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We investigate the universality of an Ising symmetry breaking phase transition of tilted two-dimensional Dirac
fermions, in the type-I phase as well as at the Lifshitz transition between a type-I and a type-II semimetal,
where the Fermi surface changes from point-like to one with electron and hole pockets that touch at the
overtilted Dirac cones. We compute the Landau damping of long-wavelength order parameter fluctuations
by tilted Dirac fermions and use the resulting IR propagator as input for a renormalisation-group analysis
of the resulting Gross—-Neveu-Yukawa field theory. We first demonstrate that the criticality of tilted type-I
fermions is controlled by a line of fixed points along which the poles of the renormalised Green function
correspond to an untilted Dirac spectrum with varying anisotropy of Fermi velocities. At the phase transition
the Lorentz invariance is restored, resulting in the same critical exponents as for conventional Dirac systems.
The multicritical point is given by the endpoint of the fixed-point line. It can be approached along any path
in parameter space that avoids the fixed point line of the critical type-I semimetal. We show that the critical

exponents at the Lifshitz point are different and that Lorentz invariance is broken.

1. Introduction

Quantum phase transitions of nodal semimetals with pointlike Fermi
surfaces represent the simplest example of fermionic quantum critical-
ity. The symmetry breaking, driven by short-ranged repulsive inter-
actions, leads to the opening of a gap in the fermion spectrum and
therefore goes hand in hand with a semimetal-to-insulator transition. In
the purely relativistic case of Dirac fermions it is well understood [1-
4] that the universal critical behaviour is captured by the Gross—
Neveu-Yukawa (GNY) theory [5,6] which describes chiral symmetry
breaking and spontaneous mass generation in high-energy physics.

The coupling between the order parameter fields and the gapless
Dirac fermions leads to critical behaviour that falls outside the Landau—
Ginzburg-Wilson paradigm of a pure order parameter description. At
the transition, the fermion fields acquire an anomalous dimension,
resulting in non-Fermi liquid behaviour, which is the hallmark of
fermionic quantum criticality.

Electron systems can host quasiparticles at low energies that are
more exotic than relativistic Dirac fermions. Examples are semimet-
als with quadratic band touching points [7-10], or semi-Dirac elec-
trons [11-14] which display a quadratic band touching along one
momentum direction, but behave like relativistic Dirac fermions along
the other direction. Such semi-Dirac electrons occur at the topological

phase transition where two Dirac points merge as a result of anisotropy
of the tight-binding hopping parameters [15,16]. As one might antici-
pate, the different low energy electron dispersion in such systems gives
rise to novel GNY-type universality classes of symmetry-breaking phase
transitions [17-20].

The situation can become even more complicated if the symmetry
breaking results in an enlargement of the unit cell on the lattice. In this
case, the effective low-energy GNY field theory is enriched by emergent
gauge fields [21]. Recently, it was pointed out [22,23] that quantum
phase transitions of Kitaev quantum-spin liquids, which exhibit frac-
tionalised fermion excitations with Dirac or semi-Dirac dispersion, can
be understood in terms of similar GNY-type field theories.

The emergent Lorentz invariance of the Dirac fermions can be
broken with more freedom in condensed matter physics. A simple way
is to tilt the Dirac spectrum, which introduces anisotropy into the
system. As the tilt angle increases, the system goes through a Lifshitz
transition as the Fermi surface evolves from a single point (type-I Dirac
cone) into electron and hole pockets (type-II Dirac cone), as illustrated
in Fig. 1. In the type-II phase, the linear dispersions intersect the
zero energy axis and form a pair of open electron and hole pockets,
which are then cut closed by higher-order terms in the dispersion away
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Fig. 1. Low energy electronic excitations across the type-I to type-II Dirac semimetal
transition as a function of the tilt parameter a, defined in Eq. (1). (a) In the type-I
semimetal the tilt velocity is smaller than the Fermi velocity (« < 1), resulting in a
pair of tilted Dirac points at valley momenta K,. (b) In the type-II semimetal the tilt
exceeds the Fermi velocity (« > 1) and the over-tilted Dirac points become touching
points of electron and hole Fermi-surface pockets.

from the Dirac point. The critical case, which separates the type-I and
type-II fermions and which has a flat band at the Fermi surface, is
sometimes called a type-III Dirac semimetal. The crucial differences of
the electronic excitation spectra lead to different quantum transport
properties [24-28]. It is believed that type-II Dirac/Weyl fermions
can emerge behind the event horizon of a black hole [29-31]. Tilted
Dirac/Weyl semimetals can therefore be used as a platform to simulate
the black-hole physics in curved space-time.

