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Spin dynamics of stripes

Frank Krüger and Stefan Scheidl
Institut für Theoretische Physik, Universita¨t zu Köln, Zülpicher Strasse 77, D-50937 Ko¨ln, Germany

~Received 25 November 2002; published 4 April 2003!

The spin dynamics of stripes in high-temperature superconductors and related compounds is studied in the
framework of a spin-wave theory for a simple spin-only model. The magnon dispersion relation and the
magnetic structure factor are calculated for diagonal and vertical stripes. Acoustical as well as optical bands are
included in the analysis. The incommensuration and thep resonance appear as complementary features of the
band structure at different energy scales. The dependence of spin-wave velocities and resonance frequencies on
the stripe spacing and coupling is calculated. At low doping, the resonance frequency is found to scale roughly
inversely proportional to the stripe spacing. The favorable comparison of the results with experimental data
suggests that the spin-only model provides a suitable and simple basis for calculating and understanding the
spin dynamics of stripes.
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I. INTRODUCTION

The evidence for the formation of stripes in hig
temperature superconductors~HTSC’s! and related materials
increases continuously. After the theoretical prediction1–3 of
stripes as a combined charge and spin-density wave phen
enon, years passed until a broad interest was triggered
experiments on insulating La22xSrxNiO41d ~LSNO! and su-
perconducting La22xSrxCuO4 ~LSCO!.4,5 More recent ex-
perimental evidence6–9 for stripes in the paradigmati
HTSC’s YBaCuO61d ~YBCO! and Bi2Sr2CaCu2O81d
~BSCCO! strengthens the expectation that stripe formation
doped layered perovskites is quite generic.

In spite of the striking evidence for stripes in HTSC’s, t
causal connection between stripe formation and super
ductivity still is a mystery. It is puzzling that both phenom
ena coexist and that, nevertheless, stripes tend to sup
superconductivity.10,11 For this interplay, spin order is mor
relevant than charge order. In particular, the strength of s
fluctuations appears to play a central role. Static spin or
seems to be much less compatible with superconducti
than dynamic spin order.

At present, one important open question is to what
tent the stripe picture can account for spin fluctuatio
not only at low energies, where collective magnetic exc
tions are observed at satellite positions in the vicinity
the antiferromagnetic wave vector, but also over a wider
ergy range, including the resonance phenomenon at the
ferromagnetic wave vector~see Refs. 12 and 13, and refe
ences therein!. The specific form of the dynamic magnet
response—including ‘‘incommensuration’’~the separation
between the satellite position and the antiferromagnetic w
vector! andp resonance—gave rise to doubts that it could
consistent with the stripe picture.14 On the other hand, ther
are proposals15 that both features may be rooted in a strip
like spin-density wave.

In this paper, we complement the spin-wave analysis
Batistaet al.15 There, the emphasis was put on generic f
tures of striped systems for an arbitrary ratio between
spin spacinga and the stripe spacingd. For general ratios the
structure of the magnetic excitation spectrum can be q
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intricate due to the coupling of a large number of modes w
different wave vectors. However, in many cases of intere
this ratio pªd/a is very close to an integer value. Fo
stripes—like for any density waves—one actually expe
that integer valuesp are energetically very stable due to
lock-in of the superstructure into the atomic structure. T
pinning mechanism is considered as the origin of the
called ‘‘1/8 conundrum’’ in the cuprates,5 i.e., the stability of
p54 over a considerable doping range. Detailed meas
ments of the spin-excitation spectrum are available close
integerp: p53 in LSNO,16 p54 in LSCO,17 andp54 ~Ref.
18! andp55 ~Ref. 14! in YBCO.

In order to test whether these experiments can be con
tent with the spin-wave excitation spectrum of a stripe mo
in the simplest and most transparent case, we therefore
amine integerp. In this case a stripe state can be conv
niently modeled as a periodic structure on the square lat
of possible electron/hole positions. The magnetic excitati
are studied in the framework of a spin-only model that do
not fully account for electronic correlations. In particular,
possible spin gap at very low energies due to the forma
of Cooper pairs is not incorporated. Nevertheless, one
expect an adequate description of spin fluctuations w
above the gap energy. This energy range also includes thp
resonance.

Particular attention is paid to the spin-wave band struct
in the vicinity of the antiferromagnetic wave vector. Whi
the zero-frequency incommensuration19 is fixed by the ge-
ometry of the model, we calculate the spin-wave velocit
and thep resonance as dynamic features. We evaluate
dependence of these quantities on the stripe period~respec-
tively, the doping level! and the exchange coupling acro
the stripes. By a quantitative comparison, we determine
value of the exchange coupling across the stripes as the
a priori unknown model parameter. In particular, the depe
dence of thep resonance on doping is found to be consist
with experiments.

Our course starts in Sec. II with the introduction of th
spin-only model that constitutes the basis of our study. T
linear spin-wave theory is outlined in Sec. III. In Sec. IV, w
present numerical results for the magnon dispersion relat
©2003 The American Physical Society12-1
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spin-wave velocities,p resonance, and the structure fact
In Sec. V, the results of our theory are discussed and c
pared to experimental data.

