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Abstract
We perform a systematic analysis of how nonsequential double ionization in
intense, linearly polarized laser fields is influenced by the initial states in which
both electrons are bound and by the residual ionic potential. We assume
that the second electron is released by electron-impact ionization of the first
electron with its parent ion, using an S-matrix approach. We work within
the strong-field approximation and compute differential electron-momentum
distributions using saddle-point methods. Specifically, we consider electrons
in 1s, 2p, 3p and localized states, which are released by either a contact- or
a Coulomb-type interaction. We also perform an adequate treatment of the
bound-state singularity which is present in this framework. We show that the
momentum distributions are very sensitive with respect to spatially extended or
localized wavefunctions, but are not considerably influenced by their shapes.
Furthermore, the modifications performed in order to overcome the bound-
state singularity do not significantly alter the momentum distributions, apart
from a minor suppression in the region of small momenta. The only radical
changes occur if one employs effective form factors, which take into account
the presence of the residual ion upon rescattering. If the ionic potential is of
contact type, it outweighs the spreading caused by a long-range electron–
electron interaction or by spatially extended bound states. This leads to
momentum distributions which exhibit a very good agreement with the existing
experiments.

1. Introduction

Within the last few years, nonsequential double ionization (NSDI) in strong, linearly polarized
laser fields has attracted a great deal of attention, both experimentally and theoretically [1].
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This interest has been triggered by the outcome of experiments in which the momentum
component parallel to the laser-field polarization could be resolved, either for the doubly
charged ion [2] or for both electrons [3]. Indeed, the observed features, namely two circular
regions along the parallel momenta p1‖ = p2‖ peaked at p1‖ = p2‖ = ±2

√
Up, with Up

the ponderomotive energy, are a clear fingerprint of electron–electron correlation and can be
explained by a simple, three-step rescattering mechanism [4]. Thereby, an electron leaves
an atom through tunnelling ionization (the ‘first step’), propagates in the continuum, being
accelerated by the field (the ‘second step’), and recollides inelastically with its parent ion (the
‘third step’). In this collision, it transfers part of its kinetic energy to a second electron, which
is then released.

From the theoretical point of view, there exist models, both classical [5–7] and quantum
mechanical [8–14], based on such a mechanism, which qualitatively reproduce the above-
mentioned features. They leave, however, several open questions. A very intriguing fact is
that, for instance, a very good agreement with the experiments is obtained if the interaction
through which the first electron is dislodged is of contact type, and if no Coulomb repulsion
is taken into account in the final electron states. This agreement worsens if this interaction is
modelled in a more refined way, considering either a more realistic, Coulomb-type interaction
or final-state electron–electron repulsion. Specifically, in recent publications, such effects
have been investigated in detail using both an S-matrix computation and a classical ensemble
model, and have been interpreted in terms of phase-space and dynamical effects [12, 13]. This
analysis has been performed within the strong-field approximation (SFA) [15], which mainly
consists in neglecting the atomic binding potential in the propagation of the electron in the
continuum, the laser field when the electron is bound or at the rescattering, and the internal
structure of the atom in question.

Within this framework, the NSDI transition amplitude is written as a five-dimensional
integral, with a time-dependent action and comparatively slowly varying prefactors. Such
an integral is then solved using saddle-point methods. Apart from being less demanding
than evaluating such an integral numerically [8, 9] or solving the time-dependent Schrödinger
equation [16], these methods provide a clear space–time picture of the physical process in
question. In particular, the results are interpreted in terms of the so-called ‘quantum orbits’.
Such orbits can be related to the orbits of classical electrons and have been extensively used
in the context of above-threshold ionization, high-order harmonic generation [17] and, more
recently, nonsequential double ionization [11–14].

The fact that, in [12, 13], the crudest approximation yields the best agreement with the
experiments, seems to indicate that the presence of the residual ion, which is not taken into
account, screens both the long-range interaction which frees the second electron and the final-
state repulsion. This suggests that the presence of the ionic binding potential in the physical
steps describing nonsequential double ionization, i.e., tunnelling, propagation and electron-
impact ionization, should somehow be incorporated. Indeed, in recent studies, it was found
that Coulomb focusing considerably influences the NSDI yield [18].

Another possibility is related to how the initial states in which the electrons are bound affect
the electron-momentum distributions. Indeed, the poor agreement between the computations
with the Coulomb interaction and the experiments may be related to the fact that 1s states have
been used in this case, instead of states with a different shape or spatial symmetry, such as, for
instance, p states. Furthermore, it may as well be that an additional approximation performed
in [12, 13] for the contact interaction, namely to assume that it takes place at the origin of
the coordinate system, contributes to the good agreement between theory and experiments in
this case. Physically, this means that the spatial extension of the wavefunction of the second
electron is neglected. Such an approximation has not been performed in the computations for
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the Coulomb interaction discussed in [12, 13] and, till date, there exist no systematic studies
of its influence in the context of NSDI.

In this paper, we investigate such effects in the simplest possible ways. First, we assume
that both electrons are initially in hydrogenic 2p and in 3p states, instead of s states, as
previously done [11–14]. One should note that, in contrast to helium, for which s states are
more appropriate, p states yield a more realistic description of the outer-shell electrons in
neon and argon, respectively. Since the two latter species are used in most experiments, the
choice of p states is justified. This is included in the transition amplitude as a form factor and
does not modify the saddle-point equations. In both p- and s-state cases, we consider that the
bound-state wavefunction of the second electron is either localized at the origin or extends over
a finite spatial range, for the contact and Coulomb interactions. This provides information on
how the initial state of the second electron influences electron-impact ionization, and hence
the NSDI yield.

A further improvement consists in overcoming the bound-state singularity, which is
present in the saddle-point framework, and which has not been addressed in [12, 13]. For this
purpose, we use a slightly modified action, with respect to that considered in [12, 13], so that
the tunnelling process and the propagation of both electrons in the continuum are altered. Such
corrections depend on the initial wavefunction of the first electron. Hence, they shed some
light on how this wavefunction affects the electron-momentum distributions. In particular,
we investigate how such corrections influence several features in the momentum distributions,
such as their shapes, the cutoff energies or the contributions from different types of orbits to
the yield.

