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Fermionic criticality of anisotropic nodal point semimetals away from the upper critical dimension:
Exact exponents to leading order in 1
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We consider the fermionic quantum criticality of anisotropic nodal point semimetals in d = dL + dQ spatial
dimensions that disperse linearly in dL dimensions, and quadratically in the remaining dQ dimensions. When
subject to strong interactions, these systems are susceptible to semimetal-insulator transitions concurrent with
spontaneous symmetry breaking. Such quantum critical points are described by effective field theories of
anisotropic nodal fermions coupled to dynamical order parameter fields. We analyze the universal scaling in
the physically relevant spatial dimensions, generalizing to a large number Nf of fermion flavors for analytic
control. Landau damping by gapless fermionic excitations gives rise to nonanalytic self-energy corrections to
the bosonic order-parameter propagator that dominate the long-wavelength behavior. We show that perturbative
momentum shell RG leads to nonuniversal, cutof-dependent results, as it does not correctly account for this
nonanalytic structure. In turn, using a completely general soft cutoff formulation, we demonstrate that the correct
IR scaling of the dressed bosonic propagator can be deduced by enforcing that results are independent of the
cutoff scheme. Using the soft cutoff RG with the dressed dynamical RPA boson propagator, we compute the exact
critical exponents for anisotropic semi-Dirac fermions (dL = 1, dQ = 1) to leading order in 1/Nf and to all loop
orders. Applying the same method to relativistic Dirac fermions, we reproduce the critical exponents obtained
by other methods, such as conformal bootstrap. Unlike in the relativistic case, where the UV-IR connection is
reestablished at the upper critical dimension, nonanalytic IR contributions persist near the upper critical line
2dL + dQ = 4 of anisotropic nodal fermions. We present ε expansions in both the number of linear and quadratic
dimensions. The corrections to critical exponents are nonanalytic in ε, with a functional form that depends on
the starting point on the upper critical line.

DOI: 10.1103/PhysRevResearch.2.043265

I. INTRODUCTION

The discovery of topological insulators has led to an ex-
plosion of research into topological aspects of electronic band
structures in two and three dimensions [1,2]. In so-called
nodal point semimetals, valence and conduction bands touch
at a number of discrete points in the Brillouin zone. The
most fundamental members of this family are Weyl or Dirac
semimetals [3–5], which exhibit relativistic low-energy exci-
tations that are protected by topology and symmetry.

A transition into a gapped insulating state can only be
achieved by breaking the protecting symmetry or by tun-
ing the band structure through a topological phase transition
where nodal points with opposite chirality merge. Such a
topological phase transition was observed in black phospho-
rous [6,7], and is predicted to occur in strained honeycomb
lattices [8] and VO2-TiO2 heterostructures [8,9]. At the tran-
sition point, the dispersion becomes quadratic along the
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momentum direction along which the nodal points merge,
whilst it remains relativistic along the other direction [10,11].
Such quasiparticles were termed semi-Dirac fermions [8,12].
Analogous hybrid quasiparticles exist at topological quantum
phase transitions in noncentrosymmetric three-dimensional
materials [13,14]. Anisotropic nodal fermions with dL linear
and dQ quadratic momentum directions in d = dL + dQ spa-
tial dimensions interpolate between relativistic Dirac or Weyl
fermions and quasiparticles in systems with quadratic band
touching [15–18] (see Fig. 1).

In anisotropic nodal point semimetals the density of states
vanishes with a modified power law, ρ(E ) ∼ |E |r , r = (2dL +
dQ − 2)/2, giving rise to new exponents in the temperature
dependence of various thermodynamic quantities, such as
specific heat and compressibility [13]. Moreover, the strong
anisotropy due to linear and quadratic momentum directions
leads to unusual anisotropic transport phenomena [13,19] and
exotic, directionally dependent screening effects [14,20–22].

Nodal semimetals with pointlike Fermi surfaces provide
the simplest setting to study fermionic quantum criticality.
Quantum phase transitions can be driven by sufficiently strong
short-range electron-electron interactions in the underlying
lattice model. Depending on the nature of the microscopic
interactions, this can lead to various types of symmetry break-
ing, resulting in rich phase diagrams with antiferromagnetic,
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FIG. 1. Different types of nodal-point semimetals in d = 2
spatial dimensions. The quasiparticles at the band-touching point
disperse linearly along dL and quadratically along dQ directions,
dL + dQ = 2.

charge-density wave, and bond-ordered phases, as studied in
great detail for extended Hubbard models on the honeycomb
lattice [23–32]. Irrespective of the particular order, the spon-
taneous symmetry breaking generically leads to the opening
of a gap in the fermion spectrum and is therefore concurrent
with semimetal-insulator transitions.

The universality of a particular transition can be stud-
ied using an effective field theory that is derived through a
Hubbard-Stratonovich decoupling of the interaction vertex in
the relevant channel, followed by the conventional coarse-
graining procedure. This results in a dynamical bosonic
order-parameter theory which is coupled to the gapless
fermion excitations. In the purely relativistic case of Dirac
fermions, this is known as the Gross-Neveu-Yukawa (GNY)
theory [33–35], which describes chiral symmetry breaking
and spontaneous mass generation in high-energy physics
[36,37]. The coupling between the order parameter fields and
the gapless Dirac fermions leads to novel fermion-induced
critical behavior that falls outside the Landau-Ginzburg-
Wilson paradigm of a pure order parameter description [38].

The lack of Lorentz invariance and the different scaling of
the density of states near the nodal points leads to distinct
fermion-induced criticality in nodal fermion systems with
quadratic [39–42] and semi-Dirac [43–46] band-touching
points. The latter are particularly interesting because the in-
trinsic electronic anisotropy gives rise to highly anisotropic
order-parameter correlations with different correlation-length
exponents along linear and quadratic momentum directions.

At the same time, the anisotropic dispersion of semi-Dirac
fermions makes this problem difficult. Different comple-
mentary expansions were used to obtain analytic control in
renormalization-group (RG) calculations. In Ref. [44], the
problem was analyzed in two spatial dimensions but with
a generalized dispersion k2n

x in the nonrelativistic direction,
facilitating a controlled ascent from one dimension (n → ∞)
[47]. More traditional approaches include a 1/Nf expansion
in the number of fermion flavors [45] and an ε expansion
below the line of upper critical dimensions, 2dL + dQ = 4,
expanding in the number of quadratic directions, dL = 1,
dQ = 2 − εQ [46].

Under conventional momentum-shell RG, the bosonic
order-parameter propagator develops unphysical divergencies,
irrespective of the expansion scheme [45,46]. This is because
along the linear momentum directions, the loop corrections to
the propagator, obtained by successive integration of modes

from a shell near the UV cutoff, are irrelevant in an RG
sense. The related divergencies need to be regularized by an
additional IR contribution to the bosonic propagator that is not
generated or renormalized under the Wilsonian RG. Instead it
needs to be computed separately by integrating the fermion
polarization diagram over the entire frequency and momen-
tum range up to the infinitesimal shell [14,20–22,45,46,48].

As explained in Ref. [20], the correct procedure within the
large Nf formulation is to compute bosonic and fermionic
self-energies in a self-consistent scheme and to use the dressed
dynamical propagators as input in subsequent RG calcula-
tions. Such an approach was commonly used to understand
quantum critical behavior of metals [49–56], although it was
later shown that the 1/Nf expansion fails at higher-loop order
in systems with a full two-dimensional Fermi surface [57].

The necessity to use a dressed boson propagator is not
a mere technical issue. It is intimately linked to the phe-
nomenon of Landau damping of order-parameter fluctuations
by gapless electronic particle-hole excitations. This damping
is known to completely change the long-wavelength behavior
of the system, leading to distinct critical behavior. In itinerant
ferromagnets, long-range spatial correlations associated with
the Landau damping of the order parameter field generate a
negative, nonanalytic contribution to the static magnetic sus-
ceptibility, rendering the Hertz-Millis-Moriya theory [58,59]
unstable towards first-order behavior or incommensurate
order [60].

In order to identify the universal critical behavior of a gen-
eral dL-dQ nodal-fermion system, it is of crucial importance
to use the correct bosonic IR propagator. However, due to the
inherent anisotropy, the evaluation of the fermionic polariza-
tion diagram that determines the bosonic self-energy �(q,�)
is rather involved [20]. As one might anticipate, �(q,�) is
nonanalytic and highly anisotropic, and often approximations
or interpolations between different asymptotic forms are used
[20,21,45,46], potentially leading to nonuniversal results. This
problem is apparent in recent studies of the effects of long-
range Coulomb interactions between semi-Dirac fermions
[20,21]. While the Coulomb interaction in two dimensions is
represented by a bare inverse gauge-boson propagator G−1

φ ∼
|q|, the long-wavelength behavior is completely dominated by
the nonanalytic bosonic self-energy �(q,�), giving rise to
marginal Fermi-liquid behavior at smallest energies, with var-
ious anomalous physical properties [20]. Using an incomplete
IR propagator, e.g., neglecting the dynamic part of �(q,�),
leads to fundamentally different results [21].

In this article we revisit the quantum criticality of topolog-
ical nodal-point semimetals, using a soft cutoff RG approach
[61–65] within the large Nf expansion. We demonstrate that
the use of an incorrect bosonic IR propagator gives rise to
nonuniversal results that depend on the UV cutoff scheme. In
turn, enforcement of cutoff independence leads to the correct
scaling form of the bosonic IR propagator, which is given by
the full RPA fermion loop resummation.

Using soft cutoff RG with the dressed RPA order-
parameter propagator, we compute the exact critical ex-
ponents for anisotropic semi-Dirac (dL = 1, dQ = 1) and
relativistic Dirac (1 < d = dL < 3) fermions to leading order
in 1/Nf , and to all loop orders. We include the isotropic
relativistic case to illustrate the problem of unphysical cutoff
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dependence, to introduce the methodology of our approach
in a simplified setting, and to demonstrate that our approach
reproduces the critical exponents obtained by conformal boot-
strap [66–68] and other methods [69–71].

The bosonic propagator in anisotropic dL-dQ nodal-point
semimetals remains nonanalytic, and therefore not perturba-
tively renormalizable, even near the upper critical dimension
line 2dL + dQ = 4 [46]. This is a clear distinction from the
case of relativistic fermions, with important consequences
for the ε expansion. Approaching semi-Dirac fermions (dL =
dQ = 1) by expanding in the number of quadratic dimensions,
dQ = 2 − εQ, dL = 1, one obtains leading corrections to criti-
cal exponents that are nonanalytic and of the form ∼εQ ln εQ

[46]. Here we show that the nonanalytic dependence changes
with the starting point on the upper critical line. Expanding
in the number of linear dimensions, dQ = 1, dL = (3 − εL )/2,
we find leading ∼√

εL corrections, putting the uniqueness of
the ε expansion into question.

The outline of the paper is as follows: In Sec. II we
present the low-energy theory of symmetry breaking of Dirac
fermions and derive the RG equations for the fermionic and
bosonic velocities using a spherical and a cylindrical scheme
in general dimension. In Sec. III we utilize the soft cutoff RG
formulation to determine the scaling of the bosonic propaga-
tor that results in cutoff independent corrections. We go on
to calculate the GNY critical exponents to leading order in
1/Nf . In Sec. IV we extend the cutoff independence method-
ology to the family of anisotropic nodal-point semimetals and
calculate the exact 1/Nf critical exponents of the semimetal-
to-insulator transition for the case of semi-Dirac fermions.
Additionally, we present two separate ε expansions around
the upper critical dimension line of anisotropic nodal-point
semimetals. Finally, in Sec. V we summarize the key results,
compare them to the literature, and discuss possible future
research.

II. APPARENT VIOLATION OF LORENTZ INVARIANCE
OF DIRAC FERMIONS AWAY FROM THE UPPER

CRITICAL DIMENSION

Here we illustrate that away from the upper critical di-
mension, one-loop perturbative expansions of theories of
interacting gapless fermions at quantum critical points are
dependent on the RG cutoff scheme, even if they are con-
trolled by large Nf flavors of fermions. To do so, we consider
the effective field theory of interacting Dirac fermions that
describes, for example, the quantum criticality of Dirac
semimetal-insulator transitions on the honeycomb lattice in
d = 2 spatial dimensions. Throughout this section we will
make reference to this concrete example, which is situated far
away from the upper critical spatial dimension duc = 3.

