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Spin dynamics of stripes
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The spin dynamics of stripes in high-temperature superconductors and related compounds is studied in the
framework of a spin-wave theory for a simple spin-only model. The magnon dispersion relation and the
magnetic structure factor are calculated for diagonal and vertical stripes. Acoustical as well as optical bands are
included in the analysis. The incommensuration andstliesonance appear as complementary features of the
band structure at different energy scales. The dependence of spin-wave velocities and resonance frequencies on
the stripe spacing and coupling is calculated. At low doping, the resonance frequency is found to scale roughly
inversely proportional to the stripe spacing. The favorable comparison of the results with experimental data
suggests that the spin-only model provides a suitable and simple basis for calculating and understanding the
spin dynamics of stripes.
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[. INTRODUCTION intricate due to the coupling of a large number of modes with
different wave vectors. However, in many cases of interest,
The evidence for the formation of stripes in high- this ratio p:=d/a is very close to an integer value. For
temperature superconduct@t$TSC’s) and related materials stripes—like for any density waves—one actually expects
increases continuously. After the theoretical predictidmf  that integer valuep are energetically very stable due to a
stripes as a combined charge and spin-density wave phenonock-in of the superstructure into the atomic structure. This
enon, years passed until a broad interest was triggered kginning mechanism is considered as the origin of the so-
experiments on insulating ba,SrNiO,. s (LSNO) and su-  called “1/8 conundrum” in the cuprates,e., the stability of
perconducting La ,Sr,CuQ, (LSCO).*° More recent ex- p=4 over a considerable doping range. Detailed measure-
perimental evidenée® for stripes in the paradigmatic ments of the spin-excitation spectrum are available close to
HTSC's YBaCuQ.s (YBCO) and BibSnLCaCuyOg,; integerp: p=3in LSNO® p=4 in LSCO andp=4 (Ref.
(BSCCO strengthens the expectation that stripe formation inl8) andp=>5 (Ref. 14 in YBCO.
doped layered perovskites is quite generic. In order to test whether these experiments can be consis-
In spite of the striking evidence for stripes in HTSC's, the tent with the spin-wave excitation spectrum of a stripe model
causal connection between stripe formation and supercorin the simplest and most transparent case, we therefore ex-
ductivity still is a mystery. It is puzzling that both phenom- amine integerm. In this case a stripe state can be conve-
ena coexist and that, nevertheless, stripes tend to suppresiently modeled as a periodic structure on the square lattice
superconductivity®! For this interplay, spin order is more of possible electron/hole positions. The magnetic excitations
relevant than charge order. In particular, the strength of spiare studied in the framework of a spin-only model that does
fluctuations appears to play a central role. Static spin ordenot fully account for electronic correlations. In particular, a
seems to be much less compatible with superconductivitypossible spin gap at very low energies due to the formation
than dynamic spin order. of Cooper pairs is not incorporated. Nevertheless, one can
At present, one important open question is to what exexpect an adequate description of spin fluctuations well
tent the stripe picture can account for spin fluctuationsabove the gap energy. This energy range also includes the
not only at low energies, where collective magnetic excitatesonance.
tions are observed at satellite positions in the vicinity of Particular attention is paid to the spin-wave band structure
the antiferromagnetic wave vector, but also over a wider enin the vicinity of the antiferromagnetic wave vector. While
ergy range, including the resonance phenomenon at the anthe zero-frequency incommensurations fixed by the ge-
ferromagnetic wave vectqsee Refs. 12 and 13, and refer- ometry of the model, we calculate the spin-wave velocities
ences therein The specific form of the dynamic magnetic and thew resonance as dynamic features. We evaluate the
response—including “incommensuration(the separation dependence of these quantities on the stripe pdriespec-
between the satellite position and the antiferromagnetic wavgvely, the doping level and the exchange coupling across
vecton and resonance—gave rise to doubts that it could bethe stripes. By a quantitative comparison, we determine the
consistent with the stripe pictuté.0n the other hand, there value of the exchange coupling across the stripes as the only
are proposals that both features may be rooted in a stripe-a priori unknown model parameter. In particular, the depen-
like spin-density wave. dence of ther resonance on doping is found to be consistent
In this paper, we complement the spin-wave analysis byvith experiments.
Batistaet all® There, the emphasis was put on generic fea- Our course starts in Sec. Il with the introduction of the
tures of striped systems for an arbitrary ratio between thepin-only model that constitutes the basis of our study. The
spin spacing and the stripe spacind) For general ratios the linear spin-wave theory is outlined in Sec. Ill. In Sec. IV, we
structure of the magnetic excitation spectrum can be quit@resent numerical results for the magnon dispersion relation,
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FIG. 1. lllustration of vertical and diagonal stripe patterns with |, fact, the exchange couplings may have a higher symmetry
spacingsp=3 andp=4. The hole positions are indicated by open ¢, responding to the hole lattice, which, however, will not be
circles and the electron positions by gray ones. The arfows Colfésaagag explicitly in the further analysis. To implement that
spond to the spin orientations in the classical ground state. Par he hole strings act as antiphase boundaries between antifer-