Finally, we employ a modified form factor for the first electron, upon return, which takes
into account the ionic potential. This is a first step towards incorporating the residual ion in
our formalism. As it will be discussed subsequently, this provides a strong hint that the ion is
important, in order to achieve a good agreement between theory and experiment.

The manuscript is organized as follows. In section 2, we provide the necessary theoretical
background for understanding the subsequent discussions. In sections 3–5, we present our
results and, finally, in section 6 we state our conclusions.

2. Background

2.1. Transition amplitude

The transition amplitude of the laser-assisted inelastic rescattering process responsible for
NSDI, in the strong-field approximation and in atomic units, is given by

M = −
∫ ∞

−∞
dt

∫ t

−∞
dt ′

∫
d3kVpj ,kVk,0 exp[iS(t, t ′, pj , k)], (1)

with the action

S(t, t ′, pj , k) = −1

2

2∑
j=1

∫ ∞

t

[pj + A(τ )]2 dτ − 1

2

∫ t

t ′
[k + A(τ )]2 dτ + |E01|t ′ + |E02|t. (2)

Equation (1) describes the following physical process: at a time t ′, both electrons are bound
(|E01| and |E02| denote the first and second ionization potentials, respectively). Then, the first
electron leaves the atom by tunnelling ionization and propagates in the continuum from the
time t ′ to the time t, only under the influence of the external laser field E(t) = −dA(t)/dt .
At this latter time, it returns to its parent ion with intermediate momentum k and gives part
of its kinetic energy to the second electron through the interaction V12, so that it is able to
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overcome the second ionization potential |E02|. Finally, both electrons reach the detector
with final momenta pj (j = 1, 2). All the influence of the binding potential V and of the
electron–electron interaction V12 is included in the form factors

Vpj ,k = 〈p2 + A(t), p1 + A(t)|V12

∣∣k + A(t), ψ
(2)
0

〉
(3)

and

Vk,0 = 〈k + A(t ′)|V ∣∣ψ(1)
0

〉
, (4)

which are explicitly given by

Vk,0 = 1

(2π)3/2

∫
d3r1 exp[i(k + A(t ′)) · r1]V (r1)ψ

(1)
0 (r1) (5)

and

Vpj ,k = 1

(2π)9/2

∫ ∫
d3r1 d3r2 exp[i(p1 − k) · r1] exp[i(p2 + A(t)) · r2]V12(r2, r1)ψ

(2)
0 (r2),

(6)

respectively. The binding potential V (r1) will be taken to be of Coulomb type and the
interaction V12(r2, r1) through which the second electron is released will be chosen to be of
contact or Coulomb type. The initial state ψ

(1)
0 (r1) of the first electron at the moment of

its ionization will be taken as a hydrogenic s or p state, and the wavefunction ψ
(2)
0 (r2) of

the second electron at the moment of its release is either chosen as a hydrogenic state or a
Dirac delta state localized at r2 = 0 . In equation (1), we neglect final-state electron–electron
repulsion (for a discussion of this effect, see [8, 13]).

2.2. Saddle-point analysis

We solve equation (1) applying the steepest descent method, which is a very good
approximation for low enough frequencies and high enough driving-field intensities. In
this case, we must find k, t ′ and t so that S(t, t ′, pn, k) (n = 1, 2) is stationary, i.e., its partial
derivatives with respect to these parameters vanish. This yields

[k + A(t ′)]2 = −2|E01|, (7)

2∑
j=1

[pj + A(t)]2 = [k + A(t)]2 − 2|E02|, (8)

∫ t

t ′
dτ [k + A(τ )] = 0. (9)

Equation (7) gives the energy conservation during tunnelling ionization and, for a non-
vanishing ionization potential, has no real solution. Consequently, t, t ′ and k are complex
quantities. In the limit |E01| → 0, equation (7) describes a classical electron leaving the
origin of the coordinate system with vanishing drift velocity. Equation (8) expresses energy
conservation at t, in an inelastic rescattering process in which the first electron gives part of its
kinetic energy to the second electron, so that it can overcome the second ionization potential
and reach the continuum. Finally, equation (9) yields the intermediate electron momentum
constrained by the condition that the first electron returns to the site of its release.

The saddles determined by equations (7)–(9) always occur in pairs that nearly coalesce
at the boundaries of the energy region for which electron-impact ionization is allowed to
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occur, within a classical framework. Such a boundary causes the yield to decay exponentially,
leading to sharp cutoffs in the momentum distributions.

If written in terms of the momentum components parallel and perpendicular to the laser-
field polarization, equation (8) reads

2∑
j=1

[pj || + A(t)]2 = [k + A(t)]2 − 2|E02| −
2∑

j=1

p2
j⊥ (10)

and describes a hypersphere in the six-dimensional (pj‖, pj⊥) space. This hypersphere
delimits a region in momentum space for which electron-impact ionization is ‘classically
allowed’, i.e., exhibits a classical counterpart. For constant transverse momenta, equation (10)
corresponds to a circle in the (p1||, p2||) plane centred at −A(t) and whose radius is given by
the difference between the kinetic energy Ekin(t) = 1/2[k + A(t)]2 of the first electron upon
return and the effective ionization potential |Ẽ02| = |E02| +

∑2
j=1 p2

j⊥
/

2. Clearly, this radius
is most extensive if the final transverse momenta pj⊥) (j = 1, 2) are vanishing, such as in the
examples provided in section 4.

In order to compute the transition probabilities, we employ a specific uniform saddle-point
approximation, whose only applicability requirement is that the saddles occur in pairs [19, 21].
Unless stated otherwise (e.g., in section 4), we reduce the problem to two dimensions, using
equation (9) and the fact that the action (2) is quadratic in k. Details about this method,
in the context of NSDI, are given in [11–14] (for above-threshold ionization and high-order
harmonic generation, cf [19] and [20], respectively).