It is believed that for 1 < d < 3 this quantum critical point
possesses emergent Lorentz invariance, characterized by a
dynamical exponent z = 1 and a global terminal velocity,
as has been observed with both the one-loop ε = 3 − d ex-
pansion of the effective Gross-Neveu-Yukawa (GNY) field
theory [34] and lattice quantum Monte Carlo [35]. Here we
analyze the GNY theory in 1 < d < 3 dimensions, using Wil-
son’s momentum-shell RG with two different cutoff schemes,
shown in Fig. 2.

FIG. 2. Wilson’s infinitesimal shell RG integration schemes in
d = 2 spatial dimensions, at the cutoff scale �: (a) cylindrical
and (b) spherical. Here k0 and k = (k1, k2) denote frequency and
momenta, respectively.

Although the universal long-wavelength behavior should
be independent of the choice of the cutoff scheme, we
demonstrate that this is not the case within the perturbative
momentum-shell framework. Using the cylindrical scheme in
Fig. 2(a), where the UV cutoff only acts on the spatial momen-
tum directions and frequency is integrated over the whole real
axis, we find an apparent violation of emergent Lorentz in-
variance. On the other hand, treating frequency and momenta
on an equal footing and imposing an isotropic spherical cutoff
in D = d + 1 space-time dimensions, as shown in Fig. 2(b),
we do find emergent Lorentz invariance. This contradiction is
resolved in Sec. III.

A. Gross-Neveu (-Yukawa) models

The universality is captured by the Gross-Neveu
(GN) model,

LGN = �̄(∂τ γ0 + v∂ · γ )� + V (�̄�)2, (1)

defined in imaginary time τ and d-spatial dimensions, such
that ∂ = (∂1, . . . , ∂d ). The fermionic excitations possess a
Fermi velocity v, and interact with the coupling strength
V . We have generalized to Nf -component Dirac fields
� = (ψ1, . . . , ψNf ), �̄ = �†γ0. The Dirac γ matrices an-
ticommute {γμ, γν} = 2δμν for μ, ν = 0, . . . , d , where γ =
(γ1, . . . , γd ) and the identity matrix is implicit. From this
it follows that tr γμγν = Nf δμν . Using this convention, the
case of spinless fermions on the honeycomb lattice corre-
sponds to d = 2 and Nf = 4, where it is customary to use the
“graphene representation” [33], (γ0, γ1, γ2) = (I2 ⊗ σz, σz ⊗
σy, I2 ⊗ σx ) with the Pauli matrices σi and the 2 × 2 identity
matrix I2. We could then generalize to N flavors of these
four-component fermions using γμ → γμ ⊗ IN , such that
Nf = 4N .

We consider the case where strong interactions drive an
instability in the �̄� channel at V = Vc. In the context of the
honeycomb lattice, this corresponds to a quantum phase tran-
sition from the Dirac semimetal to a CDW insulator where the
sublattice symmetry is spontaneously broken. More generally,
we are studying the spontaneous symmetry breaking of a Z2

Ising (pseudo)spin degree of freedom, which belongs to the
chiral Ising GNY universality class [36,37].
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FIG. 3. One-loop self-energy Feynman diagrams for the velocity
RG equations. The fermion propagator is denoted by the arrowed
line. The order parameter boson propagator is denoted by the
wavy line.

It is natural to study this process by performing a Hubbard-
Stratonovich transformation that redefines the problem as
Dirac fermions coupled to an effective dynamical order
parameter field φ, conjugate to �̄�. This results in the Gross-
Neveu-Yukawa (GNY) model,

LGNY = �̄

(
∂τ γ0 + v∂ · γ + g√

Nf
φ

)
�

+ 1

2
φ(−∂2

τ − c2∂2 + m2)φ + λ

Nf
φ4. (2)

The Yukawa coupling anticommutes with the noninter-
acting Hamiltonian and thereby fully gaps the fermionic
quasiparticle spectrum upon condensation,

E (k) = ±
√

v2k2 + g2〈φ〉2/Nf . (3)

The order parameter mass m2 is an RG relevant pertur-
bation that tunes through the quantum critical point m2 ∼
Vc − V . In contrast, although the Yukawa coupling g and the
self-interaction λ are relevant at the noninteracting (Gaussian)
fixed point, they are understood to flow to an infrared fixed
point (g∗, λ∗) in the critical plane m2 = 0.

B. Velocity RG equations in spherical and cylindrical
RG schemes

For the purposes of the current discussion, it is sufficient
to study only the flow of the Fermi velocity v and the order
parameter velocity c in the vicinity of the GNY fixed point.
We obtain the velocity RG equations at one-loop order, us-
ing Wilson’s momentum-shell RG. In this approach, modes
of highest energy near the ultraviolet cutoff scale �, corre-
sponding to infinitesimal shells in Matsubara frequency k0 and
momentum k = (k1, . . . , kd ), are integrated out. We consider
the shell schemes displayed in Fig. 2,

(a) cylinder: − ∞ < k0 < ∞, �e−δ� < |k| < �, (4)

(b) sphere: �e−δ� <

√
k2

0/v
2 + k2 < �. (5)

This is followed by the rescaling transformation,

k0 = k′
0e−zδ�, k = k′e−δ�, (6)

where z is the dynamical exponent. The quantum corrections
are calculated from the one-loop fermion and boson self-
energy diagrams displayed in Fig. 3.

Using the cylindrical cutoff scheme, the resulting RG
equations for the velocities are given by(dv

d�

)
cyl

= v

[
z − 1 − g2 2(v − c) − (d − 3)c

2Nf vc(v + c)2

]
, (7)

(dc

d�

)
cyl

= c

[
z − 1 − g2 d (c2 − v2) − (d − 3)v2

16dv3c2

]
, (8)

where we have made the rescaling Sd�
d−3g2 → g2. Here Sd

denotes the surface area of the d-dimensional unit sphere,

Sd = 1

(2π )d

2π
d
2

�(d/2)
. (9)

On the other hand, using the spherical cutoff scheme in
D = d + 1 dimensions, we obtain the velocity RG equations(dv

d�

)
sph

= v

[
z − 1 − g2 I1

(
c
v

) − I0
(

c
v

)
Nf v3

]
, (10)(dc

d�

)
sph

= c

[
z − 1 − g2 (D − 2)(c2 − v2)

2Dv3c2

]
, (11)

where we have made the rescaling SD�D−4g2 → g2 and de-
fined the angular integrals Iμ(x) over the D-dimensional unit

sphere (k̂2
0 + k̂

2 = 1),

Iμ(x) = 1

SD(2π )D

∫
d�̂

1 − 2k̂2
μ

k̂2
0 + x2k̂

2 . (12)

From inspection of the (a) cylindrical [(7) and (8)] and (b)
spherical [(10) and (11)] RG equations in d < 3, it is clear that
z = 1 and c = v (for finite g) is not a fixed point solution for
(a), but is a solution for (b). The putative emergent Lorentz
invariance (z = 1, c = v) is therefore violated for (a), but is
satisfied for (b). This is the case even for Nf → ∞ where
the solution for (a) is z = 1, c = v(2 − 3/d ). Naturally, each
scheme will result in a different set of critical exponents.
However, for the ε = 3 − d expansion, where g2

∗ ∝ ε, Lorentz
invariance emerges for both shell schemes, which also share
the same set of critical exponents.

This discussion demonstrates that away from the upper
critical dimension, the perturbative loop expansion can lead
to physically distinct conclusions at the same critical fixed
point. Seemingly, the notion of universality breaks down,
and the results depend on the way the cutoff RG scheme
is implemented. We resolve this apparent pathology in the
next section, where we identify the conditions for quantum
corrections that are independent of the RG scheme.

III. UNIVERSAL CUTOFF INDEPENDENT QUANTUM
CORRECTIONS WITH SOFT CUTOFF RG AND LANDAU

DAMPING: DIRAC FERMIONS

Here we apply a completely general soft cutoff RG scheme
to obtain the conditions for quantum corrections to be inde-
pendent of the cutoff scheme, and therefore universal. We
prove that for interacting Dirac fermions, cutoff independent
corrections are only obtained with a nonanalytic inverse or-
der parameter propagator that scales as kd−1 in d spatial
dimensions.
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Remarkably, such dynamics arise from Landau damping
by the gapless fermionic excitations, which is captured by the
RPA resummation of fermion loop diagrams. Crucially, this
nonperturbative effect is a product of the IR (k → 0) modes
that are not typically accessible by perturbative means, such
as the integration over infinitesimal shells.

Using the soft cutoff RG procedure with the nonpertur-
bative RPA boson propagator, we calculate the GNY critical
exponents in general dimensions to leading order in Nf . The
universal critical behavior is independent of the choice of the
UV cutoff scheme and characterized by emergent Lorentz
invariance. We find exact agreement with the conformal
bootstrap results. Finally, we elucidate connections to the ε

expansion.

A. Soft cutoff RG scheme

Following Refs. [61–65], we introduce the ultraviolet cut-
off by means of a completely general, smooth, soft cutoff
function,

A(z) ∼ exp(−zn) (n > 0),

A(z → 0) = 1, A(z → ∞) = 0. (13)

Within this description, the hard cutoff function is captured
by n → ∞. The soft cutoff procedure is implemented by
augmenting the fermion and boson propagators with the cutoff
function at the cutoff scale �,

G�,φ (k) → G�,φ (k)A

(
aμk2

μ

�2

)
= G�,φ (k)Ak, (14)

where we define the D = d + 1 dimensional kμ = (k0, k) and
use implicit summation over repeated μ, ν = 0, . . . , d , such
that k2 = kμkμ. In the following we use the Ak notation for
brevity.

We explicitly include aμ to make reference to the dif-
ferent cutoff schemes introduced in Sec. II: the cylindrical
RG scheme corresponds to a0 = 0, aμ �=0 = 1, whereas in the
spherical scheme a0 = 1/v2, aμ �=0 = 1.

The quantum corrections to RG equations are then ob-
tained by taking the logarithmic derivative in the cutoff scale
� d

d�
of the one-particle irreducible vertex functions. After

all, RG is the resummation of logarithmic divergences. This
is equivalent to the derivative d

d�
in the shell scheme with

� = log(�/�0).

B. Cutoff scheme independence

Whilst Dirac fermions are fundamental objects that propa-
gate as

G� (k) = i
k0γ0 + vk · γ

k2
0 + v2k2 , (15)

the effective order parameter fields are not, and hence we
should not necessarily expect them to adhere to the bare
analytic dynamics of Eq. (2). Instead, we define a general
homogeneous form of the boson propagator (at m2 = 0),

Gφ (k) = Gφ (k̂)

ynφ
, (16)

where k = yk̂ with k̂2 = 1. Note that this scaling form as-
sumes that spatial momenta and frequency enter with the same
power, as it is the case for both the spherical and cylindrical
schemes, discussed in Sec. II B. The exponent nφ describes the
IR scaling of the propagator in the global radial coordinate.
This scaling form allows for a nontrivial bosonic velocity cIR,
which enters through the angular function Gφ (k̂).

Now we determine the required scaling form of Gφ

(through a constraint on nφ) to achieve cutoff scheme inde-
pendent RG equations. To do so, it is sufficient to calculate the
quantum corrections from the one-loop fermion self-energy
diagram in Fig. 3(b),

d

d�
�(q) = −�

d

d�

g2

Nf

∫
k

G� (k + q)AkGφ (k)Ak, (17)

where
∫

k = ∫
dDk/(2π )D. Notice that the external q depen-

dence has been excluded from the cutoff function, and instead
A regulates only the internal k integral. This is perfectly
consistent with the conventional procedure in the hard cutoff
RG. To further justify this step, we explicitly demonstrate in
Appendix A 1 that linear q contributions from Ak+q, that
would contribute to the renormalization of the fermion propa-
gator, do indeed vanish.

