Further mathematics for economists
 Exam (Duration: 3 hours)

 Section A

 Section A}

Answer all three questions from this section.

1. (10/100) Compute the area confined by the parabola $f_{1}(x)=x^{2}+2 x+1$ and the line $f_{2}(x)=2+2 x$.
2. (10/100) Compute $\int_{a}^{b} \ln (2 x) d x, 0<a<b$, by parts.
3. $(15 / 100)$ Find the gradient and the Hessian matrix of $f(x, y)=x^{2} e^{2 y} \sin y$.

Section B

Answer either part a) or b) of the following three questions from this section.

1. $(20 / 100)$
(a) Find the specific solution of the differential equation

$$
\frac{d y}{d t}+3 y=2 e^{-t}+3
$$

so that $y(0)=1$.
Hints:

- Take $y_{p}=a e^{-t}+b$ for the particular solution.
- Alternatively to using the particular solution you can also use the integrating factor.
(b) Find the general solution of the differential equation

$$
\frac{d y}{d x}+\frac{1}{x} y=-3 \sqrt{1-x^{2}}
$$

Hints:

- Use the integrating factor.
- You will need to solve $-3 \int x \sqrt{1-x^{2}} d x$ by substitution in the end, with $u=1-x^{2}$.

2. $(15 / 100)$
(a) Show that $z=((1 / \sqrt{2}+i / \sqrt{2}))^{8}+(1 / \sqrt{2}-i / \sqrt{2})^{4}=0$.
(b) Find the roots of $z^{3}=8$ in algebraic form.
(Hint: you can compute one root less if you remember a property of complex roots of real numbers)
3. $(30 / 100)$
(a) Find the general solution of the second-order differential equation

$$
\frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+2 y=6 e^{t}
$$

(b) Find the specific solution of the second-order differential equation

$$
\frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+2 y=0
$$

so that $y(0)=1, d y / d t(t=0)=0$.

