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Breakdown of self-averaging in the Bose glass
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We study the square-lattice Bose-Hubbard model with bounded random on-site energies at zero temperature.
Starting from a dual representation obtained from a strong-coupling expansion around the atomic limit, we
employ a real-space block decimation scheme. This approach is nonperturbative in the disorder and enables us
to study the renormalization-group flow of the induced random-mass distribution. In both insulating phases, the
Mott insulator and the Bose glass, the average mass diverges, signaling short range superfluid correlations. The
relative variance of the mass distribution distinguishes the two phases, renormalizing to zero in the Mott insulator
and diverging in the Bose glass. Negative mass values in the tail of the distribution indicate the presence of
rare superfluid regions in the Bose glass. The breakdown of self-averaging is evidenced by the divergent relative
variance and increasingly non-Gaussian distributions. We determine an explicit phase boundary between the
Mott insulator and Bose glass.
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I. INTRODUCTION

Introducing quenched disorder into an otherwise pure
system can lead to subtle and complex results and the
disordered Bose-Hubbard (BH) model is no exception. While
the clean BH model shows a relatively straightforward bosonic
competition between repulsion and tunneling, the disordered
model exhibits a new gapless insulating phase, the Bose glass
(BG), the precise location of which has proven problematic
from the outset.1 With the advent of experimental methods
that can engineer this model directly,2 the problem has been
inverted and this has sparked renewed interest in the role
disorder plays in quantum systems.

In this article, we develop a nonperturbative method
to probe the nature of the transition between the
localization-induced BG and the Mott insulator (MI) in the
two-dimensional BH model with bounded potential disorder.
The MI arises from on-site repulsions and hence dominates
in the limit the hopping vanishes while the superfluid (SF) is
the ground state in the opposite regime. It is in the difficult
intermediate parameter space where the BG phase obtains.
It has been argued by various authors1,3–7 that the BG is a
quantum Griffiths phase dominated by arbitrarily large SF
regions that are, however, exponentially suppressed. Despite
the abundance of numerical3,8–13 and analytical14–23 work on
the subject, it is only recently that several aspects of this model
have been fully understood. This includes the confirmation that
the BG always intervenes between MI and SF phases4 (Fig. 1),
the proof that the transition between the MI and the BG has to
be of the Griffiths type,5 and the distinction between the MI
and BG regarding whether fluctuations are self-averaging.24

As argued by Aharony and Harris,25 the breakdown of self-
averaging can be identified from the renormalization-group
(RG) flow of the relative variance of any extensive variable. If
the relative variance does not renormalize to zero, the central
limit theorem no longer applies and the system is not self-
averaging. This concept has been used to characterize the phase
transition between the MI and the BG24 within a disorder
averaged replica field theory. In both insulating phases, the
mass of the theory diverges, signaling the presence of short-
ranged SF correlations. In dimensions d < 4 the variance of

the mass distribution diverges as well and, as a consequence,
the breakdown of self-averaging can be readily understood as
a competition between the spread of the distribution versus the
shift of its average. In the MI, the shift dominates the spread
leading to a vanishing relative variance. In the BG, the spread is
faster and the relative variance diverges. This characterization
of the MI/BG transition is consistent with the picture that
the BG is dominated by rare SF regions since the negative
mass values occur in the tail of the distribution. Whether the
onset of this Griffiths instability4,5 is correctly described by a
perturbative RG calculation remains a central question.

We address this question within a real-space block dec-
imation RG scheme on a square lattice. This approach is
nonperturbative in the disorder and hence enables a study of
the RG flow of the full random-mass distribution, a necessity
for any definitive statement about Griffiths-type physics to
be made. We reiterate that the onset of the Bose glass is
well known to be mediated4,5 by Griffiths rare-region physics
and hence our conclusions are independent of whether the
transition is studied from the Mott insulator or the superfluid.
Our results confirm that the relative variance serves as the
order parameter for the MI-to-BG transition. Determining
the correlation length from the scale at which the relative
variance becomes of order one, we extract a correlation-length
exponent of about ν = 0.7. This is close to the analytical value
ν = 1/d obtained within the perturbative one-loop RG.24 It has
been argued25,26 that a violation of the Harris-criterion bound
ν � 2/d for critical disordered systems27,28 is indicative of
the lack of self-averaging. The absence of the central-limit
theorem in the BG is further evidenced by an increasingly
non-Gaussian shape of disorder distributions.