While the type-I Dirac/Weyl fermions have already been found in
many materials [32-35], systems with type-II and type-III Dirac cones
remain rare. Nevertheless, it is reported that type-II Dirac and Weyl
fermions can be found in spin-orbit coupled fermionic superfluids [36],
the family of transition metal dichalcogenides [37-41] and in layered
oxides [42]. Type-IIl Dirac cones are also claimed to emerge in a few
materials [43-45]. However, the flat bands in such systems are usually
sensitive to perturbations. A systematic way to construct type-III Dirac
cones using a suitable form of perturbations is proposed in Ref. [46].
An alternative approach is to use photonic lattices as a platform to
engineer type-III Dirac cones [47]. While some materials might be close
to the type-I/type-II transition point at ambient conditions, it remains
an open experimental challenge to find a way to tune through such
a transition. It was proposed that the transition might be realised by
applying pressure [48], tuning the amount of disorder [49], utilising
nitrogen line defects in graphene [50], or by applying external strain
to two-dimensional nanosheets of phosphorous nitride or AsN [51].

The quantum criticality of a tilted type-I Dirac cone has been studied
in the context of systems with long-range Coulomb interaction [52—
54], symmetry breaking instabilities [55-57], and different types of
disorder [54,58]. The consensus is that in the type-I case the tilting
parameter is irrelevant under the renormalisation group. The presence
of small electron and hole pockets in the type-II phase significantly
complicates the calculation but an RG analysis can nevertheless be car-
ried out by taking into account the proper iso-energy contours [52]. In
this case the tilting parameter was found to be a relevant perturbation,
suggesting that the type-I and type-II semimetals are indeed separated
by a critical point. It is thus interesting to study multicriticality of this
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point when sufficiently strong short-range repulsive interactions lead
to spontaneous symmetry breaking.

In this paper, we will investigate the nature of symmetry breaking
phase transitions of tilted type-I Dirac fermions and of Dirac semimetals
that are exactly at the Lifshitz transition between the type-I and type-II
phases. The remainder of the paper is organised as follows. In Section 2
we define a free fermion long-wavelength action that captures the tilt
transition between a type-I and a type-II Dirac semimetal, shown in
Fig. 1. We then introduce an Ising order parameter field that has a
Landau-Ginzburg action and is linearly coupled to the Dirac fermions
via a standard Yukawa interaction. In Section 3 we consider the effect
of Landau damping of long-wavelength order parameter fluctuations
and determine the asymptotic IR propagator of the order parameter
fields. The resulting GNY field theory is analysed in Section 4, using
a perturbative RG calculation. Finally, in Section 5 we summarise and
discuss our results.

2. Model

Our starting point is a zero-temperature free-fermion action that de-
scribes the transition between type-I and type-II Dirac fermion semimet-
als in two spatial dimensions,

Solwr, wl = / Py [iko + avk, + (k, + ek)o, + k0, . €))
k

Here k, denotes Matsubara frequency, k,, k, the spatial momenta,
and ¥ = (§,,....wy) are fermionic Grassmann fields, where y, =
(Wy.4-W, p) are two-component spinors in sub-lattice space. The N
flavours of two component Dirac fields include spin s =1, | and valley
index v = +l1. For brevity, we have defined k = (k. k,,k,) and o,,
o, are Pauli matrices in A, B sublattice space. The resulting electron
dispersion,

€ (ky k) =avk, = 4/(ks + ekfc)2 + kf}, 2)

contains two parameters, « and ¢, which correspond to the tilt param-
eter and curvature correction, respectively.

The resulting dispersions for the two types of semimetals are plotted
in Fig. 1. If the tilt is smaller than the Fermi velocity, « < 1 = v,
we retain point-like Fermi surfaces, corresponding to a type-I Dirac
semimetal. In this case the curvature ¢ can be neglected sufficiently
close to the Dirac point. Note that the tilt is of opposite sign for the two
valleys, v = +1. For « > 1 the slope along the tilt direction is negative
and we are in the type-II phase (see Fig. 1b). As a result of curvature
e > 0 one obtains closed electron and hole Fermi surface pockets that
touch at the overtilted Dirac points.