The momentum distributions of electrons for various types of interaction V12 read

M =
∫

d2p1⊥
∫

d2p2⊥|ML + MR|2, (11)

where the transverse momenta have been integrated over, and ML and MR give the left
and right peaks in the momentum distributions, respectively, computed using the uniform
approximation. We consider a monochromatic, linearly polarized field, so that the vector
potential reads

A(t) = −A0 cos(ωt)ex. (12)

In this case, MR = M(t, t ′, p) and ML = M(t − T/2, t ′ − T/2, p), where T = 2π/ω

denotes a period of the driving field. We use the symmetry property |M(t, t ′, p)| =
|M(t − T/2, t ′ − T/2,−p)| to compute the left peak. One should note that, for other
types of driving fields, such as few-cycle pulses, this condition does not hold and each peak
must be computed independently [7, 14].

3. Initial p states

Within the formalism discussed in the previous section, the first and second electrons, so far,
have been assumed to be initially in 1s or zero-range-potential bound states, whose energies
|E01| and |E02| are taken to be the first and second atomic ionization potentials, respectively. In
most experiments, however, species such as neon and argon are used, for which the outer-shell
electrons are in 2p and 3p states, respectively. For this reason, such states should provide
a more realistic modelling of laser-induced nonsequential double ionization. For symmetry
reasons, only the states with magnetic quantum number m = 0 will contribute to the yield.

In this case, the bound-state wavefunctions of both electrons will be given by

ψ
(j)

210(rj ) = C210rj exp[−αj rj ] cos θ (13)
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and

ψ
(j)

310(rj ) = C310rj (1 − αj rj /2) exp[−αj rj ] cos θ, (14)

respectively, where αj = √
2|E0j | (j = 1, 2) and Cn10 (where n is the principal quantum

number) denote normalization constants. For comparison, we will also consider hydrogenic
1s wavefunctions, which read

ψ100
(j)(rj ) = C100 exp[−αj rj ]. (15)

In equations (13)–(15), the binding energies of the first and second electrons were chosen as
the first and second ionization potentials, respectively.

The form factors Vpj ,k, for 2p and 3p initial states, read

V
(2p)

pj ,k ∼ η(p1, k)
p̃

[2|E02| + p̃2]3
+ (p1 ↔ p2) (16)

and

V
(3p)

pj ,k ∼ η(p1, k)
p̃(p̃2 − 2|E02|)
[2|E02| + p̃2]4

+ (p1 ↔ p2), (17)

respectively, with p̃ = p1 + p2 − k + A(t). Thereby, (p1 ↔ p2) means that the momenta
of both particles are interchanged, and η(pj , k) (j = 1, 2) is a function which depends on
the interaction in question. The corresponding form factor obtained for an initial state (15) is
given by

V
(1s)

pj ,k ∼ η(p1, k)
1

[2|E02| + p̃2]2
+ (p1 ↔ p2). (18)

3.1. Contact-type interaction

As a first step, we will assume that the second electron is released by a contact-type interaction

V12 ∼ δ(r1 − r2). (19)

In this case, in equations (16)–(18), η(pj , k) is a constant. The differential electron-momentum
distributions computed with such form factors are depicted in figures 1(a)–(c), as contour plots
in the (p1||, p2||) plane. In such computations, only the pair of orbits for which the electron
excursion times τ = t − t ′ in the continuum are shortest have been employed. As an overall
feature, the distributions are peaked near p1|| = p2|| = ±√

Up and spread in the direction
perpendicular to the diagonal p1|| = p2||.

An inspection of the form factors (16)–(18), for constant η(pj , k), explains this behaviour.
Indeed, such form factors are large if their denominator is small. Since |E02| is constant, this
condition implies that p̃ = p1 + p2 − k + A(t) is small. To first approximation, since the first
electron returns at times t close to the minimum of the electric field, one may assume that
the vector potential at this time and the intermediate electron momentum are approximately
constant. Furthermore, in the model, the field is approximated by a monochromatic wave and
k is given by equation (9). Hence, a rough estimate of these quantities at the return times
yields A(t) 	 2

√
Up and k 	 0, respectively. Thus, p̃ will be small mainly if p1 = −p2, so

that contributions along the anti-diagonal p1|| = −p2|| will be enhanced.
Such contributions get more localized near the maxima for highly excited initial states

due to the increase in the exponent of the denominator. A direct look at the above-stated form
factors confirms this interpretation, yielding maxima along the anti-diagonal and near ±√

Up.
Interestingly, the distributions obtained for the contact interaction are quite different from

the circular distributions peaked around p1|| = p2|| = ±2
√

Up observed experimentally.
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(a) (c)

(b) (d)

Figure 1. Electron-momentum distributions computed using a contact-type interaction, as
functions of the electron-momentum components parallel to the laser-field polarization. The
external field was taken to be monochromatic, with frequency ω = 0.057 au and intensity
I = 8 × 1014 W cm−2 (Up = 1.75 au). In panels (a), (b) and (c), both electrons are initially bound
in 1s, 2p and 3p states (equations (15), (13) and (14)), respectively, whereas in part (d) the first
electron is initially in a 1s state and the wavefunction of the second electron is localized at r2 = 0.
In all situations (even for the 3p-state case), the atomic species was taken to be neon (|E01| = 0.79
au and |E02| = 1.51 au), in order to facilitate a clear assessment of the effects caused by the
different initial states. The transverse momenta have been integrated over.

Indeed, in order to obtain such distributions, it is necessary to assume that the initial
wavefunction of the second electron is localized at r2 = 0. This is formally equivalent
to taking

V12(r1 − r2)ψ
(2)
0 (r2) ∼ δ(r1 − r2)δ(r2). (20)

Equation (20) yields a constant form factor Vpj ,k. In figure 1(d), we present the distributions
computed using equation (20), which exhibit a very good agreement with the experiments.
This means that, in reality, the effective wavefunction of the second electron is very localized,
most probably due to refocusing [18] or screening effects [22].