II. MODEL

In the cuprates as well as in the nickelates, the meta
spins are located on square lattices in weakly coupled lay
Since the interlayer coupling generally is much smaller th
the intralayer coupling, we focus on a single layer. For s
plicity, the holes induced by doping are assumed to fo
site-centered rivers that act like antiphase boundaries for
antiferromagnetic domains.5 The rivers are assumed to b
only one lattice spacing wide~cf. Fig. 1!.

Since stripes are vertical in cuprates for doping conc
trations where superconductivity occurs and diagonal
nickelates, we study both orientations with arbitrary integ
stripe spacingp. Furthermore, since charge order seems to
static up to high temperatures, in YBCO up to 300 K,18 holes
can be considered as immobile at low temperatures.
analysis is restricted toT50.

We are interested in collective excitations around
ground state, which—for classical spins—could be rep
sented byS(r )5S$0,0,s(r )% with s561 on the electron
positions ands50 on the hole positions~as illustrated in
Fig. 1!. Denoting byA(1) andA(2) the primitive basis vectors
of the magnetic unit cell and byA5m1A(1)1m2A(2) an ar-
bitrary magnetic lattice vector, the classical spin variab
obey the translational symmetrys~r !5s~r1A!. By placing

FIG. 1. Illustration of vertical and diagonal stripe patterns w
spacingsp53 andp54. The hole positions are indicated by ope
circles and the electron positions by gray ones. The arrows co
spond to the spin orientations in the classical ground state. P
lelograms outline magnetic unit cells spanned byA(1) andA(2). In
our model, we assume antiferromagnetic exchange coupling
strengthJ within the domains~dashed lines! andlJ across stripes
~zigzag lines!.
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the origin at a hole position we obtain the additional refle
tion symmetrys~r !52s~2r !.

For a paradigmatic and minimalistic description of ma
netic quantum fluctuations, we use a spin-only model w
pair exchange. More complicated exchange processes
as cyclic exchange20,21 may be important for quantitative
purposes but are ignored here for simplicity. We use a g
eralized Heisenberg model on the two-dimensional squ
lattice22

H5
1

2 (
r ,r8

8

J~r ,r 8!S~r !S~r 8!, ~1!

where the primed sums run over all spin positions withsÞ0.
The exchange couplings obey the symmetry relations

J~r ,r 8!5J~r 8,r !, ~2a!

J~r ,r 8!5J~r1A,r 81A!, ~2b!

J~r ,r 8!5J~2r ,2r 8!. ~2c!

In fact, the exchange couplings may have a higher symm
corresponding to the hole lattice, which, however, will not
needed explicitly in the further analysis. To implement th
the hole strings act as antiphase boundaries between an
romagnetic domains, we assume thatJ(r ,r 8)5J.0 for
nearest neighborsr , r 8 within the domains andJ(r ,r 8)
5lJ.0 for nearest neighbors across a string.

While it is natural to assume thatJ should be comparable
to the exchange coupling in the undoped material, the c
pling lJ may deviate significantly. To keep the number
parameters small, we ignore that the exchange coupling e
within an antiferromagnetic domain should depend on
position of the pair relative to the hole strings.

III. SPIN-WAVE THEORY

We address the spin dynamics in the framework of lin
spin-wave theory~for a review in the context of cuprates
see, e.g., Ref. 23!. In the following analytic part we keep th
general form of the model and specialize to specific str
configurations later in Sec. IV when we numerically evalua
the results of this section. From now on all lengths are
pressed in units of the square-lattice spacinga.

A. Holstein-Primakoff representation

In the first step, we flip all spins on one sublattice by

Sx~r !5s2~r !S̃x~r !, ~3a!

Sy~r !5s~r !S̃y~r !, ~3b!

Sz~r !5s~r !S̃z~r !. ~3c!

This transformation preserves the spin commutator relatio
Thereby, we allowS̃ to have spinS also at the hole sites
Although this introduces certain modes of zero energy, as
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will discuss below, it is advantageous to use aS̃ with a ho-
mogeneousferromagnetic ground state.

The corresponding transformed Hamiltonian reads

H5
1

2 (
r ,r8

J̃~r ,r 8!@S̃z~r !S̃z~r 8!1S̃y~r !S̃y~r 8!

1s~r !s~r 8!S̃x~r !S̃x~r 8!#, ~4!

where we have defined the new couplingsJ̃(r ,r 8)
ªJ(r ,r 8)s(r )s(r 8) which obey the same symmetry rel
tions ~2! asJ.

In the next step, we represent the spin operators by
usual Holstein-Primakoff~HP! bosons via

S̃15A2S2n̂b, ~5a!

S̃25b†A2S2n̂, ~5b!

S̃z52n̂1S, ~5c!

with S̃65S̃x6 iS̃y. The eigenstates of the number opera
n̂5b†b are restricted ton<2S and the HP operators fulfil
the canonical commutator relations@b,b†#51. The linear-
ized spin-wave HamiltonianHsw is given by the terms qua
dratic in the bosonic operators,

Hsw5
S

2 (
r ,r8

$ f ~r ,r 8!@b†~r !b~r 8!1b~r !b†~r 8!#

1g~r ,r 8!@b~r !b~r 8!1b†~r !b†~r 8!#%, ~6a!

f ~r ,r 8!5
1

2
J̃~r ,r 8!@s~r !s~r 8!11#2d r ,r8(

r8
J̃~r ,r 8!,

~6b!

g~r ,r 8!5
1

2
J̃~r ,r 8!@s~r !s~r 8!21#. ~6c!

Obviously the functionsf andg again satisfy the symmetr
relations~2!.