- ic uni ) ©) _ _

lelograms outline magnetic qnlt cells spa_nnedABﬂr andA'<). I_n rpmagnetlc domains, we assume thHr,r')=J>0 for

our model, we assume antiferromagnetic exchange couplings o . A ; ,
nearest neighbors, r’ within the domains and(r,r’)

strengthJ within the domaingdashed linesand\J across stripes . )
J . s P =\J>0 for nearest neighbors across a string.

zigzag lines. g
(zigzag lines While it is natural to assume thdtshould be comparable
spin-wave velocitiess resonance, and the structure factor. 10 the exchange coupling in the undoped material, the cou-

In Sec. V, the results of our theory are discussed and conling AJ may deviate significantly. To keep the number of
pared to experimental data. parameters small, we ignore that the exchange coupling even

within an antiferromagnetic domain should depend on the
Il. MODEL position of the pair relative to the hole strings.

In the cuprates as well as in the nickelates, the metallic
spins are located on square lattices in weakly coupled layers. . o ]
Since the interlayer coupling generally is much smaller than We address the spin dynamics in the framework of linear
the intralayer coupling, we focus on a single layer. For sim-Spin-wave theoryfor a review in the context of cuprates,
plicity, the holes induced by doping are assumed to forms€e, €.g., Ref. 33In the following analytic part we keep the
site-centered rivers that act like antiphase boundaries for th@eneral form of the model and specialize to specific stripe
antiferromagnetic domair?s_'rhe rivers are assumed to be Conﬁgurations |atel’ in Sec. IV When we numerica”y eValuate
0n|y one lattice Spacing Wld&:f F|g _’]_) the reSUI'tS of th|S section. From I’?OW on a” |engths are ex-

Since stripes are vertical in cuprates for doping concenPressed in units of the square-lattice spaang
trations where superconductivity occurs and diagonal in
nickelates, we study both orientations with arbitrary integer
stripe spacing. Furthermore, since charge order seems to be
static up to high temperatures, in YBCO up to 306%oles
can be considered as immobile at low temperatures. Our

Ill. SPIN-WAVE THEORY

A. Holstein-Primakoff representation

In the first step, we flip all spins on one sublattice by

X — 2\ X
analysis is restricted td=0. S(r)=o™(r)Sir), (33
We are interested in collective excitations around a -
ground state, which—for classical spins—could be repre- S(r)=a(r)S(r), (3b)
sented byS(r)=S5{0,00(r)} with o==1 on the electron
positions andoc=0 on the hole positiongas illustrated in S(r)=a(r)S¥(r). (30

Fig. 1). Denoting byA™™ andA(®) the primitive basis vectors _ _ _
of the magnetic unit cell and bx=m;A+m,A@ an ar-  This transformation preserves the spin commutator relations.

bitrary magnetic lattice vector, the classical spin variablesThereby, we allowS to have spinS also at the hole sites.
obey the translational symmetey(r)=o(r +A). By placing  Although this introduces certain modes of zero energy, as we
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will discuss below, it is advantageous to us& with aho- ~ We rewrite the spin-wave Hamiltonian as

mogeneous$erromagnetic ground state. 1
The corresponding transformed Hamiltonian reads HSW:EJqS‘, FV,V’(q)[b$+beq+Q,/+b*qu,,btquVr]

1 ~ ~ o~ =
H=5 2 rr)[SNS ) +F0S(r) 1 L
o +5 q})/ G, (@[bdig bl o, tb o bqiq, ],
+o(Na(r)S(NS()], (4) | @®

where we have defined the new couplingKr,r’)
=J(r,r")o(r)o(r’) which obey the same symmetry rela-
tions (2) asJ. IS

In the next step, we represent the spin operators by the F,,’V,(q)zﬁ > > f(atA,a)co§q-A+q(a—a’)
usual Holstein-PrimakoffHP) bosons via A aal

§+=\/25——ﬁb, (53) +Qv'a_QV"a] 9

is essentially the Fourier transform Hf

where

S =b"J2s5-A, (Sb)
'éZ:_ﬁ+S’ (5C) Nf(QV+q!QV’+q,):5(q+q,)FV,V’(q) (10)

with $*=5%iSY. The eigenstates of the number operatorAnalogous expressions rela@to g.
n=b'b are restricted tm=<2S and the HP operators fulfill

the canonical commutator relatiofis,b™]=1. The linear- B. Bogoliubov transformation
ized spin-wave Hamiltoniaft(s,, is given by the terms qua-  To diagonalize the Hamiltonian, we express the bosonic
dratic in the bosonic operators, operators by canonical coordinate and momentum operators

d,(q):=P(g+Q,) andIl,(q):=I1(gq+Q,) via the relations

S
st=§2 {f(r,r)[bT(rb(r")+b(r)b'(r)] 1

D (q)=—=(bgro +b'y o), (113
+g(r,r)[b(nb(r)+birbl(rHT,  (6a) (= Pera e,
1. ~ 1
f(r,l”):EJ(r,I")[O'(r)O'(I”)-Fl]_5r,r/2 J(r,r"), Hv(q):f(b—q—%_bgm)' (11b
r (Gb) |
In terms of these operators, the spin-wave Hamiltonian reads
1.
g(r.r’)=3d(r,r)o(r)o(r’)—1]. (60)