After expanding the right-hand side of Eq. (17) to linear
order in the external qμ, taking the logarithmic derivative and
enacting the transformation k = yk̂ = ỹ�k̂, we obtain

d

d�
� = 4iqμγμ

�nφ+2−D

∫
�̂

∫ ∞

0

ỹDdỹ

ỹnφ+1
(2k̂2

μ − 1)aν k̂2
ν ĜφA′A, (18)

where A = A(ỹ2aμk̂2
μ), Ĝφ = Gφ (k̂) and

∫
�̂

is the (D − 1)
dimensional angular integral scaled by (2π )D. Note that in
the above we have rescaled units such that v = 1. It is simple
to extract the cutoff independence by insisting that the result
does not contain the UV cutoff scale �, which provides the
constraint

nφ = D − 2 = d − 1. (19)

Imposing this constraint, the radial integral can be evalu-
ated with the substitution u = A for general A. The result is
now explicitly independent of aμ (i.e., spherical or cylindrical
schemes),

d

d�
� = iqμγμ

∫
�̂

(
2k̂2

μ − 1
)
Gφ

(
k̂
)
. (20)

In contrast, if the constraint is not satisfied, the integral in
Eq. (18) will depend on the explicit form of the cutoff function
A and cannot possibly contribute to universal phenomena.

In fact, cutoff independence of a quantum correction that
corresponds to a diagram with N internal D-dimensional mo-
menta can be determined by inspection of the scaling in the
global radial coordinate y, k1 = yk̂1, k2 = yx2k̂2, . . . , kN =
yxN k̂N . Such a quantum correction is independent of the cutoff
scheme, and therefore universal, if the integrand scales as 1/y.
This follows from the identity

�
d

d�

∫ ∞

0

dy

y

∏
i

Ani

(
y2 fi

�2

)
= 1, (21)
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FIG. 4. Feynman diagrams for large Nf theories. (a) The bold
wavy line represents the RPA boson propagator of the order param-
eter field. The fermion loops are integrated over the full range of
modes and are self-consistently resummed to infinite order. This re-
sults in a nonanalytic Landau damped propagator that satisfies cutoff
scheme independence. (b) The fermion self-energy renormalizes the
fermion propagator (arrowed straight line). (c) The vertex correction
renormalizes the Yukawa coupling g. (d) The two loop diagrams
renormalize the boson mass and contribute to the correlation length
exponent.

for positive integers ni and nontrivial angular func-
tions fi = fi(�̂1, . . . , �̂N , x2, . . . , xN ), which is proven in
Appendix A 2.

Finally, we should reiterate that any RG scheme (Wilson’s
momentum shell, minimal subtraction, etc.) is applicable, pro-
vided the nφ condition that ensures cutoff independence is
satisfied.

C. Cutoff independent RPA propagator

That nφ = D − 2 should not be a surprise. This result is
in agreement with the familiar form G−1

φ ∼ k in two spatial
dimensions [52,72–74] and naturally arises at the Nf → ∞
GNY fixed point, at which there is a large O(1) correction to
the scaling of the order parameter field, ηφ = 4 − D. This is
a consequence of the one-loop fermion diagram in Fig. 3(a),
indicating that it is a Landau damping phenomenon from the
gapless fermionic excitations. Accounting for the anomalous
scaling, the inverse propagator G−1

φ = k2−ηφ satisfies the con-
dition for cutoff scheme independence.

Away from the upper critical dimension, the cutoff inde-
pendent propagator is nonanalytic and so is not perturbatively
renormalizable. This suggests that a nonperturbative solution
is required.

To self-consistently account for the damped boson dy-
namics, and to achieve cutoff independence, we use the
nonperturbative RPA resummation of fermion loops, which
is shown diagrammatically in Fig. 4(a), to obtain the dressed
inverse boson propagator

G−1
φ (q) = G−1

φ,0(q) + �(q), (22)

where G−1
φ,0(q) = q2

0 + c2q2 + m2 is the bare inverse boson
propagator. The bosonic self-energy

�(q) = g2

Nf

∫
k

tr G� (k + q)G� (k), (23)

is calculated by integrating over the full range of modes.
Crucially, � includes the IR (k → 0) modes that are not
accounted for in Wilsonian shell schemes, and results in the
nonanalytic inverse propagator (see Appendix C 1)

G−1
φ (k) = g2SDαD

vD−1

(
k2

0 + v2k2) D−2
2 + m2, (24)

where

αD = − π

2 sin
(

πD
2

) �(D/2)2

�(D − 1)
. (25)

Note that the IR scaling of the dressed RPA boson prop-
agator (24) satisfies the condition of cutoff independence,
Eq. (19). Moreover, it follows that the boson velocity in the IR
limit is equal to the Fermi velocity, cIR = v. As we will show
in the next section, the solution of the soft-cutoff RG equa-
tions yields a dynamical exponent of z = 1. This demonstrates
that the critical fixed point exhibits emergent Lorentz invari-
ance, irrespective of the choice of the UV cutoff scheme. We
have neglected the subleading momentum terms in G−1

φ,0(k)
since these terms are irrelevant in an RG sense. Formally, the
RPA contribution dominates in the large Nf limit, which is
evident after making the rescaling g2 → g2Nf .

The Landau damped dynamics affects the scaling of the
effective order parameter field. Crucially, the quartic self in-
teraction λφ4 of Eq. (2) is rendered irrelevant at tree level and
so is neglected in the following. This is a common feature
of the “interaction driven scaling” [57] of gapless fermionic
systems.

D. Large Nf RG equations

We now perform an RG analysis of the large Nf field theory

L = �̄

(
∂τ γ0 + v∂ · γ + g√

Nf
φ

)
� + 1

2
φ G−1

φ φ, (26)

using the soft cutoff scheme to calculate the diagrams in
Figs. 4(b)–4(d) to leading order in Nf . Here Gφ (k) (24) is
the fully dressed bosonic propagator that is obtained by the
RPA resummation depicted in Fig. 4(a). As demonstrated in
Sec. III, Gφ (k) has the correct IR scaling that ensures cutoff
independence. This makes the evaluation of radial integrals
trivial since we can simply use the radial integral identity,
Eq. (21). The remaining angular integrals of the one loop dia-
grams, such as Eq. (20) in the case of the fermion self-energy
correction, are elementary and can be carried out analytically.
Here we present only the results. Details of the calculation,
e.g., on the evaluation of the angular integrals in general
dimension, can be found in Appendix C 2.

For the fermionic self-energy diagram, Fig. 4(b), we obtain

d

d�
�(q) = −�

d

d�

g2

Nf

∫
k

G� (k + q)Gφ (k)A2
k
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= −i
D − 2

αDDNf
(q0γ0 + vq · γ ), (27)

with αD defined in Eq. (25). The vertex correction, which
is shown in Fig. 4(c) and which renormalizes the Yukawa
coupling g, is equal to

d

d�
� = �

d

d�

g3√
Nf

3

∫
k

G2
� (k)Gφ (k)A3

k

= − 1

αDNf

g√
Nf

. (28)

We further evaluate the two-loop diagrams in Fig. 4(d) for
zero external momentum and frequency but finite boson mass
m2 �= 0, since they contain quantum corrections of order 1/Nf

that renormalize m2,

d

d�
�̃ = �

d

d�

g4

N2
f

∫
k,q

Gφ (q)Aq

×tr
[
G� (k + q)G� (k + q)G� (k)G� (k)A2

k+qA2
k

+2G� (k + q)G� (k)G� (k)G� (k)Ak+qA3
k

]
= D − 1

α2
DNf sin( πD

2 )

π�( D
2 )2

�(D − 1)
m2. (29)

Details of the calculation of the two-loop diagrams can be
found in Appendix C 3.

Under the RG transformation momentum and frequency
are rescaled as

k = k′e−δ�, k0 = k′
0e−zδ�, (30)

with z the dynamical critical exponent. The fields are rescaled
as

�(k) = � ′(k′)e−���/2, φ(k) = φ′(k′)e−�φ�/2, (31)

where �X = [X †X ] + ηX (X = �,φ) are the sum of tree-
level [· · · ] and anomalous ηX scaling dimensions. The RG
equations are obtained by combining quantum corrections and
rescaling contributions,

dv

d�
= v

[
−(D + z + �� ) + D − 2

αDDNf

]
, (32)

dg

d�
= g

[
2(1 − D − z) − �� − �φ

2
− 1

αDNf

]
, (33)

dm2

d�
= m2

[
− (D − 1 + z + �φ )

+ D − 1

α2
DNf sin

(
πD
2

) π�( D
2 )2

�(D − 1)

]
, (34)

subject to the constraint

�� = 1 − D − 2z + D − 2

αDDNf
, (35)

which follows form the scale invariance of
∫

�̄k0γ0�.
The solution z = 1 of Eq. (32), for all v, indicates the

emergence of Lorentz invariance at the quantum critical point.
Moreover, g is scale invariant since it can be scaled out of the

large Nf field theory (26), using φ → φ/g, m2 → g2m2. From
this it follows that

�φ = 2 − 2D − 4
D − 1

αDDNf
. (36)

Effectively, Eq. (26) describes the (g∗, λ∗) GNY critical
fixed point of Eq. (2), at which g and λ are irrelevant per-
turbations. The correlation length exponent ν is determined
by the flow of the single relevant perturbation at the critical
fixed point,

dm2

d�
= ν−1m2, (37)

and can therefore be extracted from Eq. (34). The resulting
critical exponents in D = d + 1 dimensions, to leading order
in Nf , are

η� = 2(2 − D)

DNf

sin( πD
2 )

π

�(D − 1)

�
(

D
2

)2 , (38)

ηφ = 8

DNf

sin( πD
2 )

π

�(D)

�
(

D
2

)2 , (39)

ν−1 = D − 2 + D − 2

Nf

sin
(

πD
2

)
π

�(D + 1)

�
(

D+2
2

)2 , (40)

which have been extracted using [�̄�] = −(D + 1) and
[φφ] = −2(D − 1). These exponents are in agreement with
previous results using the large Nf conformal bootstrap
[66–68] and the critical point large Nf formalism [69–71].

E. Connections to the ε expansion

Finally we draw some connections to the ε = 4 − D expan-
sion below the upper critical dimension. To zeroth order in ε,
the bare inverse bosonic propagator G−1

φ (k) ∼ k2 satisfies the
condition (19) for cutoff independence, nφ = 2 − ε. The O(ε)
corrections to perturbative loop diagrams are cutoff dependent
but do not enter RG equations at any order in ε. The GNY RG
equations from the ε expansion are therefore independent of
the cutoff scheme. As we will see in Sec. IV, this is the crucial
difference to the case of anisotropic nodal fermions, where the
bare propagator results in cutoff-dependent contributions even
near the line of upper critical dimensions.

Naturally, for D = 4 − ε the critical exponents η� (38),
ηφ (39), and ν (40) agree to leading order in Nf with those
obtained from the ε expansion, order by order in ε. The ε

expansion, however, can also be formulated using the scheme
outlined in Fig. 4, and results in the RG equations already
evaluated at the (g∗, λ∗) critical fixed point.

As a first step, the 1/ε pole of the RPA propagator (24)
must be extracted. The prefactor to the pole can also be ob-
tained from the logarithmic divergence of � in D = 4. Then
the remaining diagrams are evaluated using

G−1
φ (k) = 1

ε

g2

16π2

(
k2

0 + v2k2) + m2. (41)

It can be verified that the quantum loop corrections calcu-
lated in this manner agree with those obtained by perturbative
means, after solving for the fixed point (g∗, λ∗) ∼ O(ε).
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Although somewhat trivial for GNY theories, this method-
ology can act as an independent check of large Nf critical
exponents obtained from the ε expansion. It has cutoff scheme
independence encoded through the RPA propagator, which is
crucial when considering anisotropic systems such as those
considered in the next section. Finally, it is a shortcut to ac-
cessing the critical fixed point, which is valuable when dealing
with a complicated set of RG equations.

IV. GENERAL dL AND dQ SYSTEM

In this section we employ the soft cutoff approach
to determine the universal critical behavior of nodal-point
semimetals with dL linear and dQ quadratic momentum direc-
tions. Quantum phase transitions between anisotropic nodal
point semimetals and insulating ordered states can be driven
by generic short-range interactions between the fermionic
quasiparticles. An overview of various interaction-driven in-
stabilities of semi-Dirac fermions and their competition as a
function of different microscopic interaction parameters can
be found in Ref. [44]. As in the case of relativistic Dirac
fermions, we consider a scalar order parameter field φ, for
simplicity. Such an Ising order parameter field could, for
example, describe CDW order.

We compute the exact critical exponents for semi-Dirac
fermions (dL = dQ = 1) to leading order in 1/Nf . Finally,
from our results for general dL, dQ we obtain ε expansions
in both the number of linear and quadratic dimensions.