The inclusion of curvature ¢ > 0 seems also essential at the critical
tilt « = 1 since without curvature one would obtain an unphysical flat
band at the Fermi level, associated with a divergent density of states.
Due to curvature the Fermi surface remains point-like at the critical
point. However, because of the different scaling dimension of the cubic
ki term the curvature e will flow to zero under RG. As we will see later,
we indeed obtain convergent results at the multicritocal point without
the inclusion of curvature.

We couple the Dirac fermions to a dynamical order parameter field
through a standard Yukawa coupling,

Sy16.5 9] = \% /q RAAZ ®

where for simplicity we assume an Ising order parameter, which could
for example describe a CDW transition. Note that upon condensation
of the order the sublattice symmetry is broken and the fermion spec-
trum becomes gapped. The order parameter field has the standard
Landau-Ginzburg ¢* action,

Si¢l = %/q(q§+6§q§+0§q§+mé+ﬁ(q)) leg|® ©)



H. Hu and F. Kriiger

(a) (b) ()

I

Fig. 2. (a) Fermionic polarisation bubble diagram that gives rise to the non-analytic
IR propagator of the bosonic fluctuation field. Panels (b) and (c) show the diagram
that contribute to the perturbative renormalisation of the free-fermion action and the
Yukawa coupling, respectively.

R
q1-92-93

where we have included a boson self-energy correction IT(g), which is
given by the bubble diagram shown in Fig. 2(a) and will be evaluated
in the next section.

Note that under the RG the fermion self-energy diagram, Fig. 2(b),
generates an additional frequency dependent term of the form —ivk,o,
in the free fermion action S,[w, y]. We therefore include such a term
in the inverse fermion propagator,

G, (k) = —iky + avk, + (k, — iAvko)o, + k,0, )

and analyse the coupled RG flow of « and A. As one might anticipate,
finite A modifies the low-energy electron dispersion, which given by the
poles of G, ,(k),

2
a— A 1 —ai 1
ev,i(kx’ky):‘/mkxi\/<l_}.2> k)2c+ 1_121('%. (6)

Interestingly, the transition between the type-I and type-II semimetals
still occurs at the critical value a = 1 for any value 4 < 1.

3. Landau damping and IR propagator

The bosonic action S[¢] that is generated under perturbative RG is
of the conventional Landau-Ginzburg form. However, this neglects the
non-analytic bosonic self-energy correction IT(q) = IT(q) — IT(0) due
to the Landau damping of the order parameter fluctuations by gapless
fermionic particle-hole fluctuations. In D = 2+1 space-time dimensions
the self energy term I1(q) dominates over the regular quadratic terms
in the IR.

While for relativistic Dirac fermions the correct scaling behaviour
can be recovered through an order (1/N)° contribution to the anoma-
lous dimension of the bosonic fields, for systems where Lorentz invari-
ance is broken, it is crucial to use a quadratic bosonic action with
inverse propagator Gd‘)'(q) ~ [I(q) as starting point for subsequent
perturbative Wilsonian RG calculation [59]. Using this correct IR
scaling form of the propagator, the fluctuation corrections under RG
are independent of the choice of the UV cut-off scheme and therefore
universal [20].

The bosonic self energy correction [see Fig. 2(a)] is equal to the
integral

g2
=5 /k {6, k0.6, k+ )0, . @

over frequency and momenta, where the trace is taken over the 2N

dimensional fermion flavour space, e.g. Tr{c,06,} = 2N§;;, and the
fermion Green function for valley v = +1 is given by

i(kg +iavk,) + (k, —iAvky)o, + ko
Gv,’v(k) _ 0 X X 0/9x Oy ) (8)

A(k) + 2i(a — Dkyk,

with A(k) = (1— /lz)k(z) +(1—aP)k? + ki. Following the steps of Ref. [20],
we obtain

(g = ) Z \/(qo +iavg,)? + (g, — iAvgy)? + q%,
v==+1

_ &
16(1 — al
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which after summation over the valleys results in

2
Ggl(q) = g—\/A(tI) + \/Az(q) +4(a — 12q3q. (©)]
8v2(1 - al)
In the limit @« = A = 0 we recover the known result G;l(q) = ;; 2%lq|
for regular Dirac fermions (see Fig. 3).