1
How=>5 | 2 ATT(@M %, ()1, ()

Ay,v'

Obviously the functiong and g again satisfy the symmetry

relaions(2). +OUDK,,, (D, (A)}, (12)
For further manipulations it is useful to decompose a vec-
tor r=A-+a on the square lattice into a vectd&r=m;A")  with the inverse mass matrdd ~'=F—G and the coupling

+m,A® on the magnetic lattice and a decoration veetor Mmatrix K=F+G. As a result of the invariance of the Hamil-
The number of vectorsa is denoted byN (the area of the tonian under the replacemer®‘(r)— o (r)S(r), S(r)

magnetic unit cejl In momentum space, the reciprocal mag- ., ;(r)3(r) one can easily derive the symmetry conditions
netic basi®Q(") defines the corresponding magnetic Brillouin

zone(BZ). Wave vectork can be uniquely decomposed into K=oM 10, (133
k=Q+q with ge BZ and Q=m;Q®+m,Q?). Within the
Brillouin zone of the square lattice there axevectorsQ M~ l=¢Kao, (13b

which we denote by, .

We Fourier transform the bosonic operators Wé&)  Wwhere we have introduced the Hermitian matrix, ,.
= [ explk-r)b(k), wheref = (2m) 2fd%k and thek inte-  :=(LIN)= e (2@~ Q35(a). To simplify notation, we sup-
grals run over the Brillouin zone of the square lattice with anpress argumentsg which may be considered as fixed during
area (27)2. Using these decompositions and the Poissorthe diagonalization in’ space and use the pseudo-Dirac no-

sum formula tation |®)):=3 ,® |v)), |IT1)):==,I1,|v)) with the Carte-
sian basigr)), v=1, ... N. After performing the canonical
. 1 ; M-V — M Y27
kA= S Sk+0), 7 transformation |®))=M~Yqd)), [II))=MY4II)) the
; N % (k+Q) @) Hamiltonian can be rewritten as
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1 o P with 0(Q):=1/NZ e '®3x(a) preserves the magnon num-
st=§fq{<<H|H>>+<<@|M KM~ ®))}, (14)  ber, it contributes only to the elastic part of the structure
factor,
and we still have to diagonaliz ~Y2KM ~2=wW? with
Hermitian W:=M ~Y20M %2, Introducing an orthonormal ol 2 B 2
eigenbasis {|a)),a=1,... N} of this matrix, W|a)) S (k’w)ocs% 8k=Qla(QI (). 20

=¢,/a)), and definingw,:=|&,|, we can transform to nor- _ _ _
mal coordinates To calculate the inelastic part of the structure fadiwhich

has contributions of orde$ only from j=x,y) we express
these spin components by the bosonic operators using the

®,=2 0, K(rla)P,, (153 transformations derived in Sec. Il B,
=3 w(alw)i,, asy ~ SATQI=VSZ o(Q,-Q)® ()
and obtain = \@2 o @(Q,~Q,)w, "A(v' M~ a))
Hs S [0l Bl5) g b -b (=) 21a

Transforming back to corresponding bosonic operators .
B(@)=(INDIb()+bL(-q)], T (@=N2)b,  T(aFQ)I=VS2 ¢(Q- QI (a)
(—q)—b:i(q)] we obtain the final diagonal bosonic repre- "

sentation of the spin-wave Hamiltonian: /S )
=i \[E E, a(Q,— Q,) 0¥ (v MY a))
HSW:E qua(Q)

Thus, as the result of the above diagonalization we obtaitwhere we have _defin_eda(z)(Q) ==1/N2_ae_iQ_'a02(a)-
w,(0q) as the magnon dispersion relation with the band index8ince the contributing final states are just given by the

1
§+bL(q)ba(q)]- 17) X[by(q)—bl (-], (21b)

a. one-magnon statefF)=h'(q)|0), it is easy to calculate
We would like to remark that thév)) space contains a the inelastic part of the structure factor. Using the re-
common subspace of eigenvectors of the matrigedl ~*,  lations o*M~ Y3 a))=oMYAW|a))=¢,0MY3a)) and

andK with vanishing eigenvalues. This subspach éimen-  ¢?M Y4 a))=M Y4 a)), we obtain
sional, whereh is the number of holes in the magnetic unit
cell. These zero modes are an artifact of the introduction of

n —

spinsS on the hole sites. Since these spins are decoupled SHAT Q@) S% SelaQy) 80— wa(a)),
from all other spins, each of them corresponds to a mode (229
with zero energy. All above manipulations, including, e.g.,
the calculation ofMY2 and w,,*, are well defined on the W 1 i
orthogonal subspace of physical spins. Sa(a+Q,)=((v[M |a>>w_a<<a|M ). (22b)
At this point it may be helpful to remind thatis an implicit
, _ argument ofw,, M~ Y2 and|a)). The periodicityw,,(q)

In this section we proceed to calculate the zero-— , (q+Q) of the eigenfrequencies is absent in the struc-
temperature structure factor ture factor since the coupling of an external field to a spin-

wave wave vectok=g+Q depends orQ.