A. Effective field theory

The effective Yukawa theory for anisotropic nodal-point
fermions with dL linear and dQ quadratic momentum direc-
tions in d = dL + dQ spatial dimensions, coupled to the scalar
bosonic order parameter field φ is given by

L = �̄
[
∂τ γ0 + ∂L · γL + (

iv2
Q∂2

Q + �
)
γQ

]
�

+ g√
Nf

φ�̄� + 1

2
φ G−1

φ φ, (42)

where we have generalized to Nf copies of fermions, � =
(ψ1, . . . , ψNf ), �̄ = �†γ0, and defined ∂L = (∂1, . . . , ∂dL )
and ∂Q = (∂dL+1, . . . , ∂dL+dQ ). The parameter vQ is related to
the curvature of the quadratic dispersion. The linear momenta
couple to γL = (γ1, . . . , γdL ), which together with γ0 and γQ

form a set of dL + 2 mutually anticommuting gamma matri-
ces, {γμ, γν} = 2δμν . Note that for dQ = 0 the model reduces
to the large-Nf GNY theory, defined in Eq. (26).

The Yukawa coupling anticommutes with the noninter-
acting Hamiltonian and thereby fully gaps the fermionic
quasiparticle spectrum upon condensation of the order param-
eter,

E (k) =
√

k2
L + (

v2
Qk2

Q + �
)2 + g2〈φ〉2/Nf , (43)

where kL = (k1, . . . , kL ), kQ = (kdL+1, . . . , kdL+dQ ), and
k = (kL, kQ).

The parameter � tunes the system through a topological
phase transition from a nodal-surface semimetal (� < 0) to a
trivial band insulator (� > 0). The nodes for � < 0 are given
by the dQ dimensional sphere k2

Q = −�/v2
Q for kL = 0. The

experimentally most relevant cases are nodal line semimetals
for dQ = 2 and semimetals with a pair of isolated Weyl points
for dQ = 1. Both � and the order parameter mass m2 are
relevant perturbations at the multicritical point, � = 0 and
m2 = 0.

Since all quadratic directions couple to the same matrix
γQ the dispersion remains radially symmetric in the dQ sub-
space. A different class of semimetals can be defined in terms
of spherical harmonics that couple to different γ matrices
[40,41]. Such theories, which could describe rotational sym-
metry breaking (nematic transitions) in the dQ subspace, are
not considered here.

The dressed inverse RPA boson propagator is given by

G−1
φ (k) = G−1

φ,0(k) + �(k)

= cL
(
k2

0 + k2
L

) + cQk2
Q + m2 + �(k), (44)

where k = (k0, k). As we will see later, the bosonic self-
energy correction �(k), which arises from the damping of
the order-parameter fluctuations by the anisotropic nodal
fermions, dominates the long-wavelength behavior of Gφ (k).
As in the case of the GNY theory, the resulting IR scaling of
Gφ (k) satisfies the condition of cutoff independence.

Note that the bare inverse boson propagator G−1
φ,0(k) does

not inherit the unusual anisotropy of the fermionic quasipar-
ticle dispersion E (k) (43) but instead depends quadratically
on both kL and kQ. This conventional form arises naturally
from integrating out fermion modes near the UV cutoff in
perturbative RG schemes.

B. Scaling

We start by a scaling analysis of the Yukawa-type field
theory for dL-dQ fermions, given in Eq. (42). To account for
the different scaling of linear and quadratic momenta, we
define two scaling exponents, zL and zQ, such that

k0 = k′
0e−zLδ�, kL = k′

Le−zLδ�, kQ = k′
Qe−zQδ�, (45)

under rescaling. This allows us to unify the different scaling
conventions in previous studies of anisotropic systems: (zL =
2, zQ = 1) [14,21,45,46] and (zL = 1, zQ = 1/2) [20,43,44].

Note that we have rescaled frequency and linear momenta
with the same exponent. In general, one should consider dif-
ferent exponents z0 and zL and allow for a renormalization of
the Fermi velocity vL along the linear momentum direction.
However, exactly as for the purely relativistic case, there is
an emergent Lorentz invariance in the k0-kL subspace at the
critical fixed point. For that reason we have set z0 = zL and
vL = 1, without loss of generality.

At tree level, the gapless fermionic quasiparticle energy
E (k) at the multicritical point (� = 0, m2 = 0, 〈φ〉 = 0)
scales as

E (k) = E (k′)e−zLδ�, (46)

under the condition that [v2
Q] + 2zQ = zL. The latter is satis-

fied if vQ is scale invariant, [vQ] = 0, and zQ/zL = 1/2. The
RG procedure could therefore be established by integrating
out modes from the D = dL + dQ + 1 dimensional shell

�e−zLδ� �
√

k2
0 + E2(k) � � (47)
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below the UV cutoff �. The additional factor of zL in the
exponent suggests that one should consider zLδ� as the “unit
length” and define the rescaling of the fields as

�(k) = � ′(k′)e−�� zLδ�/2 (48)

φ(k) = φ′(k′)e−�φzLδ�/2 (49)

where �� = [�̄�] + η� and �φ = [φφ] + ηφ are the critical
dimensions of the fermionic and bosonic fields, respectively.
With these conventions the universal critical behavior will
only depend on the ratio zQ/zL. Scale invariance of the free-
fermion action at tree level requires that

[�̄�] = −(2 + dL + dQ/2). (50)

We now turn our attention to the bosonic sector. Since the
bare inverse order parameter propagator

G−1
φ,0(k) = cL

(
k2

0 + k2
L

) + cQk2
Q (51)

does not show the same anisotropic momentum scaling as
the fermionic quasiparticles but instead depends quadratically
on both kL and kQ, scale invariance is violated at the bare,
noninteracting level.

For systems with a finite number of quadratic band touch-
ing directions, dQ > 0, it is natural to choose the boson scaling

[φφ] = −(2 + dL + dQ/2), (52)

such that cQ is marginal, but cL is irrelevant. The result-
ing tree-level scaling dimension of the Yukawa coupling is
given by

[g] = 1

4
(4 − 2dL − dQ), (53)

defining an upper critical line 2dL + dQ = 4 of marginal inter-
actions, shown in Fig. 5. Note that this line does not contain
the upper-critical dimension dL = duc = 3 of the GNY theory
(dQ = 0). This point is the termination of the upper critical
line 2dL + dQ = 6 obtained from [cL] = 0 and [g] = 0. Note
that in this case cQ relevant.

C. Cutoff independence and dressed RPA boson propagator

The lack of scale invariance of the bare inverse bosonic
order parameter propagator G−1

φ,0(k) (51) in dL-dQ fermion
systems is intimately linked to the fundamental problem that
perturbative RG procedures do not correctly account for the
long-wavelength fluctuations of the order parameter, e.g., they
neglect the phenomenon of Landau damping.

The irrelevance of cL suggests an IR divergence on ap-
proach to the critical fixed point. Previously it was argued
that this unphysical divergence should be regulated with the
asymptotic self-energy correction �(k0, kL, kQ = 0) along
the linear momentum and frequency directions [45,46].

Within our soft cutoff approach it is clear, however, that
below the upper critical line such a partially dressed boson
propagator leads to quantum corrections that are dependent
upon the the UV cutoff scheme and hence nonuniversal. By
enforcing that the results are independent of the cutoff scheme
we can deduce the correct IR scaling of the dressed boson
propagator.

0 1 2 3
0

1

2

3

4

5

6

2d QBT

3d QBT

semi Dirac

GNY2d Dirac

FIG. 5. Lower and upper critical dimension lines of nodal point
semimetals with dL linear and dQ quadratic momentum directions.
For dQ > 0 the line of upper critical dimensions 2dL + dQ = 4 (red
solid line) is obtained from the condition that cQ is scale invariant.
The dashed red line is obtained from the condition that cL is scale
invariant and therefore terminates at the upper critical dimension
dL = duc = 3 of the GNY theory. The universal critical behavior
of semi-Dirac fermions (dL = dQ = 1) could be approached by ε

expansions in the number of both linear and quadratic dimensions.

Since the dressed boson propagator should inherit the
different scaling of momenta along linear and quadratic
directions, we make the Ansatz

Gφ (k) = Gφ (k̂)

εnφ
, (54)

where we have defined the (dL + 2)-dimensional vector

εμ = (
k0, . . . , kdL , k2

Q

)
, (55)

and ε2 = εμεμ, using implicit summation over μ.
In the soft cutoff approach we dress boson and fermion

propagators with a completely general cutoff function A,

G�,φ (k) → G�,φ (k)A

(
aμε2

μ

�2

)
, (56)

which only needs to satisfy the boundary conditions A(0) = 1
and limz→∞ A(z) = 0. The hard cutoff is included as the spe-
cial case where A is a step function, A(z) = �(1 − z). We
can also include coefficients aμ to allow for different cutoff
schemes, e.g., aμ = 1 for μ = 0, · · · , dL + 1 corresponds to
the spherical scheme of Eq. (47), while in the cylindrical
scheme, a0 = 0, aμ �=0 = 1, the cutoff acts only on the spatial
momenta.

Cutoff independence means that the quantum corrections
do not depend upon the the UV scale �, the cutoff function
A, and the choice of coefficients aμ. As discussed in detail in
Sec. III, this is the case if the integrands of the loop corrections
scale as 1/ε, since all cutoff dependence vanishes due to the
radial integral identity (21) for y = ε. For the dL-dQ system
this is only the case if the dressed boson propagators scales
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with the exponent

nφ = dL + dQ/2 − 1. (57)

As in the case of relativistic Weyl or Dirac fermions,
the fully dressed inverse RPA boson propagator G−1

φ (k) =
G−1

φ,0(k) + �(k) satisfies the condition (57) of cutoff indepen-
dence in the long-wavelength limit. It is not possible, however,
to obtain a closed expression for the bosonic self-energy �(k).
The asymptotic forms of �(k) for 2 < 2dL + dQ � 4 and
dQ > 0 along the linear and quadratic directions is given by

�(k) ∼
{(

k2
0 + k2

L

) 1
4 (2dL+dQ−2)

for kQ = 0

k(2dL+dQ−2)
Q for k0, kL = 0

. (58)

Below the upper critical line 2dL + dQ = 4, the self-energy
�(k) dominates over the bare terms in the propagator in the
k → 0 limit and therefore determines the universal critical be-
havior. The resulting inverse propagator G−1

φ (k) is inherently
anisotropic, reflecting the different scaling of momenta, and
nonanalytic, showing that is is inaccessible by perturbative
means. It strongly scales with the dimensions dL, dQ of the
system, G−1

φ ∼ εdL+dQ/2−1, satisfying the condition (57) and
resulting in cutoff independent quantum corrections.

Note that the inverse boson propagator G−1
φ in anisotropic

nodal fermion systems remains nonanalytic even along the
line of upper critical dimensions. Although in this case
the conventional scaling ∼k2

Q along the quadratic direc-
tions is recovered, the IR scaling along the linear directions,
G−1

φ ∼
√

k2
0 + k2

L remains nonanalytic. As demonstrated in
Ref. [46] and investigated in more detail in Sec. IV F, this
has important consequences for ε expansions below the line
of upper critical dimensions.

D. Large Nf RG equations for general dL, dQ

We use the soft cutoff procedure with the dressed RPA
boson propagator, Fig. 4(a), to compute the quantum correc-
tions shown in Figs. 4(b)–4(d). In this section, we derive the
general form of the corrections, introducing symbolic expres-
sions for the different loop integrals. These integrals depend
on the values of dL and dQ, through the dimensionality of the
loop integral and, more importantly, through the nonperturba-
tive boson propagator, which strongly scales with dimension.
Combining quantum corrections and rescaling contributions,
we derive general RG equations, which we solve to obtain
expressions for critical exponents of order 1/Nf in terms of
the loop integrals. These integrals will be evaluated for semi-
Dirac fermions (dL = dQ = 1) in Sec. IV E and near the upper
critical line 2dL + dQ = 4 in Sec. IV F, where we discuss
different ε expansions.

