Further mathematics for economists Coursework 2

Deadline: Tuesday, April 04, 2006.

1. (10/100) Are the functions below homogeneous? If so, of which degree? Justify your answer
(a)

$$
f(x, y, z)=\sqrt{\frac{3 x^{2} / z+z \sqrt{x / y}}{x^{3}+3 x y z+y^{2} x}}
$$

(b)

$$
f(x, y, z)=e^{x / y} \ln \left(\frac{2 x^{3}}{x y z}\right)\left(x^{2} y+y z^{2}+x^{2} z^{2}\right)
$$

2. $(30 / 100)$ Find the specific solution of the second-order differential equation

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+5 y=(1-5 x) e^{-2 x}
$$

so that $d y / d x=-3 / 5$ when $x=0$ and $y(0)=4 / 5$. Express your answer in terms of trigonometric functions.
3. $(20 / 100)$ Given the function

$$
f(x, y, z)=\cos \left(x^{2} y\right)\left(x+2 e^{y z}+1\right)
$$

(a) Compute its gradient and its Hessian matrix
(b) Compute the total derivative $d f / d x$, taking $y=2 x$ and $z=x^{3}$.
4. $(20 / 100)$ Given the implicit relations

$$
F_{1}: \quad \alpha \ln (x)+C \beta \ln (y)+\gamma \ln (z)=0
$$

and

$$
F_{2}: \quad x^{\alpha} y^{\beta} z^{\gamma}=5
$$

Turn over...
(a) Find the Jacobian matrix of F_{1}, F_{2} with respect to x, y.
(b) Compute the total derivatives $d x / d z, d y / d z$.
(c) Are there any values of the constant C for which such derivatives do not exist?Justify.
5. (20/100) Identify and classify all critical points $\left(x_{c}, y_{c}, f\left(x_{c}, y_{c}\right)\right)$ of the function

$$
f(x, y)=1-x(x-\alpha)^{2}-y(y+2 \alpha)+2 x y
$$

where $\alpha=$ const and $\alpha \neq 0$. Consider
(a) $\alpha=3$.
(b) $\alpha=-1$.