C. Structure factor

Sk,w)=2 > KF[S(K|0)?s(w—wg). (18
F =Xy IV. RESULTS
Here,|0) denotes the ground sta@agnon vacuuincharac-
terized byb,(q)|0)=0 and we consider only single-magnon for
stateg F) with excitation energywg:=Er—Eq. Since

We now evaluate the above general analytic expressions
the magnon dispersion and the structure factor. Thereby
we focus on our minimalistic modétf. Sec. 1) with stripe
spacingsp=3, 4, and 5, since these values correspond to
Sz(k):SE 8(k—Q,)a(Q,) dopin_g con_centrations in yarious expe_rir_nental W(_)rks as
v’ mentioned in the Introduction. The explicit comparison to
experiments is postponed to Sec. V.
_E U(Q”’)J bT(k")b(k—Q,,,Jrk”) (19 For later reference, we briefly recall that for the undoped
v/ K" two-dimensional antiferromagneivhich is recovered by
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FIG. 3. Spin-wave velocities, andv for vertical stripes with
spacingp=4 as a function ok (left pane) and as a function of p/
for different couplings\ (right panel; lines are a guide to the ¢ye

_ _ _ _ _ harmonic incommensurate wave vectorQ=((1/2)
FIG. 2. Acoustical band for vertical Stl’lpes with spacings i(l/Zp)'llz) ngher harmon|cs Of the Superstructure are
=3,4,5 and\=0.5. The upper row shows density plots of the spin- . ,ch weaker as already noticed in Ref. 5.
wave dispersion, where dark regions correspond to low-energy val- To study the anisotropy of the dispersion next to the sat-

“pace Inclding the weight of the melastc structre factor, wherd 12 POSIHONS. we calculate the spit-wave velosibgsand
P . g g . . o v perpendicular and parallel to the stripe orientatich
larger weight corresponds to darker points with larger size.

Fig. 3. For A=0, where the coupling between the domains
is switched off,v, is zero andv| remains finite. With in-
creasing\ both velocities increase;;, more strongly than
v|. There exists a valua* with isotropic velocities,v

_ — 7 =vy. For p=4 we find \*~0.3. In the limitp—« both
war(K) =254~ [cog27H) + cog2K) )", (23) velgcities converge tw - as expected, fop>1 we find
[From now on, we refer to wave vectoks=(H,K) in units v, j/vag—1=1/p. In the special case=1, the velocities are
of 2m/a.] It vanishes at the antiferromagnetic wave vectorgiven by

kKar=(3,3), Where the structure factor shows maximal inten-

our model in the limitp—o), the spin-wave dispersion is
given by

: . . . = 24
sity. To leading order ifSq=k—kug, the low-energy spin- VIT VAR (243
wave excitations are characterized by an isotropic dispersion
war=~v ae| 69| with a spin-wave velocity ,-= \/8JSa v, :L]_UAF (24b)
p_
A. Vertical case for purely geometric reasons. In this case, all spins are inter-

For vertical stripes a possible magnetic unit cell is given@cting in terms of the topology and strength of the exchange
by the basis vectord)=(0,2) andA®@=(p,0) for odd or couplmgs ex_actly I|_ke m_the anUf_erromagnet. The_only dif-
A@=(p,1) for evenp. Therefore we havéN=2p lattice f_erence lies in the insertion pf strings of holes,_ which effec-
sites per unit cellcf. Fig. 1) and 20 eigenvaluesw ,(q). tively strchh the lattice a_md increase the velocity by a factor
Two of them(corresponding to the number of holagnish ~ P/(P—1) in the perpendicular direction.
identically and we obtaip—1 twofold degenerate physical We now focus on the lin&=(H,3) containing the satel-
bands. This degeneracy results from the equivalence of thiges, along which we plot alpb—1 magnon bands in Fig. 4
two sublattices. for a variety ofp and\. For A<1 and\>1 the bands are

The lowest, acoustical band has zeros at the magnetigeparated by gapén this context, “gaps” are not necessar-
superstructure lattice vectors. Within the Brillouin zone ofily real gaps showing up in the density of states, they are
the square latticéwe choose &H,K<1), the vectorQ,  apparent gaps along the chosen lin@nly for A=1, the
are located at j(p,0) and (/p,1/2) for oddp or ((j/p) structure seems to consist of displaced and intersecting anti-
+(1/2p),1/2) for evenp (with 0<j<p). In the upper row ferromagnetic bands. The value=1 is special for the rea-
of Fig. 2, we showw(k) for the acoustical band as a density sons explained above, which also imply that the bandwidth
plot, where black corresponds és=0 and white to the upper must coincide with the antiferromagnet. The purely geomet-
band edge. ric effect entails just a more complicated band structure.

