6, we close the paper
with some concluding remarks.

2. TWO-LEVEL ATOM

The time-dependent wave function of a two-level
atom is given by

(1)

where 

 

C

 

n

 

(

 

t

 

) = 

 

〈φ

 

n

 

|ψ

 

(

 

t

 

)

 

〉

 

 denotes the overlap of the total
wave function with the 

 

n

 

th state of an arbitrary basis.
The evolution of the system is given by the time-depen-
dent Schrödinger equation [11]:

ψ t( )| 〉 C0 t( ) φ0| 〉 C1 t( ) φ1| 〉 ,+=

 

(2)

where 

 

H

 

 is the Hamiltonian matrix, which, in the spe-
cific problem addressed in this paper, describes an atom
in an external laser field. We use atomic units through-
out. Depending on the problem at hand, different sets of
basis states 

 

|φ

 

n

 

〉

 

 may be required.

For the low-intensity laser field regime, the most
adequate basis are the field-free states, also known as
the “diabatic basis.” In this case, the Hamiltonian is
given by

(3)

where 

 

ω

 

10

 

 is the transition frequency between the field-
free bound states, 

 

E

 

(

 

t

 

) = 

 

E

 

0

 

f

 

(

 

t

 

) is the external field, and

 

x

 

10

 

 the dipole matrix element , where 
denotes the field-free, “diabatic” basis states.

For strong laser fields, however, such states are too
strongly mixed and therefore inadequate. A more
appropriate basis would be the so-called “adiabatic
states,” which follow from the diagonalization of 

 

H

 

.
This basis is obtained through the unitary transforma-
tion

(4)

with 

 

χ

 

 = –1/2 (

 

t

 

)/

 

ω

 

10

 

). This gives

(5)

where the field-dressed energies are

(6)

The adiabatic states are given by

(7)

(8)

whose energies are, respectively,  and . In this
basis, according to Eq. (6), crossings are avoided when

 

E

 

(

 

t

 

0

 

) = 0 and, outside this region, the energies “follow”
the field. If the field is strong enough, the avoided cross-
ings are well-separated and, to first approximation, one
may assume that they take place instantaneously at 

 

t

 

0

 

.

i
d
dt
-----

C0 t( )
C1 t( ) 

 
 

H
C0 t( )
C1 t( ) 

 
 

,=

H
D ω10/2– x10E t( )

x10E t( ) ω10/2 
 
 

,=

φ0
D〈 | x̂ φ1

D| 〉 φn
D| 〉

UD A→
χcos χsin

χsin– χcos 
 
 

,=

(2x10Earctan

H
A

UD A→ HUD A→
T ε–

A
0

0 ε+
A

 
 
 
 

,= =

ε±
A 1

2
--- ω10

2
2x10E t( )( )2

+ .±=

φ0
A

t( )| 〉 χ φ0
D| 〉cos χ φ1

D| 〉 ,sin+=

φ1
A

t( )| 〉 χ φ0
D| 〉sin– χ φ1

D| 〉 ,cos+=

ε–
A ε+

A
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At such crossings, abrupt population transfers from

| (t)〉  to | (t)〉  and vice versa occur. Such population
transfers are related to high-order harmonic generation.

In order to compute the harmonic spectra, one needs
the Fourier transform of the time-dependent dipole.
This quantity is given, in its length and acceleration
form, by

(9)

and

(10)

with g(t) = (t) (t) + (t) (t) and h(t) =

| (t)|2 – | (t)|2, where (t) = 〈 (t)|ψ(t)〉  denotes
the projection of the wave function |ψ(t)〉  onto an adia-
batic state. The above-stated equations are the superpo-
sition of two distinct terms, namely, the crossed terms
and the population difference between the adiabatic states.
The population difference h(t) roughly follows the field,
contributing mainly to the generation of low harmonics,
whereas g(t) yields the high-order harmonics.

In the results that follow, we use the dipole in its
acceleration form and consider a monochromatic field

(11)

Unless stated otherwise, the field is turned on immedi-
ately.