For further manipulations it is useful to decompose a v
tor r5A1a on the square lattice into a vectorA5m1A(1)

1m2A(2) on the magnetic lattice and a decoration vectora.
The number of vectorsa is denoted byN ~the area of the
magnetic unit cell!. In momentum space, the reciprocal ma
netic basisQ( i ) defines the corresponding magnetic Brillou
zone~BZ!. Wave vectorsk can be uniquely decomposed in
k5Q1q with qPBZ andQ5m1Q(1)1m2Q(2). Within the
Brillouin zone of the square lattice there areN vectorsQ
which we denote byQn .

We Fourier transform the bosonic operators viab(r )
5*kexp(ik•r )b(k), where*k5(2p)22*d2k and thek inte-
grals run over the Brillouin zone of the square lattice with
area (2p)2. Using these decompositions and the Poiss
sum formula

(
A

eik•A5
1

N (
Q

d~k1Q!, ~7!
13451
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we rewrite the spin-wave Hamiltonian as

Hsw5
1

2Eq
(
n,n8

Fn,n8~q!@bq1Qn

† bq1Qn8
1b2q2Qn

b2q2Qn8

† #

1
1

2Eq
(
n,n8

Gn,n8~q!@bq1Qn

† b2q2Qn8

† 1b2q2Qn
bq1Qn8

#,

~8!

where

Fn,n8~q!5
S

N (
A

(
a,a8

f ~a1A,a8!cos@q•A1q~a2a8!

1Qn•a2Qn8•a8# ~9!

is essentially the Fourier transform off,

S

N
f ~Qn1q,Qn81q8!5d~q1q8!Fn,n8~q!. ~10!

Analogous expressions relateG to g.

B. Bogoliubov transformation

To diagonalize the Hamiltonian, we express the boso
operators by canonical coordinate and momentum opera
Fn(q)ªF(q1Qn) andPn(q)ªP(q1Qn) via the relations

Fn~q!5
1

A2
~bq1Qn

1b2q2Qn

† !, ~11a!

Pn~q!5
1

A2i
~b2q2Qn

2bq1Qn

† !. ~11b!

In terms of these operators, the spin-wave Hamiltonian re

Hsw5
1

2Eq
(
n,n8

$Pn
†~q!M 21

n,n8~q!Pn8~q!

1Fn
†~q!Kn,n8~q!Fn8~q!%, ~12!

with the inverse mass matrixM215F2G and the coupling
matrix K5F1G. As a result of the invariance of the Hami
tonian under the replacementS̃x(r )→s(r )S̃x(r ), S̃y(r )
→s(r )S̃y(r ) one can easily derive the symmetry conditio

K5sM21s, ~13a!

M215sKs, ~13b!

where we have introduced the Hermitian matrixsn,n8
ª(1/N)(ae

2 i (Qn2Qn8)as(a). To simplify notation, we sup-
press argumentsq which may be considered as fixed durin
the diagonalization inn space and use the pseudo-Dirac n
tation uF&&ª(nFnun&&, uP&&ª(nPnun&& with the Carte-
sian basisun&&, n51, . . . ,N. After performing the canonica
transformation uF&&5M21/2uF̃&&, uP&&5M1/2uP̃&& the
Hamiltonian can be rewritten as
2-3



l

-

or

e-

ta
e

it
o

pl
od
g.

ro

n

-
re

the

the

re-

c-
in-

ions
eby

to
as
to

ed
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Hsw5
1

2Eq
$^^P̃uP̃&&1^^F̃uM21/2KM 21/2uF̃&&%, ~14!

and we still have to diagonalizeM21/2KM 21/25W2 with
Hermitian WªM21/2sM21/2. Introducing an orthonorma
eigenbasis $ua&&,a51, . . . ,N% of this matrix, Wua&&
5jaua&&, and definingvaªujau, we can transform to nor
mal coordinates

F̃n5(
a

va
21/2^^nua&&F̃a , ~15a!

P̃n5(
a

va
1/2^^aun&&P̃a , ~15b!

and obtain

Hsw5
1

2 (
a

E
q
va$P̃a

†P̃a1F̃a
†F̃a%. ~16!

Transforming back to corresponding bosonic operat
F̃a(q)5(1/A2)@ba(q)1ba

†(2q)#, P̃a(q)5(1/A2i )@ba

(2q)2ba
†(q)# we obtain the final diagonal bosonic repr

sentation of the spin-wave Hamiltonian:

Hsw5(
a

E
q
va~q!H 1

2
1ba

†~q!ba~q!J . ~17!

Thus, as the result of the above diagonalization we ob
va(q) as the magnon dispersion relation with the band ind
a.

We would like to remark that theun&& space contains a
common subspace of eigenvectors of the matricess, M21,
andK with vanishing eigenvalues. This subspace ish dimen-
sional, whereh is the number of holes in the magnetic un
cell. These zero modes are an artifact of the introduction
spins S̃ on the hole sites. Since these spins are decou
from all other spins, each of them corresponds to a m
with zero energy. All above manipulations, including, e.
the calculation ofM1/2 and va

21 , are well defined on the
orthogonal subspace of physical spins.