4. Renormalisation group analysis

We now perform a perturbative RG analysis by integrating out
an infinitesimal fraction of UV modes. Since the universal critical
behaviour is independent of the choice of the UV cut-off scheme we
impose a cutoff in frequency-momentum space,

VA@ = /(1= ¢ + (1 - ad)g? + 2 < A, (10)
and integrate out modes from the infinitesimal shell
Ae™ <\ A(g) < A (1n

Note that in the type-I semimetal (« < 1, 4 < 1) it is not necessary
to include an infinitesimal curvature term. We then rescale frequency
and momenta as

kg = e 09k, k- ek, and k, > ek, 12)
and fermion and boson fields as
v - e_AV’/2dfl[/, ¢ — e—A¢/2df¢. 13)

Let us first consider the renormalisation of the free-fermion action
Solw, w1 due to the fermion self-energy diagram shown in Fig. 2(b). The
corresponding shell integral is given by

2 >
Ztoar = -5 /q G4(@) .G, (g + ko, 4

Expanding out outer frequency and momenta k = (kg k,,k,) to
linear order we obtain

2(k) = =ikg 2 + vl E0 + (6,20 = vk 27 ) 0, + K, Zy0,, (15

where the fermion self-energy components are given by
2 r> Alg) =2 [(1 = )@ + a(A — a)g?
sWap = £ / Gyl@) [ T i
N Jq A@@)? +4a — 14} q>
16(x — A2q54% [(1 = AD)g) + a(h — @)q2]
+

[42(q) +4(a - 12¢2¢2]

8(a — Dg2q2Ag) [a — 2+ a(1 - 42)]

. ’ @1e)
[42(q) + 4(a - 2724242]
2 > AQ) =2 [(a = Dy + a(l - a®)q}
sWgr =& / Gy@){ @2l hg a(2 s
N Jq A(Q)® + 4o — A qpa;
16(a = %4302 [(« = D] + a(l — a*)q?]
+
[A2(q) + 4(a — /1)243%2(]2
_ 8(a = MggazA@) [o® — 1+ “<‘2’ ) , a7
[42(q) + 4(a - H2qq?]
2 o> A(g) =2 [Ma - D} + (1 — aP)g?
s@4p = & / Gy(q) @2 2 =
N Jq A@? +4(a = )?q5q3
16(a — M2 q343 [4la = Vg + (1 = a)q?]
+
[A2(q) + 4(a - ﬂ)zqéqi]z
_8(a = Dgiaz A@) (@ = DA+a -] , as)

[42(g) + 4(a - 12¢2¢2]
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Fig. 3. RG flow of the parameters « and 4.

2 > 1A(q) - 2[4 = 22 + (A — a)g?
2(()2)df = g_/ G¢(q) [2 0 — ]
N Jq A(q)? + 4o — 2qpq2

16(ax — A2 q3q% [4(1 = )@ + (A — a0)g?]
+

[42(g) + 4(a — 12¢2¢2]

8l NEEAQ) [1 = A2+ Aa - 1)

: 19
[42(g) + 4@ — ?¢2¢2]

and
zd¢ g2/>G() A@ ~ 2,
TNy TP a@r + A - g

16(a — g2 ¢2 4>
+ e (20)
[A%(g) + 4@ — H?q3q2]

Keeping the —ik, k.0, and ko, terms of the free fermion action
scale invariant we obtain

zp=1+3 -3, 21
z,=1+3%9 -3, (22)
a,=-4-3V-3D 135 =-44y,, (23)

where 7, denotes the anomalous dimension of the fermion fields.
With these conventions the terms vk, and vk,o, will not remain scale
invariant for general « and 4, as described by the resulting RG equations

da

1 2
di _ yv®@ (D 2
—_ 20 — EO A. ( 5)

The renormalisation of the Yukawa coupling g is determined by
the diagram shown in Fig. 2(c). The shell integration results in an
infinitesimal contribution dg = gQd¢ with

2 >
g
Qdt = /q Gy(@) G, (9)5.G,,(@)o.