3. TIME PROFILE

Within the three-step model framework, there exist
specific times for which the main contributions to HHG
within a field cycle take place. They are given by the
times t1 at which the electron returns to the ground state
of its parent ion. If there is a one-to-one correspon-
dence between this model and the two-level atom, one
expects a similar time profile for HHG in the latter case.

In order to extract these times from the time-depen-
dent dipole acceleration (t), we perform a Fourier
transform of this quantity with a temporally restricted
window function of Gaussian shape (the Gabor trans-
form) given by

(12)

where t, Ω , and σ denote the time and harmonic fre-
quency at which the window function is centered and
its temporal width, respectively. By taking σ  ∞,

φ0
A φ1

A

x x10 g t( ) 2χcos h t( ) 2χsin+[ ]=

ẋ̇ ω10
2

x– 2ω10x10
2

E t( )+=

× h t( ) 2χcos g t( ) 2χsin–[ ] ,

C0
*A

C1
A

C1
*A

C0
A

C0
A

C1
A

Cn
A φn

A

E t( ) E0 ωt( ).sin=

ẋ̇

� t Ω σ, ,( )

=  t ' ẋ̇ t '( ) t t '–( )2
/σ2

–[ ] iΩt '[ ] ,expexpd

∞–

+∞

∫

one recovers the usual Fourier transform �(Ω), which
does not contain any temporal information. For a tem-
poral width smaller than the period T = 2π/ω of the
driving field, the peaks in the time-resolved spectra
|�(t, Ω , σ)|2 yield the recombination times t1. The tem-
poral width σ corresponds to a frequency bandwidth
σΩ = 2/σ.

Within the three-step model framework, the Gabor
transform has proven to be very useful to draw a phys-
ical picture of HHG [12, 13]. In the following, this
method will be applied to the two-level atom. We
choose the field and atomic parameters in such a way
that the avoided crossings are well separated. For a
monochromatic field, such crossings occur at the times
t0 = nπ/ω for which the field is vanishing.

The time profile of such harmonics is displayed in
Fig. 1. In this figure, the center of the window function
is displaced from the cutoff to the plateau harmonics
with decreasing harmonic energy. When the window
function is centered at the cutoff harmonic, there exists
a single peak at the times for which the field is maxi-
mal. As the center of the window function is moved into
the plateau region, this peak splits into two. The lower
the harmonic order is, the farther apart such peaks are.
This pattern can be interpreted as following: at the
times the level crossings occur, i.e., at t0 = nT/2, there is

population transfer from the adiabatic state | (t)〉  to

| (t)〉 , where the system remains until a further time
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Fig. 1. Gabor spectra of the dipole acceleration (Eq. (10)) as
a function of time for field strength E0 = 1 a.u., field fre-
quency ω = 0.05 a.u., transition frequency ω10 = 0.409 a.u.,
and dipole matrix element x10 = 1.066 a.u. These parame-
ters give γ1 = 0.0235 and γ2 = 0.192. The cutoff harmonic
lies at Ωmax = 2εmax = 43ω. The time width of the window
function was chosen to be σ = 0.1T, and its center was chosen
at the cutoff harmonics, as well as at harmonic energies which
roughly correspond to Ω = 0.8Ωmax, Ω = 0.6Ωmax, and Ω =
0.4Ωmax. All time-resolved spectra have been normalized. The
times are given in units of the field cycle T = 2π/ω. 
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t1. At this time, the system decays back to | (t)〉 , emit-

ting a harmonic of frequency Ω = Nω =  – .

The times t1 are explicitly given by

(13)

with γ1 = ω/(2x10E0) and γ2 = ω10/(2x10E0). The maximal
harmonic energy (i.e., the cutoff harmonic) is obtained

for the times for which the energy difference  – 
is maximal. This occurs at the times for which E(t) is
maximal, i.e., at t1M = (2n + 1)π/2ω. With decreasing
harmonic energy, according to Eq. (13), there exist two
possible times for which this population transfer
occurs, a shorter and a longer one. If the harmonic ener-
gies are close to the transition frequency ω10, the times
t1, as expected, are close to the level-crossing times t0.
This process repeats itself every half a period of the
laser field. These results are in agreement with those
obtained in [7] by using the saddle-point method.