II. MODEL

Our starting point is the simplest form of the disordered
BH model on a square lattice,

H = −t
∑
〈i,j〉

(b†i bj + b
†
j bi) −

∑
i

μi n̂i + U

2

∑
i

n̂i(n̂i − 1),

(1)
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FIG. 1. Sketch of the phase diagram of the disordered Bose-
Hubbard model as a function of the hopping t/U and chemical
potential μ/U in units of the on-site repulsion U . Random shifts
in the on-site energies bounded by � < U/2 lead to the formation of
a compressible Bose-glass (BG) phase, separating the Mott-insulating
(MI) lobes from the superfluid (SF).

which describes bosons tunneling with amplitude t between
nearest-neighbor sites i and j and interacting via an on-site
repulsion U . The bosonic raising and lowering operators are
given by b

†
i ,bi , respectively, where n̂i = b

†
i bi is the bosonic

number operator. μi is the chemical potential shifted by the
on-site disorder potential, μi = μ − εi . The random site ener-
gies εi are uncorrelated between different sites and uniformly
distributed in the interval [−�,�]. From minimization of the
energy in the atomic limit it is straightforward to see that for
� < U/2 the phase diagram retains MI phases (see Fig. 1).

To facilitate a strong coupling expansion, we follow the
standard procedure.29,30 After expressing the model by a
coherent-state path integral in imaginary time, we decouple
the hopping term by a Hubbard-Stratonovich transformation
and trace over the original boson fields. We then perform a
temporal gradient expansion to obtain the effective dual action
on a lattice,

Seff = a2
∑

i

∫
dτ

(
1

2

∑
δ

Tiδ|ψδ − ψi |2 + K
(1)
i ψ∗

i ∂τψi

+ K
(2)
i |∂τψi |2 + Ri |ψi |2 + Hi |ψi |4

)
, (2)

where a denotes the lattice spacing and the sum over δ

runs over the nearest neighbors of site i. By construction,
the complex fields correspond to the SF order parameter
ψi ∼ 〈bi〉. In regions where Ri > 0, SF order is suppressed.
The mass Ri therefore corresponds to the local Mott gap.
Ri and Hi are related to the single- and two-particle bosonic
Green functions of the local on-site Hamiltonian, respectively,
while the temporal gradient terms K

(1)
i and K

(2)
i are given by

derivatives of the mass with respect to the chemical potential.
We specialize to the first Mott lobe with m = 1 bosons per site

in which the coefficients are given by23,30

Ri = 1

zt
−

(
2

U − μi

+ 1

μi

)
, (3a)

K
(1)
i = −∂Ri

∂μi

, K
(2)
i = −1

2

∂2Ri

∂μ2
i

, (3b)

Hi =
(

2

U − μi

+ 1

μi

) (
2

(U − μi)2
+ 1

μ2
i

)

− 6

(U − μi)2(3U − 2μi)
, (3c)

where z = 2d = 4 is the coordination number of the square
lattice. In the clean limit, μi = μ, the mean-field phase
boundary between the first MI lobe and the SF is obtained
from R(μ,t,U ) = 0. In the presence of disorder, μi = μ − εi ,
the coefficients Ri , K

(1)
i , K

(2)
i , and Hi depend on the disorder

potential εi , which induces nontrivial disorder distributions of
the coefficients. Note that initially the dual hopping amplitudes
Tiδ = 1/(za2t) are uniform. We allow for a spatial dependence
of the hopping since disorder will be induced under block
decimation.

III. BLOCK DECIMATION REAL-SPACE RG

Equations (3) provide the initial conditions for our proce-
dure where the random on-site energies are generated from
a uniform distribution on the interval [−�,�]. In order to
determine the phase for a given set of parameters t , U , μ, and
� of the disordered BH model (1), we derive a set of recursion
equations using block decimation. We start with the discrete
action (2) and eliminate short-range degrees of freedom by
integrating out every other site, treating the quartic terms Hi

perturbatively to leading order. The remaining points form a
new square lattice with lattice spacing a′ = √

2a and tilted 45◦
from the original system. Recollecting the resulting terms and
rescaling the action to look like the original, we find the RG
recursion equations

R′
i ′ = Ri +

∑
δ

Tiδ −
∑
δ,δ′

TiδTiδ′Iδ(1 − 4HiĨδIδ), (4a)

T ′
i ′j ′ =

∑
ε,ε′

TεTε′Iεε′(1 − 4Hεε′ Ĩεε′Iεε′), (4b)

where Ii = (Ri + ∑
δ Tiδ)−1 is the static propagator and

Ĩi = [4(Ri + ∑
δ Tiδ)K (2)

i + (K (1)
i )2]−

1
2 . The indices δ and δ′

correspond to nearest neighbors of site i, whereas ε and ε′
correspond to the bonds adjacent to the bond connecting the
sites i ′ and j ′ of the remaining lattice. The site εε′ is the
common vertex of the bonds ε and ε′ (see Fig. 2). Since
we are interested in the MI/BG transition at incommensurate
filling, we can neglect any corrections to the coefficients K (1),
K (2), and H beyond dimensional scaling. Note that under the
RG longer range couplings are generated which is a known
problem of the block decimation method in d > 1. In the
present case, however, locality is guaranteed since the mean
of the mass distribution diverges in both insulating phases,
leading to an exponential suppression of hopping amplitudes
beyond nearest neighbors.
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FIG. 2. (Color online) Illustration of the block decimation scheme
underlying the recursion relations (4).