__& [ G (@ A(q) .
P A@? + 4 - ¢

- , (26)

Combining with the rescaling we obtain the RG equation

dg 44
ﬁ=[—2(1+z0+zx)—4y,—7+.(2 g. 27)
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Note that it is possible to scale the coupling constant g out of the
action by rescaling the bosonic fields, g¢p — ¢. We should therefore
impose scale invariance of g which determines the scaling dimension
of the boson field as

A¢=—4—z(zf)”+z;2>—zy—g) = —d4n, (28)

The shell integrals 2(()1), Z((]z), Zf(l), 2,({2), Z,, and Q are non-trivial
functions of the tilt parameter « and the emergent parameter A. In order
to identify universal critical behaviour we first need to determine the
fixed points of the coupled RG Egs. (24) and (25) for « and A. For initial
values 0 < « < 1 and 0 < 4 < 1, corresponding to a type-I Dirac
semimetal with tilted Dirac points, the RG flow converges towards a
point on the line a = 4 < 1, identifying it as a line of fixed points.

In the analysis above we have not included the ¢* vertex p of the
boson action (4). This is justified since it is irrelevant in the large-N
treatment of the GNY fixed point in 2+1 dimensions, as can be seen
from the scaling dimension [p] = —=3(1 + zy + z,) =24, = =1 + O(1/N).

4.1. Symmetry-breaking of type-I semimetals

At first glance it might seem surprising that the symmetry breaking
phase transition of type-I semimetals is not described by a single fixed
point but by a line of fixed points (see Fig. 3). However, it turns out that
along the fixed point line, « = 1 < 1, the shell integrals that determine
the critical exponents remain constant and take the analytical values
2(()1) =@ = X, =4/(3x’N) and Q = —4/(z*N). We therefore obtain
zyp =z, =1and

4 32

M= 3o8 T TIaN 29
irrespective of the position on this line. This demonstrates that the
universality of the symmetry-breaking phase transition of tilted type-
I semimetals is identical to that of conventional Dirac fermions. Our
critical exponents are in perfect agreement with the established results
for relativistic Dirac fermions in D = 2 + 1 dimensions in the large N
limit [20,60-66]. As a note of caution we point out that in our work
N denotes the number of Dirac fermion pairs, while in the literature
sometimes the total number of fermion flavours, N s =2N,is used.

It is also interesting to analyse how the Lorentz invariance in type-I
semimetals is restored on large length scales. In fact, from Eq. (6) it
is apparent that for the free fermion propagator with the additional
anomalous ikyo, term, one can recast the dispersion into the form

e (ky, k) = avk, + /02k2 +ﬁ§k§, where @ = (¢ — 1)/(1 — 4?) is the
effective tilt parameter, and &, = (1 — ad)/(1 — /12),z7y = 1/V1-4A2
are the effective Fermi velocities. Similar results are also derived in
Ref. [54]. Starting with initially tilted Dirac points, e.g. 0 < a < 1
and A = 0, corresponding to the spectrum shown in Fig. 1(a), the
parameters renormalise to values «,, = A, < 1 on the fixed point
line, implying &, = 0. We see that though « flows to some non-zero
fixed point, the effective tilt parameter & is irrelevant under RG. On
the fixed point line the renormalised electron dispersion takes the form
elky,ky) = +4/02k2 + ﬁ%ki, which describes untilted Dirac cones but
with anisotropic Fermi velocities. Such an anisotropy can be simply
scaled out by a rescaling of length along one of the coordinate axis.
Hence the emergent Lorentz invariance is restored.

We briefly discuss how our results are related to relevant previous
work. In Ref. [56] the authors studied the criticality of the type-
I tilted Dirac cone with the same Ising Yukawa coupling through a
(4 — ¢) expansion, and found that the tilt parameter « is marginal. The
difference in the renormalisation of « is due to the different forms of
the order parameter propagator G,. In the e expansion, the Landau
damping of G, is of order ~ k?, indicating its perturbative nature,
and hence one should keep the original bosonic propagator and the
¢* term in the RG calculation. In this case the tilting term indeed
commutes with the rest of the action and cannot be renormalised by
the Yukawa coupling. In (2 + 1) dimensions, on the other hand, the
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Landau damping leads to a non-perturbative form of the bosonic self-
energy ~ |k|, rendering the bare (~ k) propagator sub-leading and
the ¢* irrelevant. With the damped bosonic propagator, the Yukawa
coupling will renormalise the effective tilt parameter @ and render it
irrelevant. The irrelevance of the tilt in the type-I case is also found
in Refs. [52,53], where the bosonic propagator in (2 + 1) dimensions
takes a similar form ~ |k| due to its origin in the long-range Coulomb
interaction.