A similar time profile occurs in the three-step model
framework. For the cutoff harmonic, there is a single
set of return times which corresponds to the maximal
kinetic energy of the electron upon return. This set of
times splits into two in the plateau region, the peaks
getting further apart as the harmonic energy decreases
[12]. This is a clear sign that a one-to-one correspon-
dence between both models exists.

φ0
A

ε+
A ε–

A

ωt1 Nγ1( )2 γ2( )2
–±[ ] ,arcsin=

ε+
A ε–

A

Indeed, the time profile observed in Fig. 1, in com-
parison with the results discussed in the literature [12],
hints at similar physical mechanisms in both models,
namely, three-step processes. Specifically, for the two-
level atom case, the first step is the population transfer

from | (t)〉  to | (t)〉  at the level-crossing times, the
second step is the system following the field adiabati-

cally in | (t)〉  and gaining energy from it, and the third

step is the system decaying back to | (t)〉 , with conse-
quent high-order harmonic generation. A schematic
representation of this process is shown in Fig. 2.

There exist however differences between the two
models. For the two-level atom, the peaks in the Gabor
spectra, for the cutoff harmonics, occur at the times for
which the field is maximum. As the harmonic fre-
quency decreases, the time profile gives sets of peaks
around these times. In contrast to this case, for the
three-step model, the cutoff return time t1M is close to
the times for which the field is minimum [13]. The
splitting of the peaks in the time-resolved spectra
occurs around these times.

A further difference is the cutoff law, which, in the
three-step model, is proportional to the field intensity
and not to its strength. This is due to the fact that, in this
case, the essential quantity, which is converted into
high-harmonic radiation, is the electron kinetic energy
upon return, proportional to the intensity of the external
field [1]. In the two-level atom, however, the quantity of

interest is the energy difference  –  between the
adiabatic states, proportional to the field strength.

4. HIGH-ORDER HARMONIC PHASE

It is a well-known fact that high-order harmonics
generated in atoms are not in phase with the driving
field. This phase difference has been extensively inves-
tigated and turned out to be very important for describ-
ing the propagation of such harmonics in a macro-
scopic medium, e.g., a gaseous sample [14–16]. Within
the three-step model physical picture, such a difference
is directly related to the fact that there is a time delay
between the instant the electron tunnels out and the
instant it recombines and to the existence of specific
tunneling and recombination times. Since, for a two-
level atom, there is a difference between the level-
crossing time t0 and the high-order harmonic genera-
tion time t1, one also expects a phase shift between the
fundamental and the high harmonics.

The time-dependent dipole, which gives the
response of an atom to an intense laser field, is periodic
and thus can be expanded in a Fourier series:

(14)

φ0
A φ1

A

φ1
A

φ0
A

ε+
A ε–

A

d t( ) dnω nωt θn I( )+( ),sin∑=
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Fig. 2. Schematic representation of high-harmonic genera-
tion in a two-level atom. The population transfers at the
level crossings occur at the times t0, and the main contribu-
tions to HHG occur at the times t1. The times t1M , t11, and
t12 correspond to the generation of the cutoff and plateau
harmonics, respectively. The main physical processes are
indicated by arrows in the figure, and the corresponding
energies can be read in the vertical axis. The times are given
in units of the field cycle, and the energies, in units of the
cutoff energy.
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where θn is the intensity-dependent phase. Using the
orthogonality relations of the Fourier series, this phase
can be written as

(15)

where d(Ω = nω) is the Fourier transform of the dipole
moment at the nth harmonic.

We will now discuss the phase θn as a function of the
intensity and the field strength, establishing a parallel to
the three-step model. In the framework of the three-step
model, this phase is roughly proportional to the inten-
sity multiplied by the excursion time of the electron in
the continuum [15]. In the two-level atom case, as a
major difference from the three-step model, one
expects the phase to be proportional to the field strength
instead of the intensity.

