Further mathematics for economists

Coursework 1

 Integration/Differential Equations/Complex Numbers ${ }^{1}$1. $(15 / 100)$ Find the specific solution of the differential equation

$$
\frac{d y}{d t}+2 y=(3 t+1) e^{-t}+e^{-2 t}
$$

so that $y=4$ when $t=0$.
Hints:

- The particular solution should be of the form $y_{p}=y_{p 1}+y_{p 2}$.
- Take $y_{p 2}=C t e^{-2 t}$ (this is an exception to the rule we have seen in class).

2. $(20 / 100)$ Find the specific solution of the differential equation

$$
\frac{d y}{d t}-\frac{4 t}{\left(1+t^{2}\right)} y=-2 \frac{1+t^{2}}{t^{3}}
$$

so that $y(1)=4-4 \ln [2]$. Hint: Employ the integrating factor
3. $(30 / 100)$ Find the general solution of the Bernoulli equation

$$
\frac{d y}{d t}+\frac{1}{\left(1-t^{2}\right)} y=\left(1+t^{2}\right) y^{3}
$$

4. $(15 / 100)$ Compute the complex power

$$
\left(\frac{1+i \sqrt{3}}{\sqrt{3}-i}\right)^{30}+\left(\frac{1-i}{\sqrt{2}(1+i)}+1 / \sqrt{2}\right)^{100}
$$

5. (20/100) Compute $\int x e^{-x} \cos x d x$ by parts. Write the final answer in terms of trigonometric functions.
Hint: use the complex forms of $\cos x, \sin x$.
[^0]
[^0]: ${ }^{1}$ Material to the course: http://www.staff.city.ac.uk/c.f.m.faria/furthermaths.html

