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1.(a) - First systematic studies

e Maria Goeppert-Mayer (PhD thesis)
Two-photon absorption, Ann. Der Physik 9, 273 (1931)
(theoretical prediction)

Since this process 1s orders of magnitude
weaker than one-photon absorption, it
could only be observed experimentally 1n
the 1960s, with the advent of lasers.

e Experimental verification

e Second harmonic generation
P. A. Franken, A. E. Hill, C. W. Peters and G. Weinreich, PRL 7, 118 (1961)
W. Kaiser, C. G.B. Garret, PRL 7, 229 (1961)

*6S,, — 9D,, excitation in Cs by a ruby laser
[.D. Abella, PRL 9, 453 (1962)
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1.(b) — How to obtain an intense laser field

“Traditional” methods (Q- switching, mode locking)

Key 1dea: concentrate the pump energy in a very short time duration
» increase in peak power
e 1961- Q switching:

(proposed by Gordon Gould in 1958; independently discovered and demonstrated in
1961/1962 by R.W. Hellwarth and F.J. McClung)

The quality factor of the optical resonator i1n a laser is degraded during
the pumping. The gain can build up to a very large value and does not
exceed the laser-oscillation threshold

When the inversion reaches its peak, Q 1s restored (pulse laser)

* 1965 - Mode locking:
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1.(b) — How to obtain an intense laser field

“Traditional” methods (Q- switching, mode locking)
* 1965 - Mode locking:

In general: the laser modes in a cavity will oscillate independently (the
individual phases of the waves in each mode are not fixed)

Mode locking: each mode operates with a fixed phase between itselt
and the other modes

» Constructive interference

» Intense burst of light
Peak power Focused intensity
Free-running lasers KW 10°W/cm?
Q-switching MW 102W/cm?
Mode-locking GW 10°W/em?

Details: H. Haken, “Laser-light dynamics”, Siegman, “Lasers”, Yariv, “Quantum Electronics”
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1.(b) — How to obtain an intense laser field

Chirped pulse amplification
D. Strickland and G. Mourou, Opt. Comm. 56, 219 (1985)

e Increase in intensities of 3 to 4 orders of magnitude

e Intensities up to the range of 10'¥*W/cm? were reached
(nowadays over 102> W/cm?)

Main problem to achieve such intensities: self focusing
_ 2
n=n,+n,1+n, I*+...

The laser-beam profile varies with
X,Y,Z

» Center and edges have different
refraction indices

»Material behaves as a lense

This leads to distortions in the pulse and destroys the material
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Nonlinear phase retardation (“B integral™)
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A = light wavelength

» Related to the number of waves of nonlinear phase shifts accumulated
when traversing the medium
e Spatial inhomogenities increase exponentially with B

» B has to be kept to a minimum

Solution: Chirped-Pulse Amplification
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Chirped pulse amplification
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Different optical ways for different frequencies due to the diffraction
grating

»“Blue” and “red” components are separated

» Introduces a “chirp” in the pulse (hence the name) as some
frequencies propagate more quickly than others

Important: At the end of the process the spectral distribution AX/ A
of the pulse should remain the same

Ideal pulse: close to the diffraction limit, as short as the initial pulse
and temporally clean

Details:

e Input pulse: I<10'>W/cm? (pre-plasma formation intensity)

e Stretcher: stretching 10000 — 12000
has a frequency dependent phase function 3 (w)
Positively chirped: “red” earlier than “blue”
Negatively chirped: “blue” earlier than “red”
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e Compressor: chirp must be compensated

Ideauy: B stretcher <w> =" B compressor (0))
In reality: residual chirp must be reduced to a minimum

1.(c) — How strong is ‘‘strong”?

Number of photons 1s so large that the field can be treated classically
Comparison with “normal” light sources
e He-Ne laser: Power ~ ImW
* Lasers used in entertainment, etc: Intensity~1W/cm? -1KW/cm?
e Sunny day (sunlight reaching the Earth): Intensity~0.135W/cm?