The cutoff independent quantum corrections are obtained
by taking the logarithmic derivatives of the diagrams in
Fig. 4, with zL� = log(�/�0), where the extra factor of zL

comes from the redefinition of “unit length.” Expanding the
fermionic self-energy diagram, Fig. 4(b), to leading order in
frequency, momenta and �, we obtain

d

d�
� = −i zL[δ�L(k0γ0 + kL · γL )

+(
δ�Q v2

Qk2
Q + δ�� �

)
γQ

]
, (59)

with certain loop integrals δ�L, δ�Q, δ�� ∼ 1/Nf that will
be computed later. Likewise, the quantum corrections cor-
responding to the diagrams in Figs. 4(c) and 4(d), which
renormalize the Yukawa coupling g and order-parameter mass
m2, respectively, can be written in the general form

d

d�
� = zLδ�

g√
Nf

,
d

d�
�̃(0) = zLδ�̃ m2. (60)

Here δ�, δ�̃ ∼ 1/Nf are one- and two-loop integrals over
internal momenta. Combining these quantum corrections with
the rescaling given in Eqs. (45), (48), and (49), we obtain the
following set of RG equations:

d ln v2
Q

d �̃
= δ�Q − 1 − dL − (2 + dQ)

zQ

zL
− ��, (61)

d ln g

d �̃
= δ� − 2

(
1 + dL + dQ

zQ

zL

)
− �� − �φ

2
, (62)

d ln �

d �̃
= δ�� − 1 − dL − dQ

zQ

zL
− �� = ν−1

� , (63)

d ln m2

d �̃
= δ�̃ − 1 − dL − dQ

zQ

zL
− �φ = ν−1

φ , (64)

where we have defined �̃ = zL�. The critical dimensions of the
fermion and boson fields consist of the tree-level scaling [· · · ],
given in Eqs. (50) and (52), and the anomalous dimensions η,
�� = [�̄�] + η� , �φ = [φφ] + ηφ . Note that the RG flow
of the two relevant coupling constants � and m2 defines the
correlation length exponents ν� and νφ of the multicritical
point. In addition to the above RG equations, we have to
satisfy the constraint

�� = δ�L − 2 − dL − dQ
zQ

zL
, (65)

which follows from the condition that the the coefficient of the
linear terms k0γ0 + kL · γL of the fermion propagator remains
constant under the RG.

From the RG equations it is straightforward to extract
general expressions for critical exponents in terms of the loop
integrals. Inserting Eq. (65) into Eq. (61) and demanding that
vQ does not flow under the RG, we obtain

zQ

zL
= 1

2
− 1

2
(δ�L − δ�Q), (66)

for the ratio of scaling exponents of momenta along quadratic
and linear directions. As to be expected, 1/Nf corrections
to the “tree-level” value of 1/2 arise because of different
fermionic self-energy corrections along quadratic and linear
directions. Using this result and the tree-level scaling di-
mension of the fermion field (50), we obtain the anomalous
dimension of the fermion field,

η� = δ�L + dQ

2
(δ�L − δ�Q). (67)

In order to determine the critical dimension �φ of the
boson field and the related anomalous dimension ηφ , we can
use the same argument as for the large-Nf GNY theory: since
it is possible to scale out the Yukawa coupling g by the sim-
ple transformation φ → φ/g and m2 → g2m2, the coupling g
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should not renormalize. From Eq. (62) and the already deter-
mined critical exponents we obtain the anomalous dimension

ηφ = 2 − dL − dQ

2
+ 2(δ� − δ�L ) + dQ(δ�L − δ�Q) (68)

of the boson fields. Note that ηφ has a contribution of or-
der (1/Nf )0 that vanishes along the upper critical dimension
line 2dL + dQ = 4. In the following we redefine the order
parameter scaling such that the anomalous dimension is solely
composed of quantum corrections, and the (1/Nf )0 contribu-
tion is absorbed into the tree-level scaling,

[φφ] = −(2dL + dQ), (69)

ηφ = 2(δ� − δ�L ) + dQ(δ�L − δ�Q). (70)

And finally, from Eqs. (63) and (64), we extract the two
correlation length exponents,

ν−1
� = 1 + δ�� − δ�L, (71)

ν−1
φ = −1 + dL + dQ

2
+ δ�̃ − 2(δ� − δ�L )

−dQ

2
(δ�L − δ�Q), (72)

of the multicritical fixed point, where νφ , ν� correspond to
the symmetry-breaking transition and the topological phase
transition, respectively.

E. Exact 1/Nf exponents for semi-Dirac fermions
(dL = 1, dQ = 1)

In order to calculate the quantum corrections δ�L, δ�Q,
δ��, δ�, and δ�̃ for semi-Dirac fermions, we first need to
compute the dressed inverse IR boson propagator G−1

φ (k) =
�(k) + m2. Unlike for relativistic fermions, it is not possi-
ble to analytically evaluate the fermionic polarization �(k)
for aniosotropic nodal fermions [14,20,46]. As shown in
Appendix D 1, the bosonic self-energy for dL = dQ = 1 can
be written in the form

�(k) = g2

8π2
|kQ|F

(
k2

0 + k2
L

v4
Qk4

Q

)
, (73)

where the function F is defined as the integral

F (u) =
∫ 1

0
dt

∫ ∞

−∞
d p

(p + 1)4 − p2(p + 1)2 + (1 − t )u

(p + 1)4t + p4(1 − t ) + t (1 − t )u
.

(74)

Notice that in this form, �(k) still satisfies the condition
(57) for cutoff independence, nφ = dL + dQ/2 − 1 = 1/2,
since |kQ| ∼ ε1/2 while the argument of the function F is
independent of ε.

The dominant contributions to the quantum corrections
come from the regime where kQ → 0 for finite k0, kL, corre-
sponding to large values of the argument u. In this regime, it is
possible to obtain a closed asymptotic form for F (u), resulting

FIG. 6. The function F (u) determining the bosonic self-energy
(73). The blue dots show the exact result from numerical integration
of Eq. (74), the red solid line the closed expression obtained in the
regime u  1.

in the approximate boson self-energy

�(q) ≈ g2

⎡⎣ aL
(
q2

0 + q2
L

)
(
q2

0 + q2
L + b4

Qq4
Q

) 3
4

+ aQq2
Q(

q2
0 + q2

L + b4
Qq4

Q

) 1
4

⎤⎦,

(75)

with aL = �(5/4)2/
√

2π3/2, aQ = 5�(3/4)2/16
√

2π3/2, and
bQ = 8aQ.

The function F (u) obtained from numerically evaluating
the integral (74) and the closed asymptotic approximation for
large u, leading to Eq. (75), are shown in Fig. 6.

As shown in Appendix D 2, all quantum corrections can
be written as one-dimensional integrals over the function
F (u), e.g.,

δ�L = 1

Nf

∫ ∞

0

du

(1 + u)2F (u)
= 0.0797

Nf
, (76)

where we have used the exact form of F (u) to obtain the
numerical value. The other quantum corrections are δ�Q =
0.0214/Nf , δ�� = 0.2755/Nf , δ� = −0.4350/Nf , δ�̃ =
−1.0541/Nf . The resulting exact critical exponents, describ-
ing the multicritical fixed point of semi-Dirac fermions, are

zQ

zL
= 1

2
− 0.0292

Nf
, (77)

η� = 0.1089

Nf
, ηφ = −0.9712

Nf
, (78)

ν−1
φ = 1

2
− 0.0537

Nf
, ν−1

� = 1 + 0.1958

Nf
. (79)

Numerical values of the quantum corrections obtained with
the approximate closed form of F (u), corresponding to the
approximate propagator (75), are given in Appendix D 2.
These values deviate by less than 3.5% from the exact ones,
except for δ�Q where the deviation is about 17%. The larger
deviation for δ�Q is due to the fact that the corresponding
integral has considerably more weight for small u.
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F. εL and εQ expansion below the upper critical line

We now use the soft cutoff approach to investigate ε

expansions below the upper critical line 2dL + dQ = 4 of
anisotropic dL-dQ nodal fermion systems. In principle, such
expansions should allow for a controlled descent to strongly
interacting systems of interest, such as the semi-Dirac fermion
system with dL = dQ = 1.

There is however a freedom in the choice of the starting
point on the upper critical line. Here we focus on two nat-
ural starting points which correspond to a descent towards
semi-Dirac fermions by expanding in the number of (1) linear
and (2) quadratic dimensions, as illustrated in Fig. 5. This
corresponds to (1) dL = (3 − εL )/2, dQ = 1 and (2) dL =
1, dQ = 2 − εQ, where semi-Dirac fermions are reached for
εL = 1 and εQ = 1, respectively. Note that the expansion (2)
in the number of quadratically dispersing directions was used
in Ref. [46].

As explained in Sec. IV C, the bare inverse order param-
eter propagator, G−1

φ,0(q) ∼ q2, does not satisfy the condition
for cutoff independence, even at the upper critical line. A
fully perturbative RG calculation as the one used in the
D = 4 − ε expansion for GNY theory is therefore insuffi-
cient. Instead, the phenomenon of Landau damping remains
of crucial importance at the upper critical line, giving rise
to a nonanalytic bosonic self-energy correction �(q0, qL,

qQ = 0) ∼ (q2
0 + q2

L )1/2 along the linear directions. As ex-
pected from the condition of cutoff independence, the scaling
of the self-energy along the quadratic directions approaches
the form �(q0 = 0, qL = 0, qQ) ∼ q2

Q.
However, the coefficient diverges logarithmically on ap-

proach of the upper critical line. As shown in Appendix E 1, it
is possible to extract the leading 1/ε pole associated with this
divergence. Since the fermionic polarization diagram cannot
be calculated for general q = (q0, qL, qQ) we approximate the
dressed inverse IR boson propagator by the sum of the two
asymptotic forms of the self-energy along linear and quadratic
directions.

For the expansion (1) in the linear dimensions, dL =
(3 − εL )/2, dQ = 1, we obtain

G−1
φ (q) = g2π1/4

32�(3/4)

(
q2

0 + q2
L

)1/2 + 1

εL

g2

2π5/4�(1/4)
q2

Q,

(80)
while for the expansion (2) in the quadratic directions, dL =
1, dQ = 2 − εQ, the result is

G−1
φ (q) = g2

64

(
q2

0 + q2
L

)1/2 + 1

εQ

g2

8π2
q2

Q. (81)

Details of the derivation can be found in Appendix E 1. Note
that the propagators satisfy the condition (57) of cutoff inde-
pendence.

To demonstrate the fundamental differences between the
εL and εQ expansions, it is sufficient to calculate the ratio of
the scaling dimensions zQ/zL and the anomalous dimensions
η� and ηφ for the two cases. These critical exponents are
expressed in Eqs. (66), (67), and (70) in terms of the quantum
corrections δ�L, δ�Q, which arise from the expansion of the
fermion self-energy [Fig. 4(b)], and δ� from the vertex cor-
rection [Fig. 4(c)]. The corresponding one-loop integrals are

TABLE I. Critical exponents zQ/zL , η� and ηφ for two distinct ε

expansions around the upper critical line 2dL + dQ = 4. Here α−1
1 =

(2π )1/4�(9/4) and α2 = π 2/8 for brevity.

dL = (3 − εL )/2, dQ = 1 dQ = 2 − εQ, dL = 1

zQ

zL

1
2 + α1

√
εL

Nf
− 3εL

2Nf

1
2 − εQ

2Nf
log(α2εQ) − 5εQ

4Nf

η� −α1

√
εL

2Nf
+ 3εL

2Nf

εQ

Nf
log(α2εQ ) + 3εQ

Nf

ηφ −α1
8
√

εL
Nf

+ 5εL
Nf

4εQ

Nf
log(α2εQ ) + 4εQ

Nf

computed in Appendix E 2, using the the soft cutoff approach
with the dressed IR boson propagators Eqs. (80) and (81). The
resulting critical exponents are summarized in Table I.

For the expansion along the number of quadratic di-
mensions, dL = 1, dQ = 2 − εQ, we find that the quantum
corrections computed with the soft-cutoff RG and the nonper-
turbative boson propagator (81) are in perfect agreement with
those obtained in Ref. [46], when evaluated at the interacting
fixed point. To leading order in εQ log εQ the critical expo-
nents also agree, once the different definitions of the critical
dimension of the bosonic field and the number of fermionic
flavors have been accounted for. Further details can be found
in Appendix F.

Since the two ε expansions start from different points on
the upper critical line (see Fig. 5) it is not surprising that
they, at any given order, lead to different results when extrap-
olated to the semi-Dirac point, εL = 1 and εQ = 1. While the
leading quantum corrections are nonanalytic for both the εL

and εQ expansions, the functional dependencies ∼√
εL and

∼εQ log εQ are completely different, potentially signaling an
intrinsic problem with ε expansions in dL-dQ nodal fermion
systems.