3.2. Coulomb-type interaction

We will now consider that the second electron is released by a Coulomb-type interaction,
given by

V12 = 1/|r1 − r2|. (21)

In this case, in the form factors (16)–(18), η is given by

η(pj , k) = 1

[pj − k]2
(j = 1, 2), (22)

respectively. This causes the prefactors to be large when pj − k (j = 1, 2) is small, in
addition to the case for which p̃ 
 1. The influence of such form factors on the electron-
momentum distributions is shown in figure 2. Apart from the broadening along p1|| = −p2||
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(a) (c)

(b) (d)

Figure 2. Electron-momentum distributions computed using a Coulomb-type interaction, as
functions of the electron-momentum components parallel to the laser-field polarization. The field
and atomic parameters are the same as in figure 1. In panels (a), (b) and (c), both electrons are
taken to be initially in 1s, 2p and 3p states, respectively, whereas in panel (d) the first electron is
in a 1s state, while the spatial extension of the bound-state wavefunction has been neglected. The
transverse momenta have been integrated over.

caused by the spatial extent of the bound-state wavefunctions (cf section 3.1), the distributions
exhibit maxima near the axis p1|| = 0 or p2|| = 0. Such maxima are due to the factor (22) in
equations (16)–(18), characteristic of the Coulomb-type interaction, which is large for pj 	 k.
Since, to first approximation, contributions from regions of small k dominate the yield, one
expects maxima in momentum regions where either p1 or p2 are small.

Furthermore, as compared to the yields obtained using a Coulomb-type interaction and
1s states, there exists a small additional broadening in the distributions, with respect to the
diagonal p1|| = p2||, as well as an increase in the contributions from regions where such
momenta are small. Such effects get more pronounced as the principal quantum number
increases, as shown in figures 2(b) and (c).

However, such modifications do not alter the distributions in a significant way. More
extreme changes occur, for instance, if a contact-type interaction, i.e., η(pj , k) = constant in
equation (19), is taken into account. Still, less localized bound states for both electrons will
cause a broadening in the momentum distributions. If the second-electron wavefunction is
localized at the origin, the form factor (18) reduces to

Vpj ,k ∼ 1

[p1 − k]2
+ (p1 ↔ p2). (23)

The distributions for the latter form factor are displayed in figure 2(d). In the figure, one
observes a considerable reduction of the broadening along the anti-diagonal p1|| = −p2||.
However, the distributions still exhibit the two sets of maxima near the axis p1|| = 0 or
p2|| = 0. This is expected, since such maxima are a fingerprint of the Coulomb interaction.

The results in this section show that the shapes of the momentum distributions in NSDI
are not only influenced by the type of interaction by which the second electron is dislodged
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but, additionally, depend on the spatial extension of the wavefunction of the state where it is
initially bound. In fact, radically different shapes are observed if this wavefunction is either
taken to be localized at r2 = 0 or exponentially decaying. This is true both for a contact- and
a Coulomb-type interaction (cf figures 1(d) and 2(d)).

On the other hand, if different initial states are taken, for the same type of interaction,
there are no significant changes in the shapes of the distributions as long as such states
extend over a finite spatial range. This is explicitly seen by comparing yields obtained using
bound states with different principal quantum numbers. This is related to the fact that the
wavefunctions (13)–(15) were chosen such that the bound-state energy always corresponds to
the second ionization potential. Hence, even if their shape changes, the spatial extension of
such wavefunctions is roughly the same.

It is still, however, quite puzzling that the best agreement with the experimental findings
occurs for the crudest approximations, both for the interaction and the initial bound-state
wavefunction, i.e., for a contact-type interaction and a wavefunction localized at r2 = 0.
Indeed, taking either a more realistic type of electron–electron interaction, spatially extended
bound states, or, still, bound states which are, in principle, a more refined description of the
outer-shell electrons, only worsens the agreement between experiment and theory.

If the main physical mechanism of NSDI is electron-impact ionization, there exist two
main possibilities for explaining this discrepancy. Either the second electron is bound in a
highly localized state and both electrons collide through an effective short-range interaction, as
the present results suggest, or the tunnelling ionization, as well as the electron propagation in
the continuum, must be improved. The first issue may be addressed by including the influence
of the residual ion in the process, whereas the second issue may be dealt with in several ways.
For instance, in the subsequent section, we will consider corrections of a more fundamental
nature, which alter the semi-classical action and thus the orbits of the electrons.

4. Treatment of the bound-state singularity

Up to the present section, we have implicitly assumed that the form factors Vpj ,k and Vk,0 are
free of singularities and slowly varying in comparison to the time-dependent action. However,
this is not always true. Indeed, in the saddle-point framework, the form factor Vk,0 is singular
if the electron is initially in a state described by an exponentially decaying wavefunction, such
as equations (13)–(15). More specifically, in this case,

Vk,0 ∝ f (k + A(t ′))
([k + A(t ′)]2 + 2|E01|)n , (24)

where n is an integer number. In this case, according to equation (7), the denominator vanishes.
Due to this singularity, this form factor does not vary slowly with respect to the semi-classical
action (2) and thus must be incorporated in the exponent. Therefore, we take the modified
action

S̃(t, t ′, pj , k) = S(t, t ′, pj , k) − i ln[Vk,0] (25)

in the transition amplitude (1). This causes a change in the first and third saddle-point
equations, which will depend on the initial bound state in question. In particular, we will
consider that the first electron is initially in the hydrogenic states 1s, 2p and 3p. This is
a legitimate assumption, since the binding potential of a neutral atom, from which the first
electron tunnels out, is of long-range type. For the states 1s, 2p and 3p, Vk,0 reads

V
(1s)

k,0 =
√

2

π

(2|E01|)5/2

v2 + 2|E01| , (26)
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V
(2p)

k,0 = 2
√

2i

π

(
√

2|E01|)5/2v

(v2 + 2|E01|)2
(27)

and

V
(3p)

k,0 = 8i(
√

2|E01|)5/2v(v2 − 2|E01|)√
3π(v2 + 2|E01|)3

, (28)

respectively, where v = [k + A(t ′)] denotes the initial electron drift velocity. The explicit
expressions for the saddle-point equations then become

[k + A(t ′)]2 = −2|E01| + ζ(k, t ′) · E(t ′) (29)

and ∫ t

t ′
dτ [k + A(τ )] + ζ(k, t ′) = 0, (30)

respectively, where ζ(k, t ′) = −i∂k ln[Vk,0] is a correction which depends on the initial bound
state. Thus, there is an effective shift in the ionization potential at the tunnelling times and a
modification in the return condition. Consequently, the orbits change. Apart from that, from
the technical point of view, the transition amplitude is no longer reducible to a two-dimensional
integral, so that the problem is far more cumbersome.