Typical frequency: w~0.057 a.u. (A ~ 800nm)
Titanium —sapphire
Typical duration: 2.6fs
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Matter in strong laser fields (I >101°W/cm?):
e Starting point: time-dependent Schrodinger equation

0y =T ZEQ) v ()

Atomic Hamiltonian el i el
» Weak fields (I << 1013 W/cm?): laser fields << ator%fc%)glc{llng g’orces

Field can be treated as a perturbation

 Strong fields:
s I~108 W/cm?:
Stark shifts of the atomic bound states ~ photon energies:
First discrepancies from perturbation theory
s I~10"%W/cm?:
laser fields ~ atomic binding forces
Perturbation theory breaks down !

< I~ 10" W/em?: ponderomotive energy (U =1/(4w?)) ~ e rest mass
Relativistic treatment is necessary
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1.(d) — Perspectives: ‘““Attosecond physics”

Intense-field laser physics deals also with ultrafast time scales

Typical cycle of an intense field: ~2.6fs

e Typical time scales of strong-field phenomena: a fraction of a
field cycle (hundreds of atto (10-!%) seconds)

ﬂttosecond processes
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Powerful tools for dynamic measurements and control at atomic/molecular scales

1 attosecond ~ typical atomic dimensions (10-1°m)/speed of light (3 x 103 m/s)
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Fig. 1 in “Attosecond Physics”, F.

Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)
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1.(e) — Useful definitions

a) Ponderomotive energy: average kinetic energy transfer from the
laser field to an electron

0

. where & 3 = temporal average
Am

* Occurs 1n several physical expressions in the context of matter +
intense laser fields
 Can be associated with the A? term occurring in the interaction

Hamiltonian in the velocit
amiltonian in the velocity gauge For weak fields this

_ 2 term 1S neglected
Him(t) = [P — 2AE)] :

L
p° eps Al | 224%(8)

r Fo L
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* Monochromatic fields: I, = eFp E,? : driving-field intensity

|

Arrans w :driving-field frequency

* Relativistic regime: U ~mc?

b) Electron excursion amplitude:

Maximal amplitude with which an electron oscillates 1n a laser field

F = Fy  (atomic units, monochromatic field)

(™

Please note: The above-stated expressions show that not only the
intensity, but also the frequency of the laser field plays an
important role. They delimit different physical regimes.
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b) Multiphoton regime/tunneling regime
Determined by the Keldysh parameter
(L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965))

_ I [, = ionization potential
4 alrh, U, = ponderomotive energy

v < 1 = tunneling regime

0.5¢
0.0 | eAtom 1s mainly a source term

(internal structure is not very

-0.5¢ important)

*The e has enough time to tunnel
L through the potential barrier
s 0 > 10 ey<<1 (very low frequencies): to a

SiEAIS) good approximation the field is taken
Vaglr) = Vir)— 1+ E(2) to be static
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¥ = 1 = multiphoton regime

* The electron reaches the continuum
through a multiphoton transition
i e Multiphoton transitions, and therefore
atom-laser resonances, play a role
e y<<1: the atom 1s being driven too
quickly by the field for tunneling to
occur

Please note: the Keldysh parameter may be defined with respect to
any bound state of the atom 1in question. Normally one considers the
1onization potential as it is related to the outer shell e-s.

c) Atomic units: handy, since we are dealing with the ultra

strong/ultrafast regime
*Length: 1 a.u=0.53 x 10 -1 m (Bohr radius)

*Charge: 1 a.u. = 1.6 x 10-°C (electron charge)
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* Energy: 1 au.=e?r,=27.2eV

o Intensity: 1 a.u. = e,ce?/(2ry?) = 3.51 x 10'°W/cm?
e Mass: 1 a.u. =9.1 x 103! kg (electron mass)

e Frequency: 1 a.u. =4.13 x 1016 -1

e The Planck constant is one 1n atomic units

2- Examples of strong-field phenomena

2.(a) — High-order harmonic generation

The highly nonlinear response of an atom to a strong laser field
103W/ecm?<I<10°W/cm?, emitting harmonics up to almost the
300%™ order XUV