C. Structure factor

In this section we proceed to calculate the ze
temperature structure factor

S~k,v!ª(
F

(
j 5x,y,z

u^FuSj~k!u0&u2d~v2vF!. ~18!

Here,u0& denotes the ground state~magnon vacuum! charac-
terized byba(q)u0&50 and we consider only single-magno
statesuF& with excitation energyvFªEF2E0. Since

Sz~k!5S(
n8

d~k2Qn8!s~Qn8!

2(
n8

s~Qn8!E
k9

b†~k9!b~k2Qn81k9! ~19!
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with s(Q)ª1/N(ae
2 iQ•as(a) preserves the magnon num

ber, it contributes only to the elastic part of the structu
factor,

S el~k,v!}S2(
Q

d~k2Q!us~Q!u2d~v!. ~20!

To calculate the inelastic part of the structure factor~which
has contributions of orderS only from j 5x,y) we express
these spin components by the bosonic operators using
transformations derived in Sec. III B,

Sx~q1Qn!'AS(
n8

s (2)~Qn2Qn8!Fn8~q!

5AS

2(
a,n8

s (2)~Qn2Qn8!va
21/2^^n8uM21/2ua&&

3@ba~q!1ba
†~2q!#, ~21a!

Sy~q1Qn!'AS(
n8

s~Qn2Qn8!Pn8
†

~q!

5 iAS

2(
a,n8

s~Qn2Qn8!va
1/2^^n8uM1/2ua&&

3@ba~q!2ba
†~2q!#, ~21b!

where we have defineds (2)(Q)ª1/N(ae
2 iQ•as2(a).

Since the contributing final states are just given by
one-magnon statesuF&5ba

†(q)u0&, it is easy to calculate
the inelastic part of the structure factor. Using the
lations s2M21/2ua&&5sM1/2Wua&&5jasM1/2ua&& and
s2M21/2ua&&5M21/2ua&&, we obtain

S in~q1Qn ,v!5S(
a

Sa~q1Qn!d„v2va~q!…,

~22a!

Sa~q1Qn!5^^nuM21/2ua&&
1

va
^^auM21/2un&&. ~22b!

At this point it may be helpful to remind thatq is an implicit
argument ofva , M21/2, and ua&&. The periodicityva(q)
5va(q1Q) of the eigenfrequencies is absent in the stru
ture factor since the coupling of an external field to a sp
wave wave vectork5q1Q depends onQ.

IV. RESULTS

We now evaluate the above general analytic express
for the magnon dispersion and the structure factor. Ther
we focus on our minimalistic model~cf. Sec. II! with stripe
spacingsp53, 4, and 5, since these values correspond
doping concentrations in various experimental works
mentioned in the Introduction. The explicit comparison
experiments is postponed to Sec. V.

For later reference, we briefly recall that for the undop
two-dimensional antiferromagnet~which is recovered by
2-4
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SPIN DYNAMICS OF STRIPES PHYSICAL REVIEW B67, 134512 ~2003!
our model in the limitp→`), the spin-wave dispersion i
given by

vAF~k!52JSA42@cos~2pH !1cos~2pK !#2. ~23!

@From now on, we refer to wave vectorsk5(H,K) in units
of 2p/a.# It vanishes at the antiferromagnetic wave vec

kAF5( 1
2 , 1

2 ), where the structure factor shows maximal inte
sity. To leading order indq5k2kAF , the low-energy spin-
wave excitations are characterized by an isotropic disper
vAF'vAFudqu with a spin-wave velocityvAF5A8JSa.

A. Vertical case

For vertical stripes a possible magnetic unit cell is giv
by the basis vectorsA(1)5(0,2) andA(2)5(p,0) for odd or
A(2)5(p,1) for evenp. Therefore we haveN52p lattice
sites per unit cell~cf. Fig. 1! and 2p eigenvaluesva(q).
Two of them~corresponding to the number of holes! vanish
identically and we obtainp21 twofold degenerate physica
bands. This degeneracy results from the equivalence of
two sublattices.

The lowest, acoustical band has zeros at the magn
superstructure lattice vectors. Within the Brillouin zone
the square lattice~we choose 0<H,K,1), the vectorsQn

are located at (j /p,0) and (j /p,1/2) for odd p or „( j /p)
1(1/2p),1/2… for evenp ~with 0< j ,p). In the upper row
of Fig. 2, we showv~k! for the acoustical band as a dens
plot, where black corresponds tov50 and white to the uppe
band edge.

Although the dispersion relation obeys the symmetryv~k!
5v~k1Q! corresponding to the period of the magnetic u
cell, this symmetry is absent in the structure factor. In
lower row of Fig. 2, the acoustic band is replotted in t
(H,K,v) space using darker and thicker dots for points w
larger values of the structure factor~22!. In agreement with
experiments, the weights are concentrated near the lo

FIG. 2. Acoustical band for vertical stripes with spacingsp
53,4,5 andl50.5. The upper row shows density plots of the sp
wave dispersion, where dark regions correspond to low-energy
ues. The lower row shows the acoustical band in the (H,K,v)
space including the weight of the inelastic structure factor, wh
larger weight corresponds to darker points with larger size.
13451
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harmonic incommensurate wave vectorsQ5„(1/2)
6(1/2p),1/2…. Higher harmonics of the superstructure a
much weaker as already noticed in Ref. 5.