Since the gradient terms are renormalized under block
decimation the effective local mass should be defined relative
to the kinetic hopping terms,

ri := zRi

/ ∑
δ

Tiδ. (5)

As a consistency check, we evaluate our recursion relations
in the clean limit. For T = Tiδ , R = Ri , and H = Hi = 0,
the RG equations (4) reduce to R′ = R + 4T − 16T 2/(R +
4T ) and T ′ = 4T 2/(R + 4T ), leading to the recursion relation
r ′ = 2r + r2/4 for the effective mass. This indeed correctly
describes the mean-field transition between the MI and the SF
at r = 0.

IV. RESULTS

In the following, we integrate the RG equations (4)
numerically for the inhomogeneous system obtained for one
particular disorder realization and keep track of the values
of the coupling constants on each lattice site. This allows
us to extract the mass distribution P (ri) at each iteration
step of the block decimation. We vary t/U while keeping
the disorder fixed at � = 0.1 for chemical potential values
μ/U = 0.15,0.2, . . . ,0.75,0.8 and several lattice constants a.
Since Eq. (2) has only nearest neighbor or on-site terms, we
can ignore the boundary points after each iteration without
affecting the overall distribution. The major limitation to this
method is the necessity of finite size lattices. Estimates of
any diverging quantities near the critical point must take into
account finite system size effects. In the data given below
we use an initial square grid of points with side length
L = 506 sites. This side length is not a power of 2 because each
decimation step concludes by throwing away points affected
by the boundary.

As expected for insulating phases, in both the MI and the
BG, the mean ri of the mass distribution increases exponen-
tially under the RG signaling short-range SF correlations. To
distinguish the behavior in the MI and the BG, we normalize
to a mean of unity and analyze the evolution of P (ri/ri). The
variance of this rescaled distribution corresponds to the relative
variance of the mass distribution, which should serve as order
parameter.24

(a)

(b)

FIG. 3. (Color online) RG flow of the mass distributions P (ri/ri)
(normalized to a mean of 1). (a) In the MI, the Gaussian fit (red
dotted line) becomes better with successive iterations and the width of
the distribution, which corresponds to the relative variance, narrows.
(b) In the BG, the initial distribution is shifted to the left due to a larger
initial hopping value. The Gaussian fit becomes worse and worse and
the relative variance increases.

In Fig. 3(a), the RG flow of P (ri/ri) in the MI phase is
shown. Note that the initial mass distribution is asymmetric
and non-Gaussian due to the functional dependence (3a) on
the uniformly distributed on-site energies εi . As a consequence
of the relatively small hopping value t/U , the bulk of the
sites begin well above ri = 0 and continue together towards
larger values under repeated iteration. Increasing the number of
iterations results in a distribution well described by a Gaussian.
Further, the width of the distribution narrows, indicating a
vanishing relative variance. This demonstrates that in the MI
disorder is irrelevant and the system is self-averaging.

The situation changes dramatically as we increase the value
of t/U and enter the BG phase (see Fig. 3). While the overall
shape of the initial distribution looks quite similar to the one
in the MI, now a large fraction of the initial sites lies close
to or below ri = 0. With enough sites close to the transition
point, some regions of the system take much longer to flow
to large positive values than others. This results in a drastic
spread of values upon repeated iteration of the RG, leading
to a divergence of the relative variance. In addition, the
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distribution develops a non-Gaussian form under successive
iterations, indicating a violation of the central limit theorem.
This demonstrates a breakdown of self-averaging in the BG.

Our results show that the relative variance of the random-
mass distribution ri serves as an order parameter for the
transition between the MI and the BG. We can therefore
determine a correlation length ξ/a = √

2
nc

in the BG from
the average number of iterations it takes before the relative
variance becomes of order unity. For the parameters used in
Fig. 3(b) this happens between six and seven iterations. A more
precise value is obtained by averaging over several disorder
realizations. Note that once the relative variance becomes of
order unity, the left tail of the distribution pushes through zero.
Therefore, the correlation length ξ corresponds to the typical
distance between SF droplets in the system.