M (high harmonics)
yAVVE

IR
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2.(a) — High-order harmonic generation

Cutoff

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Spectrum measured at the ~ * ™

Max Born Institut, Berlin

Features: plateau + cutoff
Cutoff law at Q.. =1 +3.17 U}
Several features in contradiction with high-order perturbation theory
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“Perturbative” expectations R

HHG yield

BB B N BB b BB b b
| N i e L I I LA

»
>

\ 4

Q
In perturbation theory, the field excites or de-excites one atom but

does not change its structure
Transition probability proportional to IN (N= number of absorbed photons)
» No plateau+ cutoff

First measurements:

University of Illinois, Chicago: A. McPherson et al JOSA B 4, 595 (1987)
Saclay, France: M Ferray et al, J. Phys. B, 21, L31 (1988); X. F. Li et al, PRA 309,
5751 (1988)
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Paradigm: laser-induced recombination

* Classical formulation: P.B. Corkum, PRL 71, 1994 (1993) (1163 citations).

* Quantum mechanical formulation: M. Lewenstein et al, PRA 49, 2117 (1994) (598 citations);
W. Becker et al, PRA 41, 4112 (1994) (130 citations).

Typical time scales:

mtoseconds (10-13s)

* Processes:

undreds Q (10-185)

S,: ionization (tunteling or multiphoton)

S,: propagation
S;: High-order harmonic generation (HHG): recombination of e-
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Predictions:

* Plateau

* Harmonic energy: Q@ = [ + Ey; (¢;,t))
 Cutoff: Maximal E, . (t,,t,)

* Monochromatic fields: @, =1, +3.17U,
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FIG. 2. Comparison of harmonic spectra obtained with
GEX (open squares), GSP (stars), and GBR (black squares)
methods; I, = 13.6, U, = 20, a = 2I,.

From M. Lewenstein et al, PRA 49, 2117 (1994)
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Consequences:

 Cutoff energies can be predicted by classical computations

* For more complex field there may be more than one cutoff, related
to local maxima of E,._(t,.t,).

*Most contributions to high-order harmonic generation within a field
cycle occur at well-defined times, 1.e., when the e comes back:

09

» This is in contrast with the predictions

_ of perturbation theory, for which there are
Harmonic emissior no preferential times for HHG

' > One may use this fact to produce
attosecond pulses.

0.8 |-

o o o
(¢} » ~
T T

Time (optical period)

b
e
\K

e Quantum mechanically, there may be more
than one possible path for the e to return,
which will then interfere.

©
o

o
o

Intensity (10"“W/cm?)

From P. Antoine, A. L‘Huillier, and M. Lewenstein, PRL 77, 1234 (1996)
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¥ Electron return times

B
Short orbit suppressed
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Attosecond pulses are generated by greuping high

harmonics and are very important for metrology
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2.(b) — Above-threshold ionization

The atom absorbs photons in excess, 1.e., more than the necessary

amount for it to 1onize.
High intensities

Low/moderate intensities
l 20,

»
»

\ 10U,

p/2=nw -1

___

Photoelectron energy

* First measurements: CEA Saclay: Agostini et al, PRL 42, 1127 (1979)

 This was the first clear evidence that perturbation theory breaks down:
 Peak intensities do not follow the predictions of perturbation theory
e Low-energy peaks are reduced in magnitude.

eExplanation: the ionization threshold is effectively shifted by the field

Photoelectron spectrum

B B B N B B B N B B B N
LA LA LA

v
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fiectron count (orbebrary units)

I 1 1 i

[=2x102?W/cm?