This can be understood as follows. The part of the
wave function related to the population, which, at t0, is

transferred from | (t0)〉  to | (t0)〉  and which is

responsible for HHG, is proportional to | (t)〉 . This
wave function will be denoted |ψh(t)〉 . In the time inter-
val τ = t1 – t0 from the level-crossing time t0 to the pop-
ulation-transfer time t1, the time evolution of |ψh(t)〉  is
given by

(16)

Thus, the system “picked up” the phase

(17)

with t1 such that the harmonic frequency Ω is given by

the condition Ω = nω =  –  (Eq. (13)). More
detailed studies of this dependence, as well as of the
limitations of this picture, are in progress [18].

5. SCALING LAWS

The populations of the adiabatic states, and conse-
quently the dipole acceleration, exhibit global struc-
tures, in addition to the pattern which is periodic in half
a cycle of the driving field and which initiates the high
harmonics [19]. Such patterns repeat themselves over a
large number of periods and strongly influence the sub-
structure of the spectra. Furthermore, they are
extremely sensitive towards small changes in the field
or atomic parameters. For this reason, it is of interest to
find which combinations of E0, ω, ω10, and x10 yield

θn I( )
=  Im d Ω = nω( )[ ] /Re d Ω = nω( )[ ][ ] ,arctan

φ0
A φ1

A

φ1
A

ψh t1( )| 〉 i H t( ) td

t0

t1

∫ φ1
A

t( )| 〉 .exp∼

θn i ω10
2

2x10E t( )( )2
t,d+

t0

t1

∫∼

ε+
A ε–

A

similar spectra, i.e., with the same number of harmon-
ics and the same substructure.

The answer to this question not only sheds consid-
erable light on the physics of the system but, in addi-
tion, allows us to extend our results to a more realistic
parameter range. Indeed, for HHG in atoms, the two-
level atom is more of academic interest, since it is not
experimentally feasible. This is due to the fact that, in
order to obtain well-separated crossings, it would be
necessary to consider frequencies and intensities for
which an atom would immediately ionize. This may not
be so for solid-state systems, as for instance quantum
wells subject to external fields [9, 20].

In Eq. (13), which relates the harmonic energy to the
energy difference of the adiabatic states, the field and
atomic parameters always appear combined as γ1 =
ω/(2x10E0) or γ2 = ω10/(2x10E0). Thus, if these parame-
ters remain invariant, the spectra are expected to keep
the same characteristics.

This can be shown in a more systematic way, using
scaling laws which have been derived elsewhere, in the
context of atomic stabilization in strong laser fields
[21]. Such laws are based on the requirement that the
Schrödinger equation remains invariant. Let us con-
sider the scaling transformation

(18)

where λ denotes the dilatation factor and ΩR = 2x10E0 is
the Rabi frequency, which scales like the energies. The
invariance of the Schrödinger equation also requires
that the time scales as t  t ' = λ–1t, such that Eq. (13)
will remain invariant. This also holds for the unitary
transformation (4) which gives the adiabatic states,
since it depends on E0, ω, ω10, and x10 only through γ1

and γ2. Thus, the populations of these states, i.e.,

| (t)|2 = | (t ' )|2, also remain invariant.

Figure 3 illustrates this fact. This figure displays the

populations | (t)|2 of the adiabatic states, as well as

the dipole acceleration, as functions of the time  =
ωt/(2π), given in terms of the field cycle, for two com-
pletely different sets of parameters, which, however,
keep γ1 and γ2 invariant. The first set of parameters is
characteristic of an atom, whereas the second set of
parameters is typical for quantum wells [20].

The populations of the adiabatic states are identical
in both cases, and the shape of the dipole acceleration
is also similar, with, however, a strong intensity drop in
the solid-state case. This is expected, since the dipole
acceleration scales as the dipole moment multiplied by
the square of the energy [cf. Eq. (10)]. The dipole

ω ω' λω; ω10 ω10' λω10;= =

ΩR ΩR' λΩR,=

Cn
A

Cn
A

Cn
A

t̃
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matrix element scales as x10   = λ–1/2x10, such

that (t)  (t ') = λ3/2 (t).