We generate a phase diagram for the transition between the
MI and BG by estimating values for tc such that the data for
several initial conditions collapse onto a single curve. This
method, and consequently the resulting phase diagram, can
only predict the relative value of tc between different values
of μ/U and not the absolute location of tc. Therefore, we set
tc to be a small constant value for initial conditions in which
the BG is suppressed and plot the results for intermediate
values in Fig. 4. Other computational methods have produced
a phase boundary on the same order of magnitude with the
same characteristic shape.7

At the transition to the MI, the correlation length diverges
as a power law, ξ ∼ (t − tc)−ν . To extract the correlation-
length exponent ν, we vary the hopping slightly above the
transition point for fixed values of the lattice spacing a and
several values of the chemical potential μ/U and extract
the correlation length as described above by averaging over
several disorder realizations. In the following, we use a =
0.3, μ/U = 0.15,0.2, . . . ,0.75,0.8 and average over 10–20
disorder realizations. Note that the value tc of the transition
point is nonuniversal. With the values of tc in Fig. 4, we plot

FIG. 4. (Color online) MI/BG phase boundary for the first Mott
lobe obtained using the relative variance of the disorder-induced mass
distribution as an order parameter. The critical hopping values tc and
the shape of the phase boundary are on the order of those obtained
via various computational methods.7 The dotted lines correspond to
μ/U = 0.1,0.9. The Mott insulator occurs only between the dotted
lines. The distance between the dotted lines and the integer-value
fillings is set by the disorder width, �. Note that the absolute values
for tc vary with cutoff a, so only the relative shape of the diagram and
an order of magnitude estimate of these values are obtained here.

FIG. 5. (Color online) Scale collapse of the correlation length
curves as a function of the hopping t for various values of μ/U . The
curves’ colors and markers are matched to Fig. 4. Universality is seen
at smaller scales further from the tip of the Mott lobe as is shown in
previous momentum-shell methods.24 This is indicated here by the
higher and lower values of μ/U tending towards a universal constant
value. For fillings slightly less than commensurate, the system size
was too small to produce an estimate of ν. The nonlinear fit predicts
an asymptotic value of ν ≈ 0.7 for the correlation length exponent.

∂ ln ξ/∂ ln(t − tc) vs ln(t − tc) for various values of μ/U . The
data collapse onto a single curve with an asymptotic value of
ν ≈ 0.7 as shown in Fig. 5. Values of the chemical potential
near commensurate density require larger system sizes to see
universal behavior as was found in previous momentum-shell
work.24 This is indicated in Fig. 5 where the midrange values of
μ/U are further from the universal asymptotic fit than those at
the extrema. As a result, the system sizes used here of L = 506
are too small to obtain enough data to estimate ν for filling
values slightly less than commensurate.

V. DISCUSSION AND CONCLUSION

We used a real-space block decimation method to charac-
terize the MI-to-BG transition. By analyzing the RG flow of
the induced random-mass distribution in the dual field theory,
we have demonstrated that the transition is characterized by a
breakdown of self-averaging. The associated correlation length
corresponds to the typical separation of rare SF regions. Note
that while the transition is not related to spontaneous symmetry
breaking, the divergence of the correlation length defined here
has been shown to be related to a vanishing compressibility.24

Our work provides an explicit confirmation that the instability
of the MI towards the formation of the BG is of the Griffith
type, as previously argued by other authors.4,5

The method employed here enables us to study the RG
flow of entire disorder distributions, whereas the perturbative
one-loop momentum-shell RG based on the disorder averaged
replica theory is restricted to the mean and the variance of
the random mass distribution.24 Both approaches, however,
show that the relative variance diverges in the BG. This is
an important result as it demonstrates that, contrary to the
general belief, the onset of Griffiths instabilities is captured in
perturbative RG. The comparison of the correlation-length ex-
ponents obtained by the two methods suggests that corrections
beyond one-loop order are small.
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Griffiths phases can be classified based on the comparison
of the dimension of defects (or rare regions) with the
lower critical dimension.31–34 Since the SF droplets are one
dimensional—rodlike in imaginary time and zero dimensional
in space—the rare regions are below the lower critical
dimension of the problem, leading to weak Griffiths singu-
larities characterized by an essential singularity in the free
energy.35

Our results show that the MI/BG transition is characterized
by a fixed point with finite relative variance. This is consistent
with strong disorder RG calculations that show that the
transition between the SF and the disordered insulator is
governed by a finite disorder fixed point.6,36,37 While the strong
disorder RG approach becomes asymptotically exact in the
limit of infinite disorder, it might produce unphysical results
in the regime of weak disorder.6 Another difference to the
block decimation scheme is that the lattice coordination is
not preserved in dimensions d > 1. It would be interesting to

systematically compare the evolution of disorder distributions
for the two complementary methods.

The real-space RG approach presented here has a wide
range of future applications. It can be used to study the effects
of spatial correlations in the disorder and entails the search for
self-similar disorder characterized by scale invariant distribu-
tion functions. Finally, the method is not restricted to disorder
distributions, but can be used to study other inhomogeneities
such as the so-called wedding cake structures of alternating
MI and SF regions found in optical-lattice systems.38
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