Although the dispersion relation obeys the symmaitly) To the extent to which our stripe model provides a valid
=w(k+Q) corresponding to the period of the magnetic unitdescription of the magnetic excitations in the materials
cell, this symmetry is absent in the structure factor. In thewhere the s resonance was observed, the resonance fre-
lower row of Fig. 2, the acoustic band is replotted in thequency has to be identified witlh(kaz) from the lowest
(H,K,w) space using darker and thicker dots for points withmagnon band, providea(k,z) >0 and the structure factor
larger values of the structure fact®2). In agreement with has significant weight. From Fig. 4 one recognizes that for
experiments, the weights are concentrated near the lowekt 1 this is always the acoustical band. On the other hand,
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. \ \f\/ V 7 FIG. 6. Acoustical band for diagonal stripes with spacimgs
S =3,4,5 fora=1 plotted in analogy to Fig. 2.
\ V V \ " \ ' \

0 02 04 06 08 10 02 0.4 0.6 0.8 10 02 04 06 08 of the magnetic unit cell can be chosenﬁéé)=(—1,1) and
H(r.lL.u.) A= (p,0) for odd orA®=(2p,0) for evenp (cf. Fig. 1),
_FIG. 4. .Banq structure f(.’r vertical Strip‘?s along tte,Q.5) mcgat\;]eeonnuemhbo;(ra c?frﬁoléssgrllr:jsspp?rr\: ?grctae\;lpleﬁ_rik%di‘:liﬂg
direction with different spacingg and couplingsi. Darker and vertical case, the number of eigenvalues vanishing identi-
larger points correspond to a larger weight of the inelastic structur%ally corresp,onds to the number of holes, the number of
factor bands is given by half of the number of spins per unit cell,
and the bands are twofold degenerate.
All magnetic Bragg peaks are located along the e
=(H,H) with H=j/p for odd andH=j/(2p) for evenp (cf.
Fig. 6). In the casep=3 we can calculate the dispersion
&malytically and find

o/ (JS)
|

/

2

~N
N

-

for A>1 higher bands may vyield a stronger resonafsze
casep=3 andA=2). In Fig. 5, we illustrate the dependence
of w, on\ andp.

For p large enough such thatj~v e and the magnon
dispersion is roughly linear between the main satellite an

kar, We may estimate
w(k)=2JS[sif[m(H—K)]+\ sif[ m(2H+K)]

(25) +\ sirf[ 7 (H+2K) ]2, (26)

v
WS UART -

pa

This estimate becomes exact for smafl Ahd represents the
linear asymptotics in Fig. Fright). Deviations grow with

Along thek=(H,H) direction this relation simplifies to

decreasing and increasing deviation of from 1. w(H,H)=2\JYsin(37H)|. (27)
B. Diagonal case Though the casep=3 with a single band is the simplest

For diagonal stripes there are more subtle differences pdossible, we find several critical points in the dispersion,

tween even and odd stripe spacimgsSince the basis vectors which should result in a nontrivial shape of the density of
statesp(w)~ [ 6(w— w(k)). Therefore we calculate this

35 . quantity just to illustrate that even for this simplest case,
T p(w) shows interesting features strongly depending on the
effective couplingh. The numerically calculated density of
states is plotted in Fig. 7 for different values Xf The van
Hove singularities are located at the energies of the critical
’ points in the dispersion. The dependence of these energies on
il the couplingA is also shown in this figure. Due to a finite
" numerical resolution the van Hove singularities are not re-
solved if they are too close to each other and their precise
0 02 o4 06 08 % 655 o1 b1s 02 025 03 033 shape is not reproduced, e.g., at the energies of the saddle
i points, p(w) should diverge logarithmically.

FIG. 5. The resonance frequenay, for vertical stripes as a Calculating the weight by the structure factor of the bands
function of A for different spacingp (left) and as a function of p/ ~ we find the strongest intensity near the zeros of the acoustic
for different couplings\ (right; lines are a guide to the eye band at the satellite positions

p:
3 p
P
p

Mo
L5 N A

or /(JS)
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FIG. 7. Density of stateg(w) (height of shaded area in arbitrary
units) for diagonal stripes with spacing=3 and different cou- 2 o
plings A. The thin lines correspond to the energies of the critical 1
points in the dispersion. There are up to four inequivalent ones, ai
k=(32), k=(3,0), the upper band edge with,, and a possible
additional critical point.
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FIG. 9. Band structure for diagonal stripes along tlié H)
Qz(lii,lii) direction with different spacingpg and couplings\.
2 2p'2 2p
increases. In contrast to vertical stripes, the resonance energy
remains finite in the limit\—0 for evenp where it arises
from an optical band(cf. Fig. 10. Like for the vertical case,