This effect influences the overall harmonic intensi-
ties in the resulting spectra. Nevertheless, the shape of
such spectra, i.e., the number of harmonics, as well as
their substructure, remains identical. This is shown in
Fig. 4, where spectra computed for different sets of

x10'

ẋ̇ ẋ̇ ' ẋ̇

parameters, which, however, keep γ1 and γ2 invariant,
are displayed.

On the other hand, the extreme sensitivity of the har-
monic spectra with respect to these quantities is shown
in Fig. 5. In the figure, slightly different parameters
yield distinct spectra due to the fact that γ1 and γ2 do not
remain invariant.
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Fig. 3. Global structures as functions of time for the populations | (t)|2 (parts (a), (c)) and the dipole acceleration (t) (parts (b),

(d)). In parts (a) and (b), the field frequency, the transition frequency, and the dipole matrix element were chosen as E0 = 0.6 a.u.,
ω = 0.05 a.u., ω10 = 0.409 a.u., and x10 = 1.066 a.u., respectively. These parameters give γ1 = 0.0391, γ2 = 0.3197, and a cutoff

frequency at Ωmax = 27ω. In parts (c) and (d), these parameters were taken as E0 = 6.71 × 10–6 a.u., ω = 2.5 × 10–5 a.u., ω10 = 2.045 ×
10–5 a.u., and x10 = 47.673 a.u., respectively. These parameters are typical for solid-state systems and give the same γ1 and γ2 as in
the previous parts. They are obtained from the previous ones using a scaling transformation with λ = 1/2000. The times are given
in units of the field cycle. The field is switched on linearly within two cycles. 
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6. CONCLUSIONS

In the previous sections, we discussed some of the
features analyzed in [10] in a more compact way for
high-order harmonic generation in a two-level atom in
a strong laser field. These features are the time profile
of the high-order harmonics and the scaling properties
of the physical quantities involved. Additionally, we
address the phase difference between the high-order
harmonics and the incident laser field. We concentrate
on the similarities between the two-level atom and the
three-step model, which has established itself as the
paradigm for describing high-order harmonic genera-
tion in atoms.

Such similarities are clear evidence against the com-
mon belief that the three-step model and the two-level
atom are completely different physical pictures.
Indeed, in both cases, high-order harmonic generation

takes place as the result of a three-step process. The
main difference between both models is in the relevant
states. In the three-step model, they are the ground state
and the continuum. In the two-level atom, they are the
adiabatic states, obtained by diagonalizing the corre-
sponding Hamiltonian.

In the three-step model case, an atom is ionized at
the instant t0 (the “first step”); propagates in the contin-
uum, being accelerated by the field (the “second step”);
and, subsequently, recombines with the ground state at
a time t1 (the “third step”), when the kinetic energy
acquired in the continuum is converted into high-order
harmonic radiation.

Within the two-level atom physical picture, an atom

is initially in the ground adiabatic state | (t)〉 . At the
avoided crossing time t0, there is population transfer
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Fig. 4. Harmonic spectrum for the same parameters as in parts (a) and (b) of the previous figure (dilatation factor λ = 1) compared
to those obtained for several field strengths E0, field frequencies ω, transition frequencies ω10, and matrix dipole elements x10, cho-
sen such that γ1 = 0.0391 and γ2 = 0.3197 and obtained through scaling transformations (18). Part (a) shows the whole spectra,
whereas part (b) displays both spectra for harmonic order 10 < N < 20, such that their substructure can be seen. The field is switched
on linearly within two cycles. 
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from | (t)〉  to the excited adiabatic state | (t)〉  (the

first step). Subsequently, the system remains in | (t)〉 ,
gaining energy from the field (the second step), and

decays back to | (t)〉  at t1, converting this energy into
harmonics (the third step).