The modifications in the equation describing tunnelling ionization allow the existence of
solutions for which Re[v] �= 0. This did not occur in equation (7), for which this quantity
was purely imaginary and, physically, means that there are in principle changes, maybe even
enhancements, in the probability that the first electron tunnels out at t ′.

Furthermore, equation (30), if written in terms of the components of the intermediate
momentum k parallel and perpendicular to the laser-field polarization, has, apart from the
trivial solution k⊥ = 0, additional solutions for which k⊥ �= 0. Thus, in principle, the first
electron may have, during the tunnel ionization and upon return, a non-vanishing drift-velocity
component transverse to the laser-field polarization. We regard this possibility, however, as
non-physical, and therefore will mainly concentrate on the case of vanishing k⊥. Despite of
that, the results obtained for non-vanishing k⊥ will be briefly discussed in section 4.2. For the
return condition (8), this is not possible and k⊥ is always vanishing. In the following, we will
investigate how the corrections in the action affect the momentum distributions.

4.1. Vanishing k⊥

In this section, we will consider that the first electron has vanishing intermediate-momentum
components k⊥. Physically, this means that the dynamics of NSDI is mainly taking place
along the laser-field polarization, which is the intuitively expected situation. In figure 3, we
present the electron-momentum distributions computed employing the modified saddle-point
equations and the action (25), for the same initial states and types as in figure 1 and a contact-
type interaction. In general, the distributions in figure 3 are very similar to the former ones,
with, however, a suppression in the region of small parallel momenta. This is true even if
different corrections are taken into account, as it is the case if the first electron is initially in
1s, 2p and 3p states (figures 3(a), (b) and (c), respectively). In the specific case of a localized
bound-state wavefunction for the second electron, there is also a minor displacement of the
maxima towards smaller parallel momenta (cf figure 3(d)).

The suppression persists if the second electron is released by a Coulomb-type interaction,
as shown in figure 4. Specifically for this interaction, the corrections lead to a suppression of
the secondary maxima in the small-momentum region, which were present in figure 2.
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(a) (c)

(b) (d)

Figure 3. Electron-momentum distributions computed with using contact-type interaction, as
functions of the electron-momentum components parallel to the laser-field polarization, for the
same field and atomic parameters as in the previous figures. We introduce corrections to the
bound-state singularity by employing the modified action (25) and saddle-point equations, taking
the solutions displayed in figures 6(a) and (c). In panels (a), (b) and (c), both electrons are taken to
be initially in 1s, 2p and 3p states, respectively, whereas in panel (d) the first electron is initially in
a 1s state, while the spatial extension of the bound-state wavefunction of the second electron has
been neglected. The transverse momenta have been integrated over.

In the following, we will analyse these differences in terms of the so-called quantum
orbits, obtained by solving the saddle-point equations. We will consider both the saddle-
point equations in the presence and absence of corrections to the bound-state singularity, i.e.,
equations (29), (8) and (30), and (7)–(9), respectively. We restrict ourselves to vanishing
final transverse momenta and longitudinal momentum components along the diagonal p|| =
p1|| = p2||. For this particular case, the energy region for which electron-impact ionization is
classically allowed is most extensive.

In figure 5, we display the solutions of the saddle-point equations for the rescattering
times t and the intermediate momentum k. The upper and lower panels in the figure give the
real and imaginary parts of such variables, respectively. The real parts of t and k correspond
to the solutions of the equations of motion of a classical electron in an external laser field, and
almost merge at two distinct parallel momenta. These momenta are related to the maximal
and minimal energy for which the second electron is able to overcome |E02|. Beyond such
momenta, there are cutoffs in the distributions, and the yield decays exponentially. The
imaginary parts of such variables are in a sense a measure of a particular physical process
being classically allowed or forbidden. Indeed, the fact that |Im| and |Im[k]| are vanishingly
small between the minimal and maximal allowed momenta are a consequence of both electron-
impact ionization and the return condition being classically allowed in this region. As the
boundaries of this region are reached, |Im| and |Im[k]| increase exponentially. Interestingly,
both the real and imaginary parts of such variables, as well as the cutoff momenta, remain
practically unaltered upon the changes introduced in this section. This is not obvious, since
the bound-state corrections in question alter the return condition (cf equation (30)).
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(a) (c)

(b) (d)

Figure 4. Electron-momentum distributions computed using the Coulomb-type interaction, as
functions of the electron-momentum components parallel to the laser-field polarization, for the
same field and atomic parameters as in the previous figures. We introduce corrections to the bound-
state singularity by employing the modified action (25) and saddle-point equations, and the solutions
in figures 6(a) and (c). In panels (a), (b) and (c), both electrons are taken to be initially in 1s, 2p
and 3p states, respectively, whereas in panel (d) the first electron is initially in a 1s state, while the
spatial extension of the bound-state wavefunction of the second electron has been neglected. The
transverse momenta have been integrated over.