To study the anisotropy of the dispersion next to the s
ellite positions, we calculate the spin-wave velocitiesv' and
v i perpendicular and parallel to the stripe orientation~cf.
Fig. 3!. For l50, where the coupling between the domai
is switched off,v' is zero andv i remains finite. With in-
creasingl both velocities increase,v' more strongly than
v i . There exists a valuel* with isotropic velocities,v'

5v i . For p54 we find l*'0.3. In the limit p→` both
velocities converge tovAF as expected, forp@1 we find
v',i /vAF21}1/p. In the special casel51, the velocities are
given by

v i5vAF , ~24a!

v'5
p

p21
vAF ~24b!

for purely geometric reasons. In this case, all spins are in
acting in terms of the topology and strength of the excha
couplings exactly like in the antiferromagnet. The only d
ference lies in the insertion of strings of holes, which effe
tively stretch the lattice and increase the velocity by a fac
p/(p21) in the perpendicular direction.

We now focus on the linek5(H, 1
2 ) containing the satel-

lites, along which we plot allp21 magnon bands in Fig. 4
for a variety ofp and l. For l,1 andl.1 the bands are
separated by gaps.~In this context, ‘‘gaps’’ are not necessa
ily real gaps showing up in the density of states, they
apparent gaps along the chosen line.! Only for l51, the
structure seems to consist of displaced and intersecting
ferromagnetic bands. The valuel51 is special for the rea-
sons explained above, which also imply that the bandwi
must coincide with the antiferromagnet. The purely geom
ric effect entails just a more complicated band structure.

To the extent to which our stripe model provides a va
description of the magnetic excitations in the materi
where thep resonance was observed, the resonance
quency has to be identified withv(kAF) from the lowest
magnon band, providedv(kAF).0 and the structure facto
has significant weight. From Fig. 4 one recognizes that
l,1 this is always the acoustical band. On the other ha

-
l-

e

FIG. 3. Spin-wave velocitiesv' andv i for vertical stripes with
spacingp54 as a function ofl ~left panel! and as a function of 1/p
for different couplingsl ~right panel; lines are a guide to the eye!.
2-5
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FRANK KRÜGER AND STEFAN SCHEIDL PHYSICAL REVIEW B67, 134512 ~2003!
for l.1 higher bands may yield a stronger resonance~see
casep53 andl52!. In Fig. 5, we illustrate the dependenc
of vp on l andp.

For p large enough such thatv i'vAF and the magnon
dispersion is roughly linear between the main satellite a
kAF , we may estimate

vp'vAF

p

pa
. ~25!

This estimate becomes exact for small 1/p and represents th
linear asymptotics in Fig. 5~right!. Deviations grow with
decreasingp and increasing deviation ofl from 1.

B. Diagonal case

For diagonal stripes there are more subtle differences
tween even and odd stripe spacingsp. Since the basis vector

FIG. 4. Band structure for vertical stripes along the (H,0.5)
direction with different spacingsp and couplingsl. Darker and
larger points correspond to a larger weight of the inelastic struc
factor.

FIG. 5. The resonance frequencyvp for vertical stripes as a
function ofl for different spacingsp ~left! and as a function of 1/p
for different couplingsl ~right; lines are a guide to the eye!.
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of the magnetic unit cell can be chosen asA(1)5(21,1) and
A(2)5(p,0) for odd orA(2)5(2p,0) for evenp ~cf. Fig. 1!,
we have one hole andp21 spins per unit cell for oddp and
twice the number of holes and spins for evenp. Like in the
vertical case, the number of eigenvalues vanishing ide
cally corresponds to the number of holes, the number
bands is given by half of the number of spins per unit ce
and the bands are twofold degenerate.

All magnetic Bragg peaks are located along the lineQ
5(H,H) with H5 j /p for odd andH5 j /(2p) for evenp ~cf.
Fig. 6!. In the casep53 we can calculate the dispersio
analytically and find

v~k!52JS$sin2@p~H2K !#1l sin2@p~2H1K !#

1l sin2@p~H12K !#%1/2. ~26!

Along thek5(H,H) direction this relation simplifies to

v~H,H !5A2lJSusin~3pH !u. ~27!

Though the casep53 with a single band is the simples
possible, we find several critical points in the dispersio
which should result in a nontrivial shape of the density
statesr(v);*kd(v2v(k)). Therefore we calculate this
quantity just to illustrate that even for this simplest ca
r~v! shows interesting features strongly depending on
effective couplingl. The numerically calculated density o
states is plotted in Fig. 7 for different values ofl. The van
Hove singularities are located at the energies of the crit
points in the dispersion. The dependence of these energie
the couplingl is also shown in this figure. Due to a finit
numerical resolution the van Hove singularities are not
solved if they are too close to each other and their prec
shape is not reproduced, e.g., at the energies of the sa
points,r~v! should diverge logarithmically.