I I
(ai

1 i

— . [=10"W/cm? =

1] ? L B -] 10

Electron energy @yl

] 1
¥ 1]

From G. Petite, P. Agostini and H. G. Muller,
J. Phys. B 21,4097 (1988)
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ATI Plateau

First measurements: G.G. Paulus, Phys. Rev. Lett. 72, 2851 (1994) (150 citations)

We present photoelectron energy spectra for the rare gas atoms in strong 40 fs, 630 nm laser pulses.
A ncw property in the above threshold ionization distribution is described, namely, a plateau. Numerical
calculations using one- and three-dimensional models suggest that at least in part this is a one-electron
effect. All rare gas atoms investigated show similar behavior, indicating that the plateau in above
threshold ionization is a universal phenomenon. We discuss a simple mechanism possibly responsible for

the plateau.
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FIG. 1. ATI spectra of all rare gases. The intensity was
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Explanation: three-step model

* Classical formulation: G. G. Paulus et al, Phys Rev A 52, 4043 (1995)
e Quantum mechanical formulation: See, e.g., A. Lohr et al, Phys Rev A 55, R4003 (1997); W.
Becker et al, Phys Rev A 56, 645 (1997)

e-

S,: ionization (tunneling or multiphoton)
S,: propagation (if it reaches the detector: direct ATI)

S;: elastic collision (rescattered ATI)
Cutoff: Maximal kinetic energy
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Recent applications: ultrafast imaging of molecules
M. Lein, N. Hay, R. Velotta, J.P. Marangos and .
P.L. Knight, PRL 88, 183902 (2002); Analogy: double-slit experiment
PRA 66, 023805 (2002) Co
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Quantum Interference
Simplest case: diatomic molecules

O

C, C,

o—0 O O —

2

Apart from that: shape of the molecular wavefunctions also
influence the spectra
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 Electron-electron correlation effects are huge
(Review: C.F.M.F. and X. Liu, in press; a link will be put from the course website)
e First evidence: A. I’Huillier, et al, . Phys. Rev. A 27, 2503-2512 (1983):
Multiphoton ionization of Xenon atoms
e ,,The knee*: Double ionization yield deviated in orders of magnitude from the
predictions of sequential models, in which one electron is ripped after each other.
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From Walker, B.; Sheehy, B.; DiMauro, et al PRL 73, 1227-1230 (1994); Larochelle, S.;
Talebpour, A.; Chin, S. L., J. Phys. B 31, 1201-1214 (1998).
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[on momentum distributions: possible with the advent of the
COLTRIMS (COLd Target Recoil Ion Momentum spectrometer)
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First measurements: double ionization of helium (Frankfurt: Weber, Th.;et al Phys. Rev.
Lett. 2000, 84, 443-446.) and neon (Heidelberg/Berlin: Moshammer, R.; et al, Phys.
Rev. Lett. 2000, 84, 447-450.).
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Electron-momentum distributions

 Freiburg/Berlin group: PRL 84(4), 447 (2000), PRL 87(4), 043003(2001)
 Frankfurt/Marburg group: PRL 84 (4), 443 (2000); Nature 404, 608 (2000)

System: Neon

Field: Linearly polarized light

Pai

e Frequency: w = 0.057 a.u.
e Intensity: I = 10'#- 1015W/cm?

P

Doubly-humped differential e momentum distributions:

Maxi tp,=+2[U_ ]2, , ,
Can only be explai%xelclln le)lyaa I1)1''on—_secgué’r]ltial physical mechanism:

sztlh %ﬁﬂé}ﬁf@%ﬁme@fsﬁﬁﬁ@l to the laser-field polarization

S,: Prepld@atiiznpohderemetive energy
S;: inelastic rescattering (NSDI)
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Milestones
Electron momentum ————— e e = = = = = =
correlation + NSMI
Electron energy spectrum « Below threshold NSI
lon momentum
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Please note:

There may be more than one rescattering mechanism, depending on the species
Signature of the electron-electron interaction can be inferred from the distributions
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Physical mechanisms (y< 1)

- . _ , o Over-the-barrier
Recollision-excitation-tunneling Electron-impact ionization  |gnization

Sequential regime