(a) (b)

(c) (d)

Figure 5. Rescattering times, together with the intermediate momentum k|| , as functions of the
parallel momentum p|| along the diagonal p1|| = p2||. The final transverse momenta pj⊥ (j = 1, 2)

and the intermediate transverse momentum k⊥ are taken to be vanishing. The real and imaginary
parts of such quantities are displayed in the upper (a)–(c) and lower (d)–(f) panels, respectively.
The field and atomic parameters are the same as in the previous figures. The uncorrected
variables are given by the thick light grey curves in the figure, while the variables with corrections
corresponding to initial 1s, 2p and 3p states are given by the grey, dark grey and black curves,
respectively. The longer and shorter orbits are indicated by dashed and solid lines, respectively.
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(a) (b)

(c) (d)

Figure 6. Tunnelling times as functions of the parallel momentum p|| along the diagonal p1|| =
p2||. The final transverse momenta pj⊥ (j = 1, 2) and the intermediate transverse momentum
k⊥ are taken to be vanishing. The real and imaginary parts of such quantities are displayed in the
upper (a and b) and lower (c and d) panels, and the same pairs of orbits are depicted in the left
(a and c) and right (b and d) panels, respectively. The field and atomic parameters are the same as
in the previous figures. The uncorrected variables are given by the thick light grey curves in the
figure, while the variables with corrections corresponding to initial 1s, 2p and 3p states are given
by the grey, dark grey and black curves, respectively. The longer and shorter orbits are indicated
by dashed and solid lines, respectively.

There exist, however, modifications in the tunnelling times t ′, which are explicitly shown in
figure 6. Specifically, the corrections in the tunnelling condition, which leads to equation (29),
cause a splitting in the solutions of equation (7). This follows from the fact that small variations
in the stationary-action trajectories contribute quadratically to S(t, t ′, pj , k) and Vk,0, so that
S̃(t, t ′, pj , k) attains two stationary trajectories for each of the former ones. Strictly speaking,
a similar splitting also occurs for k and t. In practice, however, the difference between the
two different sets of solutions is vanishingly small and thus not noticeable in figure 5. The
different sets of solutions are depicted in figures 6(a) and (c), and (b) and (d), respectively.
The real parts Re[t ′] exhibit only minor differences, which occur for the shorter orbits and
small momenta and eventually disappear as the upper cutoff is approached. Depending on the
type of correction, such times either distance themselves from, or become slightly closer to the
peak-field times (figures 6(a) and (b), respectively). Thus, one could expect an enhancement
in the contributions from the shorter orbits near the origin of the (p1||, p2||) plane, in the former
case, and a suppression in the latter case. However, we have used the solutions in figures 6(b)
and (d) for computing the contour plots in figures 3 and 4, and obtained a suppression in the
yield. This is a clear indication that the changes in Im[t ′] and in the time-dependent action
play a more important role than those in Re[t ′].

In figures 6(c) and (d), we present the imaginary parts of t ′, which clearly shift towards
smaller and larger values, respectively, when the corrections ς(k, t ′) are taken into account. The
higher the initial state lies, the larger such shifts are. Physically, there exists a correspondence
between such imaginary parts and the probability that the first electron tunnels out and reaches
the continuum. This means that, by using a slightly modified action in order to overcome the
Coulomb singularity, one is changing the effective potential barrier at t ′ for the first electron.
In general, such a barrier has a significant influence on the distributions. Indeed, recently,
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(a) (c)

(b) (d)

Figure 7. Electron-momentum distributions computed with the contact-type interaction, as
functions of the electron-momentum components parallel to the laser-field polarization, for the
same field and atomic parameters as in the previous figures. We introduce corrections to the
bound-state singularity by employing the modified action (25) and saddle-point equations, taking
the solutions in figures 6(b) and (d). In panels (a), (b) and (c), both electrons are taken to be
initially in 1s, 2p and 3p states, respectively, whereas in panel (d) the first electron is in a 1s state,
while spatial extension of the bound-state wavefunction of the second electron has been neglected.
The transverse momenta have been integrated over.

we have shown, within the context of nonsequential double ionization with few-cycle laser
pulses, that the importance of the contributions of a particular orbit or set of orbits to the
yield is highly dependent on |Im[t ′]|. The smaller this quantity is, the larger is the tunnelling
probability for the first electron [14]. As a direct consequence, contributions from orbits with
small |Im[t ′]|, i.e., with a large tunnelling probability, dominate the yield. In the present case,
however, since both orbits are being equally shifted, this should not influence the distributions
qualitatively. One should note that, even in the momentum region for which electron-impact
ionization is allowed, |Im[t ′]| is always non-vanishing. This is a direct consequence of the
fact that tunnelling ionization is a classically forbidden process.

Subsequently, we compute the counterparts of figure 3 and 4 (figures 7 and 8) using the
solutions displayed in figures 6(b) and (d). Also in this case, in general, there is a suppression
in the yield in the region of small parallel momenta, with, however, a slightly different
substructure in the Coulomb-interaction case.

4.2. Non-vanishing k⊥

The modifications introduced in the return condition for the first electron (equation (30)) allow
the intermediate momentum k to have a non-vanishing component perpendicular to the laser-
field polarization. This implies that the first electron, during tunnelling ionization and when
it returns, is being deviated from its original direction. Although such an effect is unphysical,
we will briefly discuss its consequences. For that purpose, we will consider the simplest
corrections to the bound-state singularity discussed in this paper, namely those for 1s initial
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(a) (c)

(b) (d)

Figure 8. Electron-momentum distributions computed using the Coulomb-type interaction, as
functions of the electron-momentum components parallel to the laser-field polarization, for same
field and atomic parameters as in the previous figures. We introduce corrections to the bound-state
singularity by employing the modified action (25) and saddle-point equations, and the solutions
in figures 6(b) and (d). In panels (a), (b) and (c), both electrons are taken to be initially in 1s, 2p
and 3p states, respectively, whereas in panel (d) the first electron is initially in a 1s state, while the
spatial extension of the bound-state wavefunction of the second electron has been neglected. The
transverse momenta have been integrated over.

states. If equation (30) is written in terms of the intermediate-momentum components k⊥ and
k|| perpendicular and parallel to the laser-field polarization, this equation reads

k||(t − t ′) −
∫ t

t ′
A(s) ds +

2i[k|| + A(t ′)]
[2|E01| + k2

⊥ + [k|| + A(t ′)]2]
= 0 (31)

and

k2
⊥

(
t − t ′ +

2i

[2|E01| + k2
⊥ + [k|| + A(t ′)]2]

)
= 0, (32)

respectively. Apart from the trivial solution k⊥ = 0, condition (32) can be satisfied by non-
vanishing values of this variable. One should note that, in the case without corrections, this
does not hold and only the trivial solution exists.