Calculating the weight by the structure factor of the ban
we find the strongest intensity near the zeros of the acou
band at the satellite positions

re

FIG. 6. Acoustical band for diagonal stripes with spacingsp
53,4,5 forl51 plotted in analogy to Fig. 2.
2-6
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Q5S 1

2
6

1

2p
,
1

2
6

1

2pD
for all p. The behavior of the spin-wave velocitiesv' andv i
~cf. Fig. 8! is similar to the vertical case.

Along the k5(H,H) direction, the acoustical band i
separated by finite gaps from the optical bands forlÞ2. For
l52, the band structure again seems to consist of inters
ing displaced antiferromagnetic bands. In contrast to the
tical case, the special value ofl is now 2 since for this value
the sum of the exchange couplings to neighboring spins i
large as in the antiferromagnet. However, for diagonal stri
the topology of the couplings is different from the antiferr
magnet.

For oddp, thep resonance results from the excitation
acoustical magnons since the lowest band has a finitev(kAF)
with a relatively strong weight. In contrast, for evenp the
frequency and the weight of the acoustical band vanish
kAF . In this case, thep resonance should therefore be a
cribed to optical magnons. Forl52, thep resonance result
from the common edge of the acoustical and optical ba
~cf. Fig. 9!. With increasing couplingl, the resonance energ

FIG. 7. Density of statesr~v! ~height of shaded area in arbitrar
units! for diagonal stripes with spacingp53 and different cou-
plings l. The thin lines correspond to the energies of the criti
points in the dispersion. There are up to four inequivalent ones
k5~1

2,
1
2!, k5~1

2,0!, the upper band edge withvmax and a possible
additional critical point.

FIG. 8. Spin-wave velocitiesv' andv i for diagonal stripes with
spacingp53 as a function ofl ~left! and as a function of 1/p for
different couplingsl ~right; lines are a guide to the eye!.
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increases. In contrast to vertical stripes, the resonance en
remains finite in the limitl→0 for evenp where it arises
from an optical band.~cf. Fig. 10!. Like for the vertical case,
vp decreases with increasing stripe spacing, forp@1 ac-
cording tovp}1/p. Since resonance comes from differe
bands for even and oddp the p, vp is a nonmonotonous
function of p. For this reason,vp(p) is plotted in Fig. 10
separately for the two cases.

V. DISCUSSION

We now discuss our findings in comparison to experim
tal data on the spin dynamics, which are obtained predo
nantly from neutron scattering. As a result of this comparis
we wish to advocate that the simple stripe model provide
fair account of the spin dynamics at not too low energies.
very low energies, spin gaps may occur, e.g., due to s
anisotropies@as in nonsuperconducting LNO~Ref. 24! and

l
at

FIG. 9. Band structure for diagonal stripes along the (H,H)
direction with different spacingsp and couplingsl.

FIG. 10. Resonance frequencyvp for diagonal stripes as a func
tion of l for different spacingsp ~left! and as a function of 1/p for
different couplingsl ~right; lines are a guide to the eye distinguis
ing even and oddp).
2-7
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FRANK KRÜGER AND STEFAN SCHEIDL PHYSICAL REVIEW B67, 134512 ~2003!
LCO ~Ref. 25!#, due to the coupling of spins to the supe
conducting order parameter~as in superconducting cuprate
see below!, or simply due to the absence of antiferroma
netic order~for too smalll!. Our model could straightfor-
wardly be generalized to account for the first origin. T
inclusion of superconductivity would require a major exte
sion.

In Table I, we have collected basic parameters for vari
undoped compounds setting the fundamental physical sc
In Table II spin dynamics data for specific stripe structu
are compiled.

A. LSNO

We start the comparison with LSNO which displays dia
onal stripes and where integer values ofp are particularly
stable31,32due to a lock-in of the stripes into the atomic stru
ture. In this material, static stripes~i.e., stripes that are vis
ible down to v50! are seen at wave vectorsQn .33 For p
53, the spin dynamics at higher energies has been meas
in detail.16 Similar data are also available for nonintegerp,
e.g.,p53.75.10

Experiments24,34 on undopedmaterial are in agreemen
with two-dimensional~2D! spin-wave theory for the antifer
romagnet withJ'30 meV. This exchange coupling corre
sponds to an isotropic spin-wave velocity24 vAF5A8SJa
50.32 eV Å sinceS51 and a'3.8 Å. This agreement is

TABLE I. Basic parameters of the undoped parent compoun
number of layers in the crystalline unit cell, spin, nearest-neigh
spin spacing, nearest-neighbor antiferromagnetic exchange
pling, and spin-wave velocity. NA stands for not available.

Material
No. of
layers S a(Å) J(meV) vAF(eV Å) References

LNO 1 1 3.8 30 0.32 20,34,24
LCO 1 1

2 3.8 135 0.85 26,27
YBCO 2 1

2 3.9 125 NA 20
BSCCO 2 1

2 3.8 140 NA 20

TABLE II. Spin dynamics data for different materials at vario
doping levels characterized by the critical temperatureTc , stripe
period p and orientation~diagonal/vertical!, resonance frequenc
vp , and gap frequencyvgap. NA stands for not available.