Along dtf;)e i;.:.(H’H) dflrectltan, th? "’}Ct?usé'gsl é)and IS w,, decreases with increasing stripe spacing, gerl ac-
N3, he band Structure again seems (0 consist of inersecfANd @ L/p. Since resonance comes from different
ing displaced antiferromag%etic bands. In contrast to the ver—and.S for even and. odp the , o, 1S a nonm'ono.tonous
. . L . function of p. For this reasonw .(p) is plotted in Fig. 10
tical case, the special value ®fis now 2 since for this value

. . . .~ separately for the two cases.
the sum of the exchange couplings to neighboring spins is as
large as in the antiferromagnet. However, for diagonal stripes
the topology of the couplings is different from the antiferro- V. DISCUSSION
magnet.

For oddp, the 7 resonance results from the excitation of
acoustical magnons since the lowest band has a fir{ikgg)
with a relatively strong weight. In contrast, for everthe
frequency and the weight of the acoustical band vanish
kag. In this case, ther resonance should therefore be as-
cribed to optical magnons. Far=2, the 7 resonance results
from the common edge of the acoustical and optical band
(cf. Fig. 9. With increasing coupling, the resonance energy

for all p. The behavior of the spin-wave velocities andy
(cf. Fig. 8 is similar to the vertical case.

We now discuss our findings in comparison to experimen-
tal data on the spin dynamics, which are obtained predomi-
nantly from neutron scattering. As a result of this comparison

e wish to advocate that the simple stripe model provides a
air account of the spin dynamics at not too low energies. At
very low energies, spin gaps may occur, e.g., due to spin
gnisotropies[as in nonsuperconducting LNQRef. 24 and

p=3
5 2 =4
Sy Ay | T 2
3} -——— p=6
2 _ T
(03] P S
3 P
15 ~ 2 T
' s
> e a
> 1 1
g
./
0.5}-
0
: 0 05 1 15 2 0 005 D1 015 0.2 025 03 035
005 s s 0 005 04 015 02 025 03 035 2 p
8 1/p

FIG. 10. Resonance frequenay, for diagonal stripes as a func-
FIG. 8. Spin-wave velocities, andv for diagonal stripes with  tion of \ for different spacing® (left) and as a function of f/for
spacingp=3 as a function oh (left) and as a function of p/for different couplings\ (right; lines are a guide to the eye distinguish-
different couplings\ (right; lines are a guide to the eye ing even and odg).
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TABLE I. Basic parameters of the undoped parent compoundsteasonably good over a wide energy rarge30 meV up to
number of layers in the crystalline unit cell, spin, nearest-neighbothe band edge ab~125 meV, at low energiea<15 meV
spin spacing, nearest-neighbor antiferromagnetic exchange COdteviations(gap$ appeat”* due to a uniaxial spin anisotropy
pling, and spin-wave velocity. NA stands for not available. and weak interlayer couplings.

The spin dynamics of the stripe system was examined for
aA) I(meV) vp(eVA) References P=3-75 due to oxygen dopinYas well as fop=3 with Sr
AF

No. of

Material layers S doping® In the first case, a reduced velocity~0.6v o Was

LNO 1 1 38 30 0.32 20,34,24  found in direction parallel to the stripes, was not re-
LCO 1 3 38 135 0.85 26,27 solved. In the second case, the velocity was measured in both
YBCO 2 i 39 125 NA 20 directions and found to be remarkably isotropic and close to
BSCCO 2 3 38 140 NA 20 the value of the undoped systemj~0.30 eVA andv,

~0.35 eVA. The overall shape of the magnon dispersion
was sinusoidal with an upper edgeat~80 meV.
LCO (Ref. 25], due to the coupling of spins to the super-  In our theory, this sinusoidal shape fpre=3 is well re-
conducting order parametédis in superconducting cuprates, produced [compare Fig. 9 and Eq(27)]. The ratio
see beloy, or simply due to the absence of antiferromag-,, /(JS)~2.7 is consistent with~0.9. For this value of,
netic order(for too small\). Our model could straightfor- v ~var and vj=0.6Te. Although we find v to be
wardly be generalized to account for the first origin. Thegmajier than in Ref. 16, the overall agreement is very satis-
ir)clusion of superconductivity would require a major exten-fying and provides strong support for our case that the spin
sion. : . dynamics can be well understood from a stripe model. Small
In Table I, we have collected basic parameters for variou uantitative deviations may be attributed to the simplicity of

undoped compounds setting the fundamental physical scaleour model using only two types of exchange couplings.