V. DISCUSSION

We have investigated the universal critical behavior of
topological nodal point semimetals at quantum phase tran-
sitions that are driven by strong local interactions. We have
developed a soft cutoff RG approach that can be used to
calculate exact critical exponents to leading order 1/Nf in
experimentally relevant spatial dimensions.

At the heart of the problem is the phenomenon of Landau
damping of order parameter fluctuations by gapless fermion
excitations. This leads to nonanalytic bosonic self-energy cor-
rections which dominate over the bare boson propagator in
the IR long-wavelength limit. Landau damping is therefore
essential for the universal critical behavior of the system. As
pointed out in Ref. [20], the phenomenon of Landau damping
is inherently nonperturbative and not captured by perturbative
RG schemes that are based upon the successive decimation of
UV modes.

As demonstrated within our soft cutoff approach, not ac-
counting for Landau damping, or more generally, using an
incorrect IR boson propagator, leads to nonuniversal results
that depend on the choice of the UV cutoff scheme. In turn,
enforcing that the quantum corrections do not depend on
the cutoff function and on which frequency and momentum
directions the cutoff acts upon, the correct IR scaling of the
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Landau damped boson propagator can be deduced. These scal-
ing constraints are satisfied by the fully dressed RPA boson
propagator.

Our soft cutoff approach unifies all possible cutoff
schemes, including those based on cylindrical and spherical
hard cutoff momentum shells. Our work therefore demon-
strates that any RG scheme is valid and will produce the
same universal results, given that the correct IR boson prop-
agator is used. This should resolve controversies over the
“correct” RG shell schemes when there are quantitative dis-
crepancies in the literature, such as in the case of double-Weyl
semimetals [75,76].

Using the soft cutoff RG with the nonperturbative RPA
boson propagator, we have computed the exact critical ex-
ponents to leading order 1/Nf for relativistic Weyl or Dirac
fermions as well as for two-dimensional anisotropic semi-
Dirac fermions, coupled to an Ising order parameter field.
The soft cutoff method has a clear advantage over hard cutoff
schemes, as it significantly simplifies the calculation of dia-
grams beyond one-loop order. For the well-studied relativistic
case, the soft cutoff RG indeed reproduces the exact critical
exponents obtained by conformal bootstrap [66–68] and other
field-theoretical techniques [69–71].

We briefly compare some of our exact critical exponents
for semi-Dirac fermions,

η� = 0.1089

Nf
, ηφ = −0.9712

Nf
, ν−1

φ = 1

2
− 0.0537

Nf
,

with those reported in the literature. As discussed in Appendix
F one needs to account for different definitions of the number
of fermion flavors Nf and scaling exponents zL and zQ.

Ref. [45] employed one-loop perturbative RG with the
bosonic IR divergence in cL (51) regulated by the RPA re-
summation. Although a stable interacting critical fixed point
was located, the results are inherently cutoff dependent as
the partially dressed boson propagator does not satisfy the
scaling constraint (57) for cutoff independence. Moreover, the
two-loop diagrams that contribute to the mass renormalization
and hence the correlation length exponent νφ at order 1/Nf

were neglected. Consequently, there are significant discrep-
ancies in the exponents η� = 0.0229/Nf , ηφ = −0.1004/Nf ,
and ν−1

φ = 1/2 + 0.2466/Nf .
Reference [43] obtained cutoff independent fermion self-

energy quantum corrections, using an approximation for the
bosonic self-energy �(q) that satisfied the scaling constraint
(57). However, the approximation did not capture the full
anisotropy, resulting in δ�Q that is only 12% of that found
here (D15). In addition, the renormalization of zL/zQ was not
accounted for in scaling, resulting in η� = 0.0870/Nf . Other
exponents and quantum corrections were not computed.

We have compared ε expansions that descended on the
semi-Dirac point by expanding in the number of (1) lin-
ear dL = (3 − εL )/2, dQ = 1 and (2) quadratic dL = (3 −
εL )/2, dQ = 1 dimensions. In both cases we found quantum
corrections and critical exponents that are nonanalytic in ε.
However, the functional dependencies

√
εL and εQ log εQ are

completely different. This calls into question the validity,
uniqueness, and extent of perturbative control of this approach
for anisotropic nodal fermion systems, in contrast to rela-

tivistic GNY and bosonic φ4 theories. Further investigations,
using double epsilon expansions for arbitrary starting points
on the upper critical line and exploration at higher loop order
are required to arrive at concrete conclusions. Finally, it would
be interesting to study the crossover behavior from pertur-
bative ε to integer dL-dQ systems, similar to recent work on
quantum critical metals [77]. There it was found that low
energy and integer dimension limits do not commute.

The scaling constraints we have derived from the require-
ment of cutoff independence highlight the important role of
nonperturbative effects in quantum critical systems. Interest-
ingly, it has been known for some time that the nonperturba-
tive screening of long-range Coulomb interactions in relativis-
tic nodal systems is crucial [52,73,74], and formally equiva-
lent to Landau damping. However, such effects are typically
neglected when studying spontaneous symmetry breaking
from short range interactions. As a result, cutoff independence
is often violated in the literature when studying the quan-
tum criticality of two dimensional systems [38,45,78–80].
Screening is also important in anisotropic semi-Dirac systems
at low energies. Our analysis shows that the entire polarization
function is relevant, leading us to agree with Ref. [20] regard-
ing Coulomb quantum criticality of semi-Dirac fermions: the
dynamical part of the polarization should not be neglected,
contrary to what was argued in Ref. [21].

There are a number of interesting avenues for future re-
search into strongly interacting nodal systems away from
their upper critical dimension. Closely linked to semi Dirac
fermions are two and three dimensional nodal line semimetals.
These are are described by the same effective field theory (42)
but at finite � < 0, away from the topological phase transition
point. The criticality of such systems due to spontaneous sym-
metry breaking was previously studied within perturbative RG
[80], not taking into account the effects of Landau damping.
In nodal line semimetals Landau damping is expected to have
even stronger effects than in the nodal point case, due to the
greatly enhanced electronic density of states at low energies.
It would also be interesting to revisit nematic quantum phase
transitions in quadratic band touching systems, previously
studied within perturbative RG near the upper critical dimen-
sion [40,41]. The bare tensorial order parameter propagator
of these theories does not satisfy the condition of cutoff inde-
pendence in physically relevant dimensions, highlighting that
nonperturbative effects are crucial for the universal critical
behavior.

Starting with relativistic dynamics, the presence of emer-
gent gauge fields coupled to order parameter fields [65,79]
can alter the dynamical scaling at quantum critical points.
In this case, the divergencies associated with noninvertible,
damped gauge field propagators can be repaired with nonan-
alytic gauge fixing, as is implemented in pseudo-QED [81].
There are instances where broken symmetry states on lattices
allow for cubic terms in the order parameter fields in the
low-energy effective field theory [38,78,79,82]. In principle,
following the Landau criterion, these can render quantum
phase transitions first order. However gapless fermion exci-
tations are expected to render such cubic terms irrelevant. In
these problems, damping effects away from upper critical di-
mensions have not been accounted for. Finally, the interplay of
Landau damping and disorder in topological nodal semimetals

043265-13



URYSZEK, KRÜGER, AND CHRISTOU PHYSICAL REVIEW RESEARCH 2, 043265 (2020)

is largely unexplored. Interestingly, even the stability of the
critical fixed point in the GNY theory against weak disorder
remains controversial [83,84].

In topological nodal systems the fermions are fundamen-
tal in the region of the nodal points. The fermion dynamics
must therefore be analytic, implying that nonanalytic fermion
self-energy corrections are absent. Consequently the large Nf

expansion is controlled, as Nf does not appear in the fermion
propagator. This is in contrast to the case of metallic quantum
critical systems, in which the fermions are strongly renormal-
ized by the infinite sea of excitations, resulting in nonanalytic
fermion self-energy corrections. These terms are typically
more relevant than the bare fermion dynamics and render
the large Nf uncontrolled [57]. Entirely nonperturbative so-
lutions of the Schwinger-Dyson equations are then required
[85]. Using our soft cutoff formalism, it might be possible
to derive scaling constraints for both bosonic and fermionic
self energies. This could potentially provide an important step
towards the discovery of such nonperturbative solutions.
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APPENDIX A: CUTOFF SCHEME INDEPENDENT
INTEGRALS

1. Soft cutoff integrals at external q

It can be shown in general that any cutoff indepen-
dent quantum correction with external momenta from cutoff
functions vanishes. This justifies why the external momenta
appearing in cutoff functions can be set to zero. Here we ex-
plicitly show this for the only relevant case of the self-energy
correction

d

d�
�(q) = −�

d

d�

g2

Nf

∫
k

G� (k + q)Ak+qGφ (k)Ak, (A1)

which renormalizes the fermion propagator. In principle,
terms with linear q dependence could arise from the external
momentum in either G� (k + q) or Ak+q. To show that the
latter contributions vanish, we set G� (k + q) = G� (k) and
expand Ak+q = A(aμ(kμ + qμ)2/�2) to linear order in qμ,

Ak+q − Ak = 2A′
(

f y2

�2

)
y

�2
aν k̂νqν . (A2)

Here we have substituted k = yk̂, k̂μk̂μ = 1, and introduced
the angular function f = f (�̂) = aμk̂2

μ. Using that G� (k) =
ik̂μγμ/y and Gφ (k) = Gφ (k̂)/ynφ , where nφ = D − 2 to ensure
cutoff independence, the linear q correction arising from Ak+q

is equal to

− �
d

d�

g2

Nf

∫
k

G� (k)Ak+qGφ (k)Ak

= −i
g2

Nf
qμγμ

∫
�̂

aμk̂2
μGφ (k̂)I (�̂), (A3)

with a radial integral

I (�̂) = �
d

d�

∫ ∞

0
dy

2y

�2
A′
[

f (�̂)y2

�2

]
A

[
f (�̂)y2

�2

]
. (A4)

It is straightforward to show that I (�̂) = 0,

I (�̂) = 1

2 f (�̂)
�

d

d�

{
A2

[
f (�̂)y2

�2

]}y=∞

y=0

= 0. (A5)

The last step simply follows from the boundary conditions of
the cutoff function, limz→∞ A(z) = 0 and A(0) = 1.

2. Proof of Eq. (21)

We define the function

F

(
y2

�2

)
:=

∏
i

Ani

(
y2 fi

�2

)
. (A6)

From the boundary conditions of the cutoff function A(z),
Eq. (13), it follows that F (0) = 1 and limz→∞ F (z) = 0. Eval-
uating the left-hand side of Eq. (21), we obtain

�
d

d�

∫ ∞

0

dy

y
F

(
y2

�2

)
= −

∫ ∞

0

dy

y
F ′

(
y2

�2

)
2y2

�2

= −
∫ ∞

0
dy

d

dy

[
F

(
y2

�2

)]
= −

[
F

(
y2

�2

)]y=∞

y=0

= 1,

which proves Eq. (21). If on the other hand, the integrand
scales as 1/yα with α �= 1, the logarithmic derivative of the
integral won’t be independent of the cutoff scale � and the
choice of cutoff function A.

APPENDIX B: USEFUL INTEGRAL IDENTITIES

The loop calculations utilize integral identities that follow
from the integral representations of the � function. Typically,
k integrals are rewritten in hyperspherical coordinates kμ =
yk̂μ with k̂μk̂μ = 1,∫

k
=

∫
dDk

(2π )D
=

∫
d�̂k

(2π )D

∫ ∞

0
dy yD−1. (B1)

The radial integral identity∫ ∞

0
dy

yD−1+α

(yβ + M )n =
�
(

D+α
β

)
�
(
n − D+α

β

)
β �(n)Mn− D+α

β

(B2)

is valid for D + α > 0 and nβ > D + α. The angular integral
identity over the D-dimensional unit sphere,∫

d�̂k

(2π )D
k̂2n
μ = SD

�( D
2 )�

(
2n+1

2

)
√

π�
(

2n+D
2

) , (B3)

for integer n. Integrals over odd powers of k̂μ are zero, by
symmetry. Here μ = 0, . . . , D is not summed over and

SD = 1

(2π )
D
2

2π
D
2

�
(

D
2

) (B4)

is the surface area of a D-dimensional unit sphere.
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The Feynman parametrization,

1

anbm
= �(n + m)

�(n)�(m)

∫ 1

0
dt

tn−1(1 − t )m−1

[ta + (1 − t )b]n+m
, (B5)

is conjunction with appropriate linear momentum shifts is
used to render integrals radially symmetric.