Material Tc(K) p vp (meV) vgap (meV) References

LSNO 0 3(d) 80 <28 16
LSCO '38 4(v) NA 3.5 37,38,17
LSCO 10 6(v) 25 <1.1 38
LSCO 0 '43(d) 7 0 48
YBCO 90 5(v) 41 28 39,28,14
YBCO 63 NA 35 28 29
YBCO 59 NA 26 16 39
YBCO 39 8(v) 23 10 18
BSCCO 91 NA 43 NA 30,43
BSCCO 83 NA 38 NA 43
13451
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reasonably good over a wide energy rangev*30 meV up to
the band edge atv'125 meV, at low energiesv&15 meV
deviations~gaps! appear24 due to a uniaxial spin anisotrop
and weak interlayer couplings.

The spin dynamics of the stripe system was examined
p53.75 due to oxygen doping10 as well as forp53 with Sr
doping.16 In the first case, a reduced velocityv i'0.6vAF was
found in direction parallel to the stripes,v' was not re-
solved. In the second case, the velocity was measured in
directions and found to be remarkably isotropic and close
the value of the undoped system:v i'0.30 eV Å andv'

'0.35 eV Å. The overall shape of the magnon dispers
was sinusoidal with an upper edge atvp'80 meV.

In our theory, this sinusoidal shape forp53 is well re-
produced @compare Fig. 9 and Eq.~27!#. The ratio
vp /(JS)'2.7 is consistent withl'0.9. For this value ofl,
v''vAF and v i'0.67vAF . Although we find v i to be
smaller than in Ref. 16, the overall agreement is very sa
fying and provides strong support for our case that the s
dynamics can be well understood from a stripe model. Sm
quantitative deviations may be attributed to the simplicity
our model using only two types of exchange couplings.

Remarkably,l'0.9 implies that the spin exchange acro
a stripe isnot much smallerthan within an antiferromagnetic
domain. It is important to keep in mind thatl must notbe
too small to preserve magnetic order. A quantum Mo
Carlo analysis35 of coupled two-leg ladders (S51) indicates
a quantum phase transition into a disordered state
l'0.011. Below this value, stripe order would be destroy
by quantum fluctuations.

Within our approach we can estimate also the tw
magnon signal accessible by Raman spectroscopy. We
compare our single-magnon densityr~v! to the two-magnon
scattering intensity at frequency 2v. Certainly, this can be
made only on a qualitative level, sincer was calculated ne-
glecting weight factors~which would change the shape o
spectra but not the frequency of resonances! and because
linear spin-wave theory does not include interactions
tween magnons. Nevertheless, it is instructive to compare
outcome from our model for the diagonal casep53 with an
experiment by Blumberget al.36 on LSNO. In this experi-
ment, two magnetic resonances are observed atv'4.6J and
v'3J. For l'0.9 we expect a singularity in the single
magnon density atv'2.7JS ~see Fig. 7!, which would cor-
respond to a two-magnon resonance atv'5.4JS. If correc-
tions due to magnon interactions are modest, the reson
of the theory could be identified with the upper experimen
one. Then the resonance at the lower frequency canno
understood. On the other hand, forl not too close to 1 the
single-band structure forp53 would lead to several well-
separated extrema but contradict the above determinatio
l. In particular, forl,1, the additional resonance lies abo
vp since it arises from extrema close to the upper band e
and there is only a saddle point atkAF . This apparent con-
tradiction might be resolved if either interaction correctio
are large, additional exchange interaction are important
the lower experimental resonance is of different origin.

s:
r
u-
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B. Cuprates

In the present study, weassumethe presence of charg
stripes and evaluate the spin dynamics for a simple mo
The question of why stripes are formed and how stripe f
mation is related to superconductivity therefore cannot
addressed. In particular, the simple spin-only model mis
the coupling of spin fluctuations to the superconducting
der parameter. Consequently, our analysis misses the ope
of a spin gap due to superconductivity. Therefore, the s
dynamics forv,vgap is masked by superconductivity~see
Table II!. Nevertheless, one can expect the stripelike s
dynamics to remain visible in superconducting samples
v.vgap.

Such a gap has been observed in experiments on LS
@e.g., vgap.3.5 meV near optimal doping with
Tc538.5 K;17,37,38 a gap smaller than 1.1 meV for unde
doped samples withTc512 K andTc525 K ~Ref. 38!# and
on YBCO ~e.g.,vgap.10 meV for a highly underdoped ma
terial with Tc539 K;18 vgap.16 meV for a moderately un
derdoped material withTc559 K;39 vgap.30 meV for near
optimal doping with14 Tc589 K). For YBCO there is
evidence40 for a proportionality betweenvgap'3.8Tc which
is not far away from the BCS weak-coupling limit wit
vgap53.52Tc .

Furthermore—and more importantly in the prese
context—there is evidence for such a~rough! proportionality
not only betweenTc and vgap but also betweenTc and vp

(vp.5Tc for underdoped YBCO,41,42 vp.5.4Tc for under-
doped and overdoped43 BSCCO!. From our theory, we ex-
pect vp to be roughly inversely proportional top, see Eq.
~24! and Fig. 10. At low doping,p should be inversely pro
portional to the doping level (x12d), i.e., vp should be
proportional to the doping level. Such a relation was found
a previous theoretical study of the Hubbard model,44 where it
was attributed to a particle-particle collective mode. A
though our approach is technically much less involved
provides an alternative explanation which is not in contrad
tion with the previous one, since stripe order itself can
considered as a collective phenomenon that can be der
from the Hubbard model1,2 ~for collective magnetic excita
tions in a Hubbard model with stripes, see also Refs. 45
46!.