Iar:eTzéglrﬁplillesdp.m dynamics data for specific stripe structures RemarkablyhA~0.9 implies that the spin exchange across
a stripe isnot much smallethan within an antiferromagnetic
domain. It is important to keep in mind thatmust notbe

A.LSNO too small to preserve magnetic order. A quantum Monte
We start the comparison with LSNO which displays diag-Carlo analysi® of coupled two-leg laddersS 1) indicates
onal stripes and where integer valuespfire particularly @ quantum phase transition into a disordered state at
stablé'*2due to a lock-in of the stripes into the atomic struc- A~0.011. Below this value, stripe order would be destroyed
ture. In this material, static stripgse., stripes that are vis- by quantum fluctuations.
ible down to @w=0) are seen at wave vecto€3,.> For p Within our approach we can estimate also the two-
=3, the spin dynamics at higher energies has been measurathgnon signal accessible by Raman spectroscopy. We may
in detail’® Similar data are also available for noninteger compare our single-magnon densiiy) to the two-magnon
e.g.,p=3.751 scattering intensity at frequencyw? Certainly, this can be
Experiment§*3* on undopedmaterial are in agreement made only on a qualitative level, singewas calculated ne-
with two-dimensional2D) spin-wave theory for the antifer- glecting weight factorgwhich would change the shape of
romagnet withJ~30 meV. This exchange coupling corre- gspectra but not the frequency of resonancasd because
sponds to an isotropic spin-wave veloéftya-=8SJa linear spin-wave theory does not include interactions be-
=0.32 eV A sinceS=1 anda~3.8 A. This agreement is tween magnons. Nevertheless, it is instructive to compare the
outcome from our model for the diagonal cgse 3 with an
TABLE II. Spln dynamics data for different materials at various experiment by B|umber@t a|_36 on LSNO. In this experi-
doping levels characterized by the critical temperaflge stripe ment, two magnetic resonances are observegas.6) and
period p and orientation(diagonal/vertical, resonance frequency w~3J. For \~0.9 we expect a singularity in the single-

o, and gap frequencypgy,,. NA stands for not available. magnon density ab~2.7JS (see Fig. 7, which would cor-

respond to a two-magnon resonance»at5.41S. If correc-

Material T.(K) p 0, (MeV) wg,,(MmeV) References . 8

tions due to magnon interactions are modest, the resonance
LSNO 0 3@) 80 <28 16 of the theory could be identified with the upper experimental
LSCO =38 4() NA 35 37,38,17  one. Then the resonance at the lower frequency cannot be
LSCO 10 60) 25 <11 38 understood. On the other hand, fomot too close to 1 the
LSCO 0  ~43(d) 7 0 48 single-band structure fop=3 would lead to several well-
YBCO 90 50) 41 28 39,28,14 separated extrema but contradict the above determination of
YBCO 63 NA 35 28 29 \. In particular, forn<<1, the additional resonance lies above
YBCO 59 NA 26 16 39 ., since it arises from extrema close to the upper band edge
YBCO 39 8@) 23 10 18 and there is only a saddle point lat=. This apparent con-
BSCCO 91 NA 43 NA 30,43 tradiction might be resolved if either interaction corrections
BSCCO 83 NA 38 NA 43 are large, additional exchange interaction are important, or

the lower experimental resonance is of different origin.
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B. Cuprates scattering:? However, if thew resonance—in the sense of a
In the present study, wassumethe presence of charge merger of the incommensurations—can be attributed to mag-
’ pons in stripes which are particularly well established for

stripes and evaluate the spin dynamics for a simple mode o
The question of why stripes are formed and how stripe forL-SCO, one definitely should expect such a resonance. For

mation is related to superconductivity therefore cannot bé/nderdoped LSCOR=6, T.=25 K) there is evidence for
addressed. In particular, the simple spin-only model misse®@==2° MeV (Whe;e satellites merge at the antiferromeg-
the coupling of spin fluctuations to the superconducting or'€tic wave veqtc)rS A similar signal was observed at even
der parameter. Consequently, our analysis misses the openif@"’ergomng in the spin-glass phase {=7 meV for p
of a spin gap due to superconductivity. Therefore, the spiﬁ43)-
dynamics fore<wg,, is masked by superconductivitgee Like for LSNO, we may use the values &fp, andw, to
Table I). Nevertheless, one can expect the stripelike spirfStimatex for the cupraﬁib For YBCO withi =125 meV,
dynamics to remain visible in superconducting samples foP=5, andw,=41 meV " we obtainA~0.07 from the
0> left panel of Fig. 5. If we takeJ=135meV andow,
9gap: . . Hh @R 38

Such a gap has been observed in experiments on LSC&25 meV for LSCO withp=6," an even smaller value
[e.0., ®g=3.5meV near optimal doping with A~0.04 is found. '
T.=38.5 K;*"¥7"%8 3 gap smaller than 1.1 meV for under- From this result we may predict where the resonaage
doped samples witff,=12 K andT.=25 K (Ref. 38] and should be expected in LSCO near optimal dopirpg=@).
on YBCO (e.g.,wgq=10 meV for a highly underdoped ma- For J=135meV and 1=0.04-0.07 we find o,
terial with T,=39 K;'® wg,~16 meV for a moderately un- ~40—52 meV. While the resulting values fes, have a
derdoped material witf =59 K:3° wgag=30 meV for near certain spread, they suggest that the resonance frequency
optimal doping witd* T.=89 K). For YBCO there is should be at least as large as in optimally doped YBCO.