The Feynman parameter integral identity,∫ 1

0
dt ta(1 − t )b = �(a + 1)�(b + 1)

�(a + b + 2)
, (B6)

is valid for a > −1 and b > −1.

APPENDIX C: GNY DIAGRAMS

1. RPA boson propagator

We work in units where the Fermi velocity v = 1, such that

G� (k) = ikμγμ

k2
. (C1)

The fermion loop diagram is displayed in Fig. 3(a). We calcu-
late the regularized fermion loop �(q) → �(q) − �(0),

�(q) = g2

Nf

∫
k

tr [G� (k + q)G� (k) − G� (k)G� (k)]

= g2
∫

k

(kμ + qμ)qμ

(k + q)2k2
, (C2)

where we have used that tr γμγν = Nf δμν . After using the
Feynman parametrization (B5) with n = m = 1, a = (k + q)2

and b = k2, and substituting k̃ = k + tq, the k̃ integral is radi-
ally symmetric,

�(q) = g2
∫ 1

0
dt

∫
k̃

(1 − t )q2[
k̃2 + t (1 − t )q2

]2 . (C3)

Evaluating the k̃ integral, using the radial integration for-
mula (B2), and then carrying out the one-dimensional integral
over the Feynman parameter t , using the identity (B6), we
obtain

�(q) = g2SDαD

vD−1

(
q2

0 + v2q2) D−2
2 , (C4)

where we have reinstated the Fermi velocity v, and defined

αD = − π

2 sin
(

πD
2

) �(D/2)2

�(D − 1)
. (C5)

The resulting dressed inverse RPA boson propagator is
given by

G−1
φ (q) = G−1

φ,0(q) + �(q)

= g2SDαD

vD−1

(
q2

0 + v2q2) D−2
2 + m2, (C6)

where we neglected the subleading momentum and frequency
terms from the bare inverse propagator G−1

φ,0(q).

2. Soft cutoff one-loop quantum corrections

In the following we work in rescaled units, such that v = 1.
The dependence on the Fermi velocity will be reinstated in the
end. The propagators are augmented by cutoff functions A as

described in the main text with Ak = A(aμk2
μ/�2). The flow

of the fermion self-energy correction �(q), Fig. 4(b), is

d

d�
�(q) = −�

d

d�

g2

Nf

∫
k

G� (k + q)Gφ (k)AkAk . (C7)

We extract the relevant linear q term on the critical surface
m2 = 0,

d

d�
�(q) = iqμγν

SDαDNf
�

d

d�

∫
k

2kμkν − δμνk2

kD+2
A2

k, (C8)

and rewrite the integral in terms of angular and radial inte-
grals, defining k = yk̂,

d

d�
�(q) = iqμγν

SDαDNf

∫
�̂

(
2k̂μk̂ν − δμν

)
×�

d

d�

∫ ∞

0

dy

y
A2

[
f (�̂)y2

�2

]
. (C9)

While the radial y integral becomes trivial, using the soft cut-
off integral identity (21), the angular integral can be computed
using Eq. (B3). The final result is

d

d�
�(q) = −i

D − 2

αDDNf
(q0γ0 + vq · γ ). (C10)

To compute the flow of the vertex correction �, Fig. 4(c),
we follow the same steps,

d

d�
� = �

d

d�

g3√
Nf

3

∫
k

G2
� (k)Gφ (k)A3

k

= − g

SDαD
√

Nf
3 �

d

d�

∫
�̂

∫ ∞

0

dy

y
A3

[
f (�̂)y2

�2

]

= − 1

αDNf

g√
Nf

. (C11)

3. Soft cutoff two-loop quantum corrections

The flow of the two-loop boson self-energy �̃, Fig. 4(d),
that renormalizes the boson mass (at zero external
momentum) is

d

d�
�̃ = �

d

d�

g4

N2
f

∫
k,q

Gφ (q)Aq

× tr
[
G� (k + q)G� (k + q)G� (k)G� (k)A2

k+qA2
k

+ 2G� (k + q)G� (k)G� (k)G� (k)Ak+qA3
k

]
. (C12)

We extract the relevant m2 contribution

d

d�
�̃ = − m2

(SDαD)2Nf
�

d

d�

∫
k,q

1

q2D−4k2(k + q)2

×
[
A2

kA2
k+qAq + 2(kμ + qμ)kμ

k2
A3

kAk+qAq

]
. (C13)

The two loop calculation involves more steps. We use the
transformation qμ = yq̂μ, kμ = yxk̂μ, where q̂μq̂μ = 1 and
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k̂μk̂μ = 1, such that

d

d�
�̃ = − m2

(SDαD)2Nf

∫
�̂k

(2π )D

∫
d�̂q

(2π )D

∫ ∞

0
dx xD−1

× �
d

d�

∫ ∞

0

dy

y

1

x2(xk̂ + q̂)2

[
A2

yxk̂
A2

y(xk̂+q̂)
Ayq̂

+ 2(x2 + xk̂μq̂μ)

x2
A3

yxk̂
Ay(xk̂+q̂)Ayq̂

]
. (C14)

The y integral is evaluated with the soft cutoff identity (21).
The integral is rendered radially symmetric in x after the
introduction of the Feynman parameter t (B5), with the
shift k̂ → k̂ − t q̂/x. Then the angular integrals are evaluated,
resulting in

d

d�
�̃ = − m2

α2
DNf

∫ 1

0
dt

∫ ∞

0
dx xD−1

×
{

1

[x2 + t (1 − t )]2
+ 4(1 − t )

x2 − t (1 − t )

[x2 + t (1 − t )]3

}
.

(C15)

The radial x integral and the integral over the Feynman param-
eter t are evaluated using Eqs. (B2) and (B6), respectively. The
final result is

d

d�
�̃ = D − 1

α2
DNf sin

(
πD
2

) π�
(

D
2

)2

�(D − 1)
m2. (C16)

APPENDIX D: DIAGRAMS FOR SEMI-DIRAC (dL = dQ = 1)
SYSTEMS

We work in units where vQ = 1, and define

εμ(k) = (k0, kL, k2
Q), (D1)

as well as γμ = (γ0, γL, γQ), such that (at � = 0)

G� (k) = i
εμ(k)γμ

ε2(k)
= i

k0γ0 + kLγL + k2
QγQ

k2
0 + k2

L + k4
Q

. (D2)

1. RPA boson propagator

We compute the boson self-energy, which is given by the
fermion polarization diagram,

�(q) = g2

Nf

∫
k

tr [G� (k + q)G� (k) − G� (k)G� (k)]

= g2
∫

k

{
q0(k0 + q0) + qL(kL + qL ) + (kQ + qQ)2

×[
(kQ + qQ)2 − k2

Q

]}/{
(k2

0 + k2
L + k4

Q)

×[
(k0 + q0)2 + (kL + qL )2 + (kQ + qQ)4

]}
,

(D3)

where we have used that trγμγν = Nf δμν . This integral can
be rendered radially symmetric in (k0, kL ) by introducing the
Feynman parameter t (B5) followed by the shift (k0, kL ) →

(k0, kL ) − t (q0, qL ),

�(q) = g2

4π2

∫ 1

0
dt

∫ ∞

−∞
dkQ

∫ ∞

0
dy y (D4)

× (1 − t )(q2
0 + q2

L ) + (kQ + qQ)2
[
(kQ + qQ)2 − k2

Q

]
[y2 + t (1 − t )(q2

0 + q2
L ) + t (kQ + qQ)4 + (1 − t )k4

Q]2
,

where y2 = k2
0 + k2

L. The radial integral over y can be per-
formed using the radial integral identity (B2),

�(q) = g2

8π2

∫ 1

0
dt

∫ ∞

−∞
dkQ (D5)

× (1 − t )
(
q2

0 + q2
L

) + (kQ + qQ)2
[
(kQ + qQ)2 − k2

Q

]
t (1 − t )

(
q2

0 + q2
L

) + t (kQ + qQ)4 + (1 − t )k4
Q

.

Substituting p = kQ/|qQ|, we can write the bosonic self-
energy in the form

�(q) = g2

8π2
|qQ|F

(
q2

0 + q2
L

q4
Q

)
, (D6)

where

F (u) =
∫ 1

0
dt

∫ ∞

−∞
d p

(p + 1)4 − p2(p + 1)2 + (1 − t )u

(p + 1)4t + p4(1 − t ) + t (1 − t )u
.

(D7)
This is evaluated numerically and is used to obtain numeri-
cally exact quantum corrections.

2. Soft cutoff one-loop quantum corrections

Using the nonanalytic inverse RPA boson propagator

G−1
φ (k) = g2

8π2
|kQ|F

(
k2

0 + k2
L

k4
Q

)
+ m2, (D8)

without the subleading bare terms, we compute the loop in-
tegrals δ�L, δ�Q, and δ��, which arise in the expansion of
the fermion self-energy correction, Eq. (59), and δ�, which
enters in the quantum correction that renormalizes the Yukawa
coupling, Eq. (60). The corresponding diagrams are shown in
Figs. 4(b) and 4(c), respectively. The one-loop integrals we
need to compute are

δ�L = 8π2

Nf
�

d

d�

∫
k

A2
k

|kQ|Fk

(
1

ε2
k

− k2
0 + k2

L

ε4
k

)
, (D9)

δ�Q = 8π2

Nf
�

d

d�

∫
k

A2
k

|kQ|Fk
(D10)

×
[(

k2
0 + k2

L

)2 − 12
(
k2

0 + k2
L

)
k4

Q + 3k8
Q

ε6
k

]
,

δ�� = 8π2

Nf
�

d

d�

∫
k

A2
k

|kQ|Fk

(
k2

0 + k2
L − k4

Q

ε4
k

)
, (D11)

δ� = −8π2

Nf
�

d

d�

∫
k

A3
k

|kQ|Fk

(
1

ε2
k

)
, (D12)

where we have defined Fk = F [(k2
0 + k2

L )/k4
Q], Ak =

A(aμε2
μ(k)/�2), and ε2

k = εμ(k)εμ(k), for brevity.
Using the transformation

k0 = y cos θ, kL = y sin θ, kQ = √
yk̃Q, (D13)
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the integral over the global radial coordinate y in conjunction
with the logarithmic derivative � d

d�
becomes trivial due to the

soft cutoff identity (21). After evaluating the angular integral
over θ and substitution u = 1/k̃4

Q, we obtain

δ�L = 1

Nf

∫ ∞

0
du

1

(1 + u)2F (u)
= 0.0797

Nf
, (D14)

δ�Q = 1

Nf

∫ ∞

0
du

u2 − 12u + 3

(1 + u)3F (u)
= 0.0214

Nf
, (D15)

δ�� = 1

Nf

∫ ∞

0
du

u − 1

(1 + u)2F (u)
= 0.2755

Nf
, (D16)

δ� = − 1

Nf

∫ ∞

0
du

1

(1 + u)F (u)
= −0.4350

Nf
, (D17)

where in the last step we have numerically evaluated the
integral over u, using the exact function F (u) (D7), which is
itself a two-dimensional integral.

Alternatively it is possible to compute the corrections
with the asymptotic inverse propagator in Eq. (75). In
this case F (u) is approximated by a closed form expres-
sion and only the one dimensional integral over u needs
to be performed numerically. The resulting quantum cor-
rections are δ�L ≈ 0.0771/Nf , δ�Q ≈ 0.0250/Nf , δ�� ≈
0.2759/Nf , δ� ≈ −0.4300/Nf .

3. Soft cutoff two-loop quantum corrections

The two-loop integrals that contribute to the mass renor-
malization, Eq. (60), are given by

δ�̃ = − (8π2)2

Nf
�

d

d�

∫
k,q

1

ε2
k+qε

2
k |qQ|2F 2

q

×
[

A2
kA2

k+qAq + 2ε
μ

k+qε
μ

k

ε2
k

A3
kAk+qAq

]
. (D18)

We use the transformation

q0 = yq̂0, qL = yq̂L, qQ = √
yq̃Q,

k0 = yxk̂0, kL = yxk̂L, kQ = √
yk̃Q. (D19)

with k̂2
0 + k̂2

L = 1 and q̂2
0 + q̂2

L = 1, e.g., k̂0 = cos θ , k̂L =
sin θ , q̂0 = cos φ, and q̂L = sin φ.