On the other hand, at larger doping there is no sim
relation between the doping level andp. In YBCO, for ex-
ample, the charge-transfer mechanism between the C2
plane and the CuO chains interferes. In LSCO it is w
documented thatp saturates atp54 for x*0.12.47 Beyond
that point ~which corresponds to optimum doping47!, addi-
tional holes may populate the antiferromagnetic doma
without affecting their periodp. However, these excess hole
may suppress the antiferromagnetic exchange couplin
analogy to holes in the spin-glass phase~Ref. 10 reports the
corresponding suppression of the spin-wave veloci!.
Hence, the effectiveJ and, consequently, alsovp may shrink
with overdoping as seen in experiments on BSCCO.43

For LSCO, so far no direct evidence for ap resonance has
been found. This could be simply because the resonanc
tensity is expected to be only;10% of the total magnetic
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scattering.12 However, if thep resonance—in the sense of
merger of the incommensurations—can be attributed to m
nons in stripes which are particularly well established
LSCO, one definitely should expect such a resonance.
underdoped LSCO (p56, Tc525 K) there is evidence for
vp525 meV ~where satellites merge at the antiferrome
netic wave vector!.38 A similar signal was observed at eve
lower doping in the spin-glass phase (vp57 meV for p
'43).48

Like for LSNO, we may use the values ofJ, p, andvp to
estimatel for the cuprates. For YBCO withJ5125 meV,
p55, and vp541 meV,14,40 we obtainl;0.07 from the
left panel of Fig. 5. If we takeJ5135 meV and vp

525 meV for LSCO withp56,38 an even smaller value
l;0.04 is found.

From this result we may predict where the resonancevp

should be expected in LSCO near optimal doping (p54).
For J5135 meV and l50.04–0.07 we find vp

'40– 52 meV. While the resulting values forvp have a
certain spread, they suggest that the resonance frequ
should be at least as large as in optimally doped YBCO.

In the experiments known to us, the considered ene
range was simply too small to detect the resonance for o
mally doped LSCO:v&6 meV in Ref. 37,v&10 meV in
Refs. 47 and 49,v<16 meV in Ref. 17. However, from
pulsed neutron scattering, evidence has been found fo
broad peak in the momentum-integrated susceptibi
between50,51 40 and 70 meV, which could be ascribed to t
p resonance.

Apparently,l seems to be significantly smaller in the c
prates than in the nickelates. At the same time,S is smaller
~althoughJ is larger!. Therefore, one may wonder wheth
static magnetic stripe order is already destroyed by quan
fluctuations without invoking competing orders leading to
gap. ForS5 1

2 the coupling needs to satisfyl*0.3 to stabi-
lize spin order forp53,22,35 while for p54 a finitel.0 is
sufficient.22 For p55 ~as for every oddp) one again expects
a finite critical l. If the interstripe coupling is below this
value, the presence of a spin gap can be understood
within the spin-only model.

C. Conclusion

In summary, we find that the spin fluctuations of strip
can provide a simple and valuable description of the dyna
ics observed in high-Tc compounds and related material
Already our minimalistic spin-only model provides an acc
rate account of experiments on LSNO and possibly als
unifying framework for incommensurate response and thp
resonance in the cuprates. While such a framework has b
suggested recently,15 it is analyzed and evaluated here for th
most transparent case of integer periodsp. Our results un-
ravel the evolution of the band structure withp for diagonal
and vertical stripe configurations. Likewise, we have exp
itly determined the dependence of characteristic spin-w
velocities and of the resonance frequency onp and l.
Thereby, we postulate that thep resonance reflects the mag
non frequencyvp of the lowest-lying band with nonvanish
2-9
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ing weight. In particular,vp was found to be roughly in-
versely proportional top in agreement with experiments.

Hopefully, future experiments can provide more dire
evidence for thep resonance also in LSCO. This would als
relax the controversial question, whether spin excitations
LSCO and YBCO are analogous7 or not.14 If stripe magnons
indeed explain the spin dynamics at intermediate energie
we expect, they would provide a unifying framework f
understanding the spin dynamics above the gap scale. T
the stripe physics would be also of great importance as b
ment for superconductivity as low-energy phenomenon.

Naturally, several aspects remain unexplained by
minimalistic theory. For example, our model cannot be
pected to explain why the magnetic incommensuration
appears atTc in YBCO ~Ref. 14! while charge order is vis-
ible up to 300 K.18 Probably this is a question to the strip
forming mechanism and to a possible coupling between
order parameters for stripe order and superconductivity
hy
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LSCO, the vicinity of soft phonons and structural instabi
ties may help to stabilize stripes at temperatures above
superconducting transition.

For future studies it would be interesting to include effe
of the bilayer coupling present in YBCO and BSCCO, of t
weak 3D coupling present in all materials, as well as s
anisotropy, more complicated spin interactions~e.g., four-
spin cyclic exchange20,21!, excitations beyond spin wave
~e.g., double-spin excitations36!, mobility of spins, and ef-
fects of disorder, to name just a few.
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