Figure 9 depicts the tunnelling and rescattering times for this case, together with the
perpendicular and parallel components of k. The real parts of such variables correspond, as
in the previous cases, to a longer and a shorter orbit. The momenta, however, for which
such orbits nearly coalesce, are radically different from those in the previous cases discussed
in this paper. This is due to the fact that a non-vanishing k⊥ also affects the rescattering
condition (8), which now reads

2∑
j=1

[pj || + A(t)]2 = [k|| + A(t)]2 + k2
⊥ − 2|E02| −

2∑
j=1

p2
j⊥.

For constant final transverse momenta pj⊥ (j = 1, 2), this equation describes a circle centred
at −A(t) whose radius has been altered in k2

⊥. Since, as shown in figures 9(a)–(d), this radius
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Figure 9. Tunnelling (a and e) and rescattering times (b and f), together with the parallel
(c and g) and perpendicular components of the intermediate momentum k (d and h), as functions
of the parallel momentum p|| along the diagonal p1|| = p2||. The final transverse momenta pj⊥
(j = 1, 2) are taken to be vanishing. The real and imaginary parts of such quantities are displayed
in the upper (a)–(d) and lower (e)–(h) panels, respectively. The field and atomic parameters are
the same as in the previous figures. The corrected and uncorrected yields are given by the black
and grey curves in the figure, respectively. The tunnelling and rescattering times are multiplied
by ω and the intermediate momenta divided by

√
ω, respectively, so that a direct comparison with

figures 5 and 6 can be performed.

decreased, k⊥ is expected to be almost purely imaginary. This is indeed the case, as can be seen
comparing panels (d) and (h) in the figure. The imaginary parts of such variables also behave
following the same pattern as previously, growing vary rapidly at the momenta for which the
real parts approach each other, and remaining nearly constant in between. Interestingly, Im[t ′]
is vanishing in this region. This feature is in clear contradiction with the fact that tunnelling
is a process which is always forbidden, and therefore requires a non-vanishing Im[t ′] (cf
figures 6(c) and (d)). For this reason, we will not use solutions with non-vanishing k⊥ for
computing electron-momentum distributions.

5. Influence of the ion

In this section, we take a first step towards including the residual ion in our formalism.
For that purpose, we consider an effective interaction Ṽ = V12 + Vion at the time the first
electron returns, where Vion is the ionic potential. Physically, this means that the first electron
interacts not only with the electron it releases, but, additionally, with the residual ion. We take
this potential to be of either Coulomb or contact type, and assume that only the two active
electrons contribute to the ionic charge. Thus, explicitly, Vion reads

V (C)
ion = −2/|r1| (33)

or

V (δ)
ion ∼ −2δ(r1). (34)

In this context, both the effective charge and a contact-type interaction are justified by the fact
that the remaining electrons are screening the charge and the long-range tail of the binding
potential.
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(a) (c)

(b) (d)

Figure 10. Electron-momentum distributions computed with the modified form factors (35) and
(36), as functions of the electron-momentum components parallel to the laser-field polarization, for
same field and atomic parameters as in the previous figures. We consider that the ionic potential
is of Coulomb type (equation (33)), and use the saddle-point model without modifications (cf
section 2). In the upper and lower panels, the electron–electron interaction V12 was assumed to be
of contact and Coulomb types, respectively. In panels (a) and (b), both electrons are taken to be
initially in 1s states, whereas in panels (c) and (d), they are initially in 2p states. The transverse
momenta have been integrated over.

In equation (1), the form factors Vpj,k are given by

Ṽ
(1s)

pj ,k ∼ V
(1s)

pj ,k − 2η(p1, k)

[2|E02| + (p2 + A(t))2]2
+ (p1 ↔ p2), (35)

Ṽ
(2p)

pj ,k ∼ V
(2p)

pj ,k − 2η(p1, k)
√

(p2 + A(t))2

[2|E02| + (p2 + A(t))2]3
+ (p1 ↔ p2), (36)

for 1s and 2p states, respectively. The prefactor V12 is of contact or Coulomb type.
Furthermore, for a Coulomb or contact ionic potential, η is either constant or given by
equation (22), respectively. In order to simplify the computations, and since only minor
differences have been observed in this case, we use the model in section 2, instead of the more
rigorous approach of section 4 in the subsequent figures.

Figure 10 depicts how the ion affects the electron-momentum distributions, if its potential
is assumed to be of Coulomb form (equation (33)). The upper and lower panels have been
computed for V12 of contact and Coulomb types, respectively. In the figure, the distributions
resemble those obtained for the Coulomb-type interaction, if the second state is in a localized
state (figures 2(d), 4(d) and 8(d)). This holds both for 1s and 2p initial electron states.
An inspection of equations (35) and (36) explains this shape. Indeed, in both equations, the
functional form of η(pj , k), which is characteristic of long-range interactions, favours unequal
momenta, leading to patterns similar to those observed in figures 2, 4 and 8. Furthermore, in
the second terms in Ṽpj ,k, the denominators are small if pj 	 −A(t). Thus, since A(t) ∼
2
√

Up, we expect the form factors (35) and (36) to be large near p2|| = p1|| = ±2
√

Up.
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(a) (c)

(b) (d)

Figure 11. Electron-momentum distributions computed with the modified form factors (35) and
(36), as functions of the electron-momentum components parallel to the laser-field polarization, for
same field and atomic parameters as in the previous figures. We consider that the ionic potential
is of contact type (equation (34)), and use the saddle-point model without modifications (cf
section 2). In the upper and lower panels, the electron–electron interaction V12 was assumed to be
of contact and Coulomb types, respectively. In panels (a) and (b), both electrons are taken to be
initially in 1s states, whereas in panels (c) and (d), they are initially in 2p states. The transverse
momenta have been integrated over.

