
Coursework 3 - Atom-Photon Physics
Deadline: First day of 2nd term (January 2013)

1. (15/100) Give the Keldysh parameter and discuss the different physical
regimes delimited by it. Focus on their similarities and differences, and to
what parameter ranges of the external driving field they correspond.

2. (14/100) Chirped pulse amplification. Address the following issues:

(a) Explain the main idea behind Chirped Pulse Amplification, provide
a schematic representation and discuss where the chirp comes from.

(b) Why was it important for obtaining intense laser fields?What obsta-
cles could CPA overcome?Discuss these obstacles in detail.

(c) What are the important issues concerning the stretching and the
compression of the light pulse?

3. The Zeeman tuning technique. In the Zeeman tuning technique, a
two-level atom is kept resonant with a counter-propagating laser field by
employing an inhomogeneous magnetic field. The key idea is that the
Zeeman effect counterbalances the Doppler effect during the deceleration
process. Considering the average radiation pressure force on a two-level
atom,

F = − h̄Ω2Γk

Γ2 + 2Ω2 + 4[∆ + kv]2
, (1)

where ∆ = ω − ω0 is the difference between the laser frequency ω of
the laser and the transition frequency ω0, Ω = −eE0 ⟨2| r |1⟩ is the Rabi
frequency, E0 is the driving-field amplitude, k is the wave vector of the
radiation, Γ is the linewidth of the transition in question and v is the atom
velocity,

(a) (7/100) By employing an inhomogeneous magnetic field B(z) and as-
suming that the transition frequency will shift from ω0 to ω0+γB(z)
find the condition for which F is maximal and the expression for the
maximal (constant) acceleration amax = Fmax/M. How this accelera-
tion behave for low and high driving-field intensity? Can it increase
indefinitely? Why or why not?
Hint: Note how the magnetic field changes the denominator in Eq.
(1) and use a similar argument to that employed in class to establish
the maximum of a Lorentzian when discussing natural line broaden-
ing.

(b) (10/100) Determine the velocity v as a function of the coordinate
z. Thereby, assume that the atom’s intitial velocity is v0 and that it
starts its motion from z0 = 0. Is there any limitation upon the length
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employed for the deceleration? Why? and, from there, the shape of
the magnetic field B(z). Physically, what makes this field so special,
apart from keeping the atom resonant?

4. Optical molasses. Consider now two forces such as (1) along the z axis
such that the resulting force is

Fz = Fz1+Fz2 = h̄Γ

[
1

Γ2 + 2Ω2 + 4[∆− kvz]2
− 1

Γ2 + 2Ω2 + 4[∆ + kvz]2

]
.

(2)

(a) (3/100) Which of the above stated forces is related to the co-propagating
beam and which one to the counterpropagating beam? Why?

(b) (10/100) Show that, for small velocities this force is of viscous type,
i.e., of the form -βv.
Hints: this derivation has been sketched in class.

(c) (15/100) Briefly explain how to construct a set up for obtaining op-
tical molasses and sketch the optical-molasses laser-beam configura-
tion. Would you say that an optical-molasses laser-beam configura-
tion confines atoms? Why or why not?Would you need to modify the
optical-molasses setup to confine atoms? If so, how?

5. The curse of the displaced atom. In the strong-field approximation
(SFA), the continuum states are approximated by field-dressed plane waves
|p+A(t)⟩. A well-known shortcoming of this approximation is loss of
translation invariance (the curse of the displaced atom). Below you will
show that this is indeed the case. Consider the SFA transition amplitude
for direct above-threshold ionization

M (SFA)(p) =

∫ ∞

t0

dt exp[−i
∫ ∞

t

[p+A(τ)]

2

2

dτ ]E(t) · ⟨p+A(t)| r |g⟩(3)

× exp[−iEg(t− t0)].

Let ψg(r) = ⟨r| g⟩ be the ground-state wavefunction in the position rep-
resentation centered at the origin r = 0 and ψg(r− r0) = ⟨r| gr0⟩ the
ground-state wavefunction centered at an arbitrary position r = r0. Con-
sider now the matrix elements d1=⟨p+A(t)| r|g > and d2 = ⟨p+A(t)| r|gr0 >
between the approximated continuum and the ground state.

(a) (13/100) Write these matrix elements in position space. Show that
they differ by a time-dependent phase and by term proportional to
r0 (d2 = e−i[p+A(t)]·r0 [d1 + r0 ⟨p+A(t)| g⟩] You will need to use a
closure relation ∫

d3r |r⟩ ⟨r| = I (4)
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in r, a coordinate shift in one of the matrix elements and the fact
that

⟨p+A(t)| r⟩ = 1

(2π)3/2
exp[−i[p+A(t)] · r], (5)

⟨p+A(t)| g⟩ = 1

(2π)3/2

∫
d3r exp[−i[p+A(t)] · r]ψg(r). (6)

(b) (13/100) Why are these extra terms artifacts and how is the trans-
lation invariance broken? Provide a semi-quantitative explanation

in which you argue that
∣∣M (SFA)(p)

∣∣2 computed using d1 and d2

lead to different results. Would the terms be present if the exact
continuum states were used? Why or why not? Focus on the exact
inner product ⟨ϕc |g⟩, where |ϕc⟩ is an exact continuum state when
providing your explanation. What should happen to this product if
an orthogonal basis is used?

Please note: for a lot of extra hints see Sec. 6 in Smirnova et al, J.
Mod. Opt. 54, 1019 (2007). Focus on the standard SFA result.
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