This correspondence manifests itself in several fea-
tures, as for instance in the time profile of HHG. This
profile was obtained, in the two-level atom case, by
applying a windowed Fourier transform in the dipole
acceleration. The time-resolved spectra exhibit peaks at
distinct population-transfer times t1. For both models,
there is a single set of population-transfer times at the
cutoff, which split into two in the plateau energy region.
Such peaks become further apart as the harmonic
energy decreases.

The single set of peaks at the cutoff corresponds, in
the three-step model or in the two-level atom case, to

φ0
A φ1

A

φ1
A

φ0
A

the maximal kinetic energy of the electron upon return
or to the maximal energy difference between the adia-
batic states, respectively. As the harmonic energy
decreases, there are two possible sets of times for the
electron to recombine, either from the continuum to the

ground state [13] or from | (t)〉  to | (t)〉 . These
times are such that, in the former case, the harmonic
energy is equal to the sum of the electron kinetic energy
upon return and the ionization potential of the atom in
question and, in the latter case, to the energy difference
between the adiabatic states. All peaks in the windowed
Fourier transform can be traced back to such population
transfers, in analogy to studies performed within the
three-step model framework.

For a monochromatic field, this pattern is periodic
within half a cycle of the driving field, which is a con-
sequence of the periodicity of the quantities involved,
i.e., either of the kinetic energy of an electron upon
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Fig. 5. Harmonic spectrum for E0 = 0.6 a.u., ω = 0.05 a.u., ω10 = 0.409 a.u., and x10 = 1.066 a.u. compared to that obtained for E0 = 0.62 a.u.,
ω = 0.05 a.u., ω10 = 0.409 a.u., and x10 = 1.066 a.u., respectively. The latter set of parameters gives γ1 = 0.0378 and γ2 = 0.3094,
whereas the former set yields γ1 = 0.0391 and γ2 = 0.3197. Part (a) shows the whole spectra, whereas part (b) displays both spectra
for harmonic order 10 < N < 20, such that their substructure can be seen. The field is switched on linearly within two cycles. 
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return or of the adiabatic energies. For bichromatic
driving fields, this periodicity no longer holds. How-
ever, all peaks obtained in the time-resolved spectra can
be associated with population-transfer times between
adiabatic states. This is further confirmation of the three-
step physical picture in the two-level atom case. Detailed
studies of bichromatic fields were performed in [10].

Also for a two-level atom, analogously to the three-
step model case, there is a phase difference between the
harmonics and the incident driving field. This is due to
the fact that there is a time delay between the first step,
at t0, and the third step, at t1. The main difference
between both cases is that, for a two-level atom, the
phase is proportional to the field strength and not to the
intensity. This is also true for other properties of high-
order harmonics generated by a two-level atom, as for
instance the cutoff law. Studies concerning this phase
are in progress [18].

Another interesting property of HHG by a two-level
atom is the existence of scaling laws, which give sets of
parameters for which certain features, as for instance
the number of harmonics in the spectra or their sub-
structure, remain invariant. Such parameters are deter-
mined by γ1 = ω/(2x10E0) or γ2 = ω10/(2x10E0), i.e., the
ratio between the field and the atomic transition fre-
quency to the Rabi frequency, respectively. In fact, we
have shown that, even for completely different sets of
field and atomic parameters, it is possible to obtain very
similar spectra, as long as such quantities remain
unchanged. On the other hand, even for small changes
in E0, ω, ω10, and x10, if γ1 and γ2 do not remain invari-
ant, the resulting spectra may be quite different.

Such criteria make it possible to extend the studies
performed in this paper to more realistic situations. An
example is a quantum well with ω10 ~ 10–4 a.u. and x10
~ 100 a.u. subject to a field of strength E0 ~ 10–5 a.u. and
frequency ω ~ 10–5 a.u. Under special conditions, the
Hartree–Fock semiconductor Bloch equations, which
describe transitions between two subbands in such sys-
tems, are formally identical to those describing the evo-
lution of a two-level atom [9, 20, 22, 23]. These condi-
tions are low doping intensity, equal effective masses in
both subbands involved, parallel subbands, and not too
wide wells. Thus, such systems may provide a concrete
physical situation for which our results are applicable.
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