Consequently, the yield in the diagonal gets enhanced. This is a feature shared with the limit
for localized wavefunctions, so that the distributions are similar.

The subsequent figure (figure 11) is the counterpart of figure 10 for a contact-type ionic
potential (equation (34)). In this case, for all types of electron–electron interaction V12 and
initial bound states, the distributions are strongly localized near p2|| = p1|| = ±2

√
Up, even

though their shapes are slightly different. This happens due to the fact that, in this case,
η(pj , k) = constant. Therefore, the second terms in the form factors (35) and (36) are
large near p2|| = p1|| = ±2

√
Up, but, in contrast to the Coulomb-potential case, no unequal

momenta are favoured. This means that the inclusion of a short-range ionic potential leads
to a radical improvement in the agreement between theory and experiment. In this context,
for both the contact- and Coulomb-type interactions V12, circular shapes reminiscent of those
in the experiments are only obtained if we consider 2p states. As previously discussed, such
states provide a more realistic description of the outer-shell electrons in neon, as compared to
1s states.

6. Conclusions

In this paper, we have introduced several technical modifications in an S-matrix theory of
laser-induced nonsequential double ionization (NSDI), within the strong-field approximation,
in which this phenomenon is modelled as the inelastic collision of an electron with its parent
ion. Such modifications include different initial bound states for the first and second electrons,
an adequate treatment of the bound-state singularity which exists in our framework and an
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effective form factor which incorporates the residual ion. We performed a systematic analysis
of their influence on the differential electron-momentum distributions as functions of the
parallel-momentum components pj || (j = 1, 2) of both electrons.

Specifically, we consider that the second electron is dislodged by contact- and Coulomb-
type interactions, and assume that both electrons are initially in a 1s, 2p or 3p hydrogenic
state. As an additional case, we assume that the first electron is initially bound in a 1s state,
and that the initial wavefunction of the second electron is localized at r2 = 0. For the first
electron, we take into account only the hydrogenic states, since a neutral atom, in contrast to
a singly ionized atom, has a long-range binding potential.

Concerning the initial bound-state wavefunction of the second electron, our results show
that the NSDI momentum distributions are very sensitive to its spatial extension, but not to
its shape. Indeed, a spatially extended wavefunction causes a broadening in the electron-
momentum distributions along the anti-diagonal p1|| = −p2||, even if the second electron is
dislodged by a contact-type interaction. Circular-shaped distributions, as reported in [12, 13]
and observed in experiments [1, 3], are only obtained for a contact-type interaction under
the additional condition that the bound-state wavefunction is localized at the origin of the
coordinate system, i.e., at r2 = 0. In addition to this broadening, if the second electron is
released by a Coulomb-type interaction, there is an enhancement in the contributions near the
axis p1|| = 0 or p2|| = 0.

All the distributions investigated in this paper, however, change in a less radical fashion
if the second electron is taken to be in a 1s, 2p or 3p hydrogenic state, as long as they exhibit
a spatial extension. In fact, although specific changes are observed, such as an additional
substructure for a Coulomb-type interaction or more localized distributions for a contact-type
interaction, the overall shapes of such distributions remain similar.

Furthermore, if the form factor Vk,0, which, within our model, contains all the influence
of the initial state of the first electron, is incorporated in the time-dependent action, the only
noticeable effect is a suppression in the yield, for regions of small parallel momenta. Indeed,
the distributions retain their shapes even if the saddle-point equations are modified in this way.
Such changes have been introduced in order to correct a singularity which exists for such a
prefactor Vk,0, within the saddle-point framework, if the initial bound state is exponentially
decaying.

Finally, the inclusion of the ionic potential at the time of rescattering, as the modified form
factors Ṽpj ,k, sheds some light on why, in the absence of the ion, a contact-type interaction
localized at the origin of the coordinate system yields the best agreement with the experimental
findings.

In fact, the ionic interaction leads to form factors which are very large near p1|| = p2|| =
±√

Up. This causes an enhancement in the distributions in this region. If the ionic potential is
of Coulomb type, this effect is overshadowed by the fact that η(pj , k), given by equation (22),
favours unequal momenta. By contrast, if the ionic potential is given by equation (34), which is
a good approximation for a short-range interaction, η(pj , k) = constant and the enhancement
at the diagonal prevails. On the other hand, in sections 3 and 4, if Vpj ,k = constant (i.e.,
for V12 of contact type and a localized state for the second electron), the very same effect is
caused by integrating over the phase space. Interestingly, if, in the presence of the ion, we
consider 2p states, which are more realistic assumptions for our model, the agreement with
the experimental findings improves even more.

In conclusion, the present results indicate that the ionic potential is an important ingredient
for a realistic modelling of NSDI. Indeed, of all the technical modifications considered in this
paper, which aimed at making the model more realistic, this was the only which played a major
role in improving the agreement between theory and experiment. The other modifications
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either worsened this agreement or had almost no influence on the momentum distributions.
This supports the hypotheses raised in previous studies [12, 13], that the residual ion might be
screening both the long range of the Coulomb interaction or the final-state Coulomb repulsion,
so that, effectively, the electron–electron interaction is of contact type, and the bound-state
wavefunctions are localized.

We would like to stress out, however, that the treatment performed in section 5 is only a
first approximation for a rigorous study of the ionic potential. There exist, in principle, more
rigorous methods for incorporating the residual ion. The first approach would be to consider
the ion as a further interaction in our model and modify the transition amplitude accordingly.
This is, however, a highly non-trivial task, since it would lead to one more rescattering and a
further integral in the transition amplitude. Another possibility would be to incorporate the
ionic potential in the propagation of both electrons in the continuum. This would allow a clear
assessment of the Coulomb focusing, which, again, owes its existence to the presence of the
ion. Indeed, this effect may as well be compensating the broadening caused by initial spatially
extended wavefunctions. Definite statements on this issue, however, require a theoretical
approach beyond the strong-field approximation.
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