4.2. Multicriticality

We can evaluate the universal critical behaviour of symmetry break-
ing at the type-I/type-II transition by approaching the point « = 1 =1
on any path that does not follow the fixed point-line of the type-I
semimetal, e.g. we could consider « = 1 — § and 4 = (1 — §)a in the
limit § — 0.

Even without the inclusion of infinitesimal curvature the shell inte-
grals converge to X' ~ 0.1644/N, =" ~ 0.1238/N, X, ~ 0.1401/N,
and Q ~ —0.4149/N, which results in the critical exponents

0.0242 0.1322
=1 =
0 + N M N (30)
0.0163 1.1259
.X—l—T, ﬂ¢:—T. (31)

Similar to the type-I case, the non-zero anomalous dimension of the
fermion fields suggests non-Fermi liquid behaviour at the multicritical
point, where the quasiparticle residue scales to zero at low energy
limit as a power law of the energy scale. At the multicritical point,
the values of the critical exponents are slightly different from the
type-I case, which indicates different scaling behaviours of physical
observables in comparison to isotropic Dirac fermions. The deviation
of the scaling exponents z, and z, from one indicates the breaking of
Lorentz invariance.

5. Conclusions

In this paper we have studied the nature of symmetry-breaking
phase transitions of two-dimensional tilted Dirac fermions, in the type-
I phase and exactly at the Lifshitz transition between a type-I and
type-II semimetal, sometimes referred to as type-IIl fermions. At the
type-I/type-II transition the Fermi surface changes from point-like to
one composed of small electron and hole pockets that are attached to
the overtilted Dirac cones.

For simplicity, we focussed on an Ising order parameter which
could for example describe a CDW transition where the charge on the
two sublattices becomes unequal. Such a transition could be driven
by sufficiently strong repulsions between fermions on neighbouring
lattice sites. The generalisation to different order parameters, such as
superconductivity or antiferromagnetism, is straightforward since the
main computational challenges stem from the nature of the fermionic
excitations at the type-I/type-II transition, which do not depend on the
number of bosonic order-parameter components.

We treated the problem using a renormalisation-group (RG) anal-
ysis of a Gross—Neveu-Yukawa type field theory which describes the
coupling between the gapless fermion excitations of the tilted Dirac
semimetal to the bosonic order parameter fluctuations through a stan-
dard Yukawa coupling. This coupling gives rise to Landau damping
of bosonic order parameter fluctuations by electronic particle-hole
fluctuations. It is crucial to include the resulting bosonic self-energy
correction since it dominates over the conventional gradient terms in
the IR limit in 2+1 space-time dimensions and therefore determines
the correct scaling form of the bosonic propagator.

The Landau damping, which was neglected in previous investiga-
tions of tilted Dirac semimetals, leads to an important mixing between
the Dirac valleys in the Brillouin zone. In systems with inversion
symmetry tilted Dirac cones always occur in pairs, at opposite momenta
and with opposite tilt. Both of these valleys contribute equally to the
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Landau damping of the bosonic order-parameter fluctuations which in
turn contribute to the renormalisation of the fermion propagator at
each valley.

We found that in the type-I phase the tilt parameter does not simply
flow to zero under the RG. Instead an additional linear-frequency term
is generated in the free fermion action. This process can be viewed as
a gradual absorption of tilt by rotating between Matsubara frequency
and the spatial momentum plane. We identified a line of fixed points
along which the poles of the renormalised Green function correspond to
an untilted Dirac fermion spectrum with changing anisotropy of Fermi
velocities. Such an anisotropy does not change the nature of the phase
transition since it can be simply scaled out. This result demonstrates
that Lorentz invariance is restored on large length and time scales and
that the universality of symmetry-breaking phase transitions of tilted
type-I Dirac semimetals is the same as that of conventional untilted
Dirac systems.

The multicritical point corresponds to the endpoint of the line of
fixed points at the critical tilt value. We were able to obtain the critical
exponents of the Ising transition at the Lifshitz point by approaching
the multicritical point along any chosen path that does not follow the
fixed-point line of the type-I semimetal. Our results show that Lorentz
invariance is broken at the multicritical point.
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