evidencé® for a proportionality betweem i~ 3.8T which In the experiments known to us, the considered energy
is not far away from the BCS weak-coupling limit with fange was simply too small to detect the resonance for opti-
©gap=3-57T . mally doped LSCO:w=6 meV in Ref. 37,w=10 meV in

Furthermore—and more importantly in the presentRefS. 47 and 49w<16 meV in Ref. 17. However, from
context—there is evidence for suchraugh proportionality ~ PUlSed neutron scattering, evidence has been found for a
not only betweer . and ., but also betweef, and w.. broad peak in the momentum-integrated susceptibility
(. ~5T, for underdoped ¥BCAY42,, ~5 4T for under-  betweed®*t40 and 70 meV, which could be ascribed to the

w Cc 1 T " Cc

doped and overdop&dBSCCO. From our theory, we ex- 7 résonance. o .

pectw.. to be roughly inversely proportional to, see Eq. Apparentl_y,)\ seems to be significantly small_er in the cu-
(24) and Fig. 10. At low dopingp should be inversely pro- prates than_m the nickelates. At the same tiés smaller
portional to the doping levelx#+26), i.e., w, should be (althouth |s_large_b. Theref(_)re, one may wonder whether
proportional to the doping level. Such a relation was found ipStatic magnetic stripe ord_er IS alread_y destroyed by guantum
a previous theoretical study of the Hubbard mdiethere it fluctuations thhout mvpkmg competlng_orders leading toa
was attributed to a particle-particle collective mode. Al-92P- ForS=; the coupI2|£195ne¢ds t0 satisy=0.3 to stabi-
though our approach is technically much less involved, itiZ€ Spin order fop=3,™while for p=4 a finiteA>0 is
provides an alternative explanation which is not in contradicSufficient™ Forp=5 (as for every odg) one again expects
tion with the previous one, since stripe order itself can be? finite critical A. If the interstripe coupling is below this
considered as a collective phenomenon that can be derive@/ue. the presence of a spin gap can be understood also
from the Hubbard mod&? (for collective magnetic excita- Within the spin-only model.

tions in a Hubbard model with stripes, see also Refs. 45 and

46). :
On the other hand, at larger doping there is no simple C. Conclusion
relation between the doping level apdIn YBCO, for ex- In summary, we find that the spin fluctuations of stripes

ample, the charge-transfer mechanism between the,CuQan provide a simple and valuable description of the dynam-
plane and the CuO chains interferes. In LSCO it is wellics observed in high-, compounds and related materials.
documented thap saturates ap=4 for x=0.124" Beyond  Already our minimalistic spin-only model provides an accu-
that point (which corresponds to optimum dopfHfy addi-  rate account of experiments on LSNO and possibly also a
tional holes may populate the antiferromagnetic domainsinifying framework for incommensurate response andsthe
without affecting their periogh. However, these excess holes resonance in the cuprates. While such a framework has been
may suppress the antiferromagnetic exchange coupling isuggested recently,it is analyzed and evaluated here for the
analogy to holes in the spin-glass phéBef. 10 reports the most transparent case of integer perigdOur results un-
corresponding suppression of the spin-wave veldcity ravel the evolution of the band structure wjiHor diagonal
Hence, the effectivd and, consequently, also,, may shrink  and vertical stripe configurations. Likewise, we have explic-
with overdoping as seen in experiments on BSCEO0. ity determined the dependence of characteristic spin-wave
For LSCO, so far no direct evidence formaesonance has velocities and of the resonance frequency pnand A.
been found. This could be simply because the resonance if-hereby, we postulate that theresonance reflects the mag-
tensity is expected to be onk10% of the total magnetic non frequencyw , of the lowest-lying band with nonvanish-
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ing weight. In particularw,. was found to be roughly in- LSCO, the vicinity of soft phonons and structural instabili-
versely proportional tg in agreement with experiments. ties may help to stabilize stripes at temperatures above the
Hopefully, future experiments can provide more directsuperconducting transition.
evidence for ther resonance also in LSCO. This would also  For future studies it would be interesting to include effects
relax the controversial question, whether spin excitations irof the bilayer coupling present in YBCO and BSCCO, of the
LSCO and YBCO are analogousr not!* If stripe magnons weak 3D coupling present in all materials, as well as spin
indeed explain the spin dynamics at intermediate energies, anisotropy, more complicated spin interactiofesg., four-
we expect, they would provide a unifying framework for spin cyclic exchang@?, excitations beyond spin waves
understanding the spin dynamics above the gap scale. Théa.g., double-spin excitatioff3, mobility of spins, and ef-
the stripe physics would be also of great importance as baséects of disorder, to name just a few.
ment for superconductivity as low-energy phenomenon.
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