The global radial integral over y is trivial due to the soft
cutoff identity (21) that reflects the cutoff independence. We
then introduce the Feynman parameter t (B5) to render the
x integral radially symmetric, after the shift xk̂0,L → xk̂0,L −
t q̂0,L. Evaluating the angular integrals results in

δ�̃ = −16π2

Nf

∫
kQ,qQ

1

|q̃Q|2F (q̃−4
Q )2

∫ 1

0
dt

∫ ∞

0
dx x

×
{

1[
x2 + t (1 − t ) + t

(
k̃Q + q̃Q

)4 + (1 − t )k̃4
Q

]2

+ 4(1 − t )
[
x2 − t (1 − t ) + (

k̃Q + q̃Q
)2

k̃2
Q

][
x2 + t (1 − t ) + t

(
k̃Q + q̃Q

)4 + (1 − t )k̃4
Q

]3

}
.

(D20)

Using the identity (B2) the radial x integral is evaluated re-
sulting in

δ�̃ = − 2

Nf

∫ ∞

−∞
dq̃Q

1

|q̃Q|2F
(
q̃−4

Q

)2

∫ 1

0
dt

∫ ∞

−∞
dk̃Q

×
{

1 + 2(1 − t )[
t (1 − t ) + t

(
k̃Q + q̃Q

)4 + (1 − t )k̃4
Q

]
+ 2(1 − t )

[(
k̃Q + q̃Q

)2
k̃2

Q − t (1 − t )
][

t (1 − t ) + t
(
k̃Q + q̃Q

)4 + (1 − t )k̃4
Q

]2

}
. (D21)

Although the integral over the Feynman parameter t can be
performed analytically, we find that numerical stability of
integration is enhanced if the current three-dimensional form
is used. We find that δ� = −1.053/Nf with the full F , and
δ� ≈ −1.037/Nf with the asymptotic propagator (75).

APPENDIX E: DIAGRAMS FOR THE εL,Q EXPANSIONS

1. Derivation of the RPA near the upper critical line

Here we compute the regularized bosonic self-energy (D3)
for the two cases: (1) dL = (3 − εL )/2, dQ = 1 and (2) dL =
1, dQ = 2 − εQ. The first steps are carried out for general
dL and dQ. Using Feynman parametrization (B5) together
with the shift (k0, kL ) → (k0, kL ) − t (q0, qL ), the integral is
rendered radially symmetric in the linear (k0, kL ) subspace,

�(q) = g2

2dL π (dL+1)/2�
( dL+1

2

) ∫
kQ

∫ 1

0
dt

∫ ∞

0
dy ydL

(1 − t )
(
q2

0 + q2
L

)+ (kQ + qQ)2[(kQ + qQ)2 − k2
Q][

y2 + + t (1 − − t )
(
q2

0 + + q2
L

)+ t (kQ + qQ)4 + (1 − t )k4
Q

]2 ,

(E1)

where k2
0 + k2

L = y2 and t denotes the Feynman parameter. Note that we have evaluated the angular integral over the dL + 1
dimensional sphere and evaluated the surface area SdL+1 using Eq. (B4). Using the integral identity in Eq. (B2) we can integrate
over y,

�(q) = g2 sec
( dLπ

2

)
(dL − 1)

22+dL π (dL−1)/2�
( dL+1

2

) ∫
kQ

∫ 1

0
dt
([

(kQ + qQ)2
(
2kQ · qQ + q2

Q

) + (
q2

0 + q2
L

)
(1 − t )

]
× {

k2
Q + [

2kQ · qQ + q2
Q + (

q2
0 + q2

L

)
(1 − t )

]
t
}(dL−3)/2)

. (E2)
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This integral cannot be computed in closed form so we
look at two limits, first where qQ = 0, and second where
(q0, qL ) = 0. The final asymptotic form of the propagator will
be approximated by G−1

φ (q) = �(q0, qL, qQ = 0) + �(q0 =
0, qL = 0, qQ). In the first limit, qQ = 0, the integral does not
diverge for any dL, dQ > 0 and 2dL + dQ < 6 and results in

�(q0, qL, qQ = 0)

= −g2 π (3−dL−dQ )/2 sec
[ (2dL+dQ )π

4

]
4dL+dQ�

( 2+dQ

4

)
�
( 2dL+dQ

4

) (
q2

0 + q2
L

) 2dL+dQ−2

4 . (E3)

Evaluating this expression for the two starting points (1)
dL = 3/2, dQ = 1 and (2) dL = 1, dQ = 2 on the upper critical
line results in the linear terms in Eqs. (80) and (81).

The integral in the second limit, (q0, qL ) = 0, is however
typically divergent on the upper critical line, but upon an eval-
uation in 2dL + dQ = 4 − εL,Q we can obtain the leading εL,Q

behavior, i.e., the 1/εL,Q pole. This divergence can be recov-
ered upon first making the spherical transformation |kQ|4 =
r2, and then expanding the integral in the limit of large r in
dQ + 2dL = 4 − εL,Q. The leading term ∼|qQ|2−εL,Q/r1+εL,Q is
extracted, and upon the evaluation of the integral results in

�(q0 = 0, qL = 0, qQ)

= (2dL + dQ − 2)π (1−dL−dQ )/2 sec
( dLπ

2

)
dQ2dL+dQ (2dL + dQ − 4)�

( dL−1
2

)
�
( dQ

2

) |qQ|2dL+dQ−2.

(E4)

Evaluating the prefactor for (1) dL = (3 − εL )/2, dQ =
1 and (2) dL = 1, dQ = 2 − εQ and extracting the leading
1/εL and 1/εQ divergencies, we obtain the quadratic terms in
Eqs. (80) and (81).

2. Fermion self-energy and the vertex correction

We proceed to compute the one-loop diagrams in Figs. 4(b)
and 4(c), using the soft cutoff approach. Expanding the
fermion self-energy diagram to leading order in external fre-
quency and momenta, we obtain the quantum corrections to
the linear and quadratic momentum directions as well as to
the Yukawa vertex for a general dL-dQ system,

δ�L = g2

Nf
�

d

d�

∫
k

[
1

ε2
k

− 2
(
k2

0 + k2
L

)
(dL + 1)ε4

k

]
Gφ (k)A2

k, (E5)

δ�Q = g2

Nf
�

d

d�

∫
k

{
Gφ (k)A2

k

ε6
k

×
[

4k8
Q − 12

(
k2

0 + k2
L

)
k4

Q

dQ
+ (

k2
0 + k2

L

)2 − k8
Q

]}
,

(E6)

δ� = − g2

Nf
�

d

d�

∫
k

Gφ (k)A3
k

ε2
k

. (E7)

Here Gφ (k) is the IR order parameter propagator defined in
Eq. (80) for the εL expansion and in Eq. (81) for the εQ

expansion.

a. εL expansion

We compute the above integrals in dL = 3/2, dQ = 1
dimensions with the boson propagator Gφ (k) in Eq. (80).
Defining the radial coordinate y in the dL + 1 = 5/2 dimen-
sional (k0, kL ) subspace, k2

0 + k2
L = y2, and substituting kQ =√

yx, the y integrals can be evaluated with the soft cutoff
identity (21), reflecting the cutoff independence. The angular
integral simply gives a factor S5/2 = (8π5/4)/�(1/4). The
remaining one-dimensional x integrals can be computed ana-
lytically. Keeping the leading ∼√

εL and first subleading ∼εL

contributions for small εL, we obtain the quantum corrections

δ�L = 64εL

5πNf

∫ ∞

0

(1 + 5x4)dx

(1 + x4)2
[
16

√
2 x2 + √

π �
(

1
4

)2
εL
]

= 23/4

5π1/4�
(

5
4

) √
εL

Nf
, (E8)

δ�Q = 64εL

πNf

∫ ∞

0

(1 − 12x4 + 3x8)dx

(1 + x4)3
[
16

√
2 x2 + √

π �
(

1
4

)2
εL
]

= 23/4

π1/4�
(

5
4

) √
εL

Nf
− 3εL

Nf
, (E9)

δ� = −64εL

πNf

∫ ∞

0

dx

(1 + x4)
[
16

√
2 x2 + √

π �
(

1
4

)2
εL
]

= − 23/4

π1/4�
(

5
4

) √
εL

Nf
+ εL

Nf
. (E10)

b. εQ expansion

For the expansion in the number of quadratic dimensions,
we compute the integrals in Eqs. (E5)–(E7) in dL = 1, dQ =
2, using the IR boson propagator defined in Eq. (81). Defining
k2

0 + k2
L = y2 and k2

Q = yx2, the y integral and the angular
integrals are again trivial. Keeping the leading ∼εQ log εQ and
first subleading ∼εQ contributions for small εQ, the final x
integrals result in

δ�L = 16εQ

Nf

∫ ∞

0
dx

x5

(1 + x4)2
(
8x2 + π2εQ

)
= εQ

2Nf
, (E11)

δ�Q = 16εQ

Nf

∫ ∞

0
dx

x(1 − 6x4 + x8)

(1 + x4)3
(
8x2 + π2εQ

)
= − εQ

Nf
log

(
π2εQ

8

)
− 2εQ

Nf
, (E12)

δ� = −16εQ

Nf

∫ ∞

0
dx

x

(1 + x4)
(
8x2 + π2εQ

)
= εQ

Nf
log

(
π2εQ

8

)
. (E13)

APPENDIX F: COMPARING SCALING AND CRITICAL
EXPONENTS

When comparing to critical exponents found in the litera-
ture one must be careful about the variation in definitions of
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the number of fermion components Nf , and the unit length
scale zL = 1 or zQ = 1. We discuss how to do so here.

Throughout the literature, various n-component fermions
are considered, depending on the symmetry of the initial
Hamiltonian. For analytic control, the generalization to Nn

flavors is made. The conversion to our convention is then
Nf = nNn.

We have defined a unified scaling relying on the “unit
length” zLδ�,

X (k) = X ′(k′)e−�X zLδ�/2, (F1)

where X = �,φ and �X = [X †X ] + ηX are the total scaling
dimensions. Here ηX contains all order 1/Nf corrections by
definition. We did so because in the literature there are varia-
tions in the definition of the unit length scale, using either (1)
linear zL = 1 or (2) quadratic zQ = 1 momentum directions.
As we found in the main text, the ratio zL/zQ renormalizes
and so, for example, fixing zL = 1 causes zQ to renormalize
with 1/Nf corrections.

We seek to compare to previous results in the literature,
where in general the scaling is defined as

X (k) = X ′(k′)e−�̃X δ�/2, (F2)

where �̃X = [X̃ †X ] + η̃X , and typically either zL = 1 is fixed,
or zQ = 1 is fixed. When the linear momentum has been de-
fined as the unit length scale, �̃X = �X , as zL = 1 is fixed.
Where as, for the quadratic momentum defining the unit
length scale, �̃X = zL�X , as zQ = 1 but zL is not fixed.

In the case zQ = 1 there are subtleties in the conversion
between anomalous dimensions ηX and η̃X . To leading order

in Nf we define zL = z(0)
L + z(1)

L /Nf , then expand �̃X = zL�X

and equate 1/Nf terms resulting in the relation

ηX = η̃X

z(0)
L

− z(1)
L

[
X̃ †X

](
z(0)

L

)2
Nf

. (F3)

There can be other variations in scaling definitions, for ex-
ample Ref. [46] defined �̃X = [X̃ †X ] + 2η̂X , such that η̃X =
2η̂X . We use the comparison of the order parameter anomalous
dimension as a relevant example. We also take this opportu-
nity to correct a mistake in Table I of Ref. [46].

In Ref. [46], Nb-component order parameters where cou-
pled to N4 flavors of four-component anisotropic fermions.
Implementing their quantum corrections (S19, S23, S26, S34)
in their field-theoretic RG equations (S14) of their supplemen-
tary material finds

η̂φ = εQ

N4

[
2 − 5Nb

2
+ (1 − Nb) log

(
π2εQ

8

)]
. (F4)

For the Ising case, Nb = 1, the εQ log εQ correction vanishes
from η̂φ . This is not in contradiction to its presence in ηφ of
Table I, which was calculated with our soft cutoff methodol-
ogy. This can be clarified using the conversion

ηφ = 2η̂φ

z(0)
L

+ 8z(1)
L(

z(0)
L

)2
Nf

, (F5)

where zL is defined in Table I, for zQ = 1. Indeed, we obtain
the leading εQ log εQ correction.
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