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Resummation of fluctuations near ferromagnetic quantum critical points
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We present a detailed analysis of the nonanalytic structure of the free energy for the itinerant ferromagnet near
the quantum critical point in two and three dimensions. We analyze a model of electrons with an isotropic
dispersion interacting through a contact repulsion. A fermionic version of the quantum order-by-disorder
mechanism allows us to calculate the free energy as a functional of the dispersion in the presence of homogeneous
and spiraling magnetic order. We resum the leading divergent contributions to derive an algebraic expression for
the nonanalytic contribution to free energy from quantum fluctuations. Using a recursion which relates subleading
divergences to the leading term, we calculate the full T = 0 contribution in d = 3. We propose an interpolating
functional form, which allows us to track phase transition lines at temperatures far below the tricritical point
and down to T = 0. In d = 2, quantum fluctuations are stronger, and nonanalyticities are more severe. Using a
similar resummation approach, we find that despite the different nonanalytic structures, the phase diagrams in
two and three dimensions are remarkably similar, exhibiting an incommensurate spiral phase near the avoided
quantum critical point.
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I. INTRODUCTION

Quantum fluctuations can have a dramatic effect on the
phase behavior of the itinerant ferromagnet in the vicinity
of the T = 0 quantum critical point. In a pioneering paper,1

Hertz suggested that fluctuations can lead to new scaling in the
physical quantities above the quantum critical point, which he
termed “quantum critical scaling.” The theory of ferromagnetic
quantum criticality was further developed by Moriya2 and
Millis.3 More recently, several authors4–10 noted that the
coupling of soft electronic particle-hole modes to the magnetic
order parameter generates nonanalytic terms in the free
energy that render the magnetic transitions first order at low
temperatures. Such fluctuation-induced first-order behavior is
expected for ferromagnets in the Ising, XY , and Heisenberg
universality classes in dimensions 1 < d � 3, regardless of
whether the moments are supplied by the conduction electrons
or by electrons in another band.11 Such first-order behavior
is also stable against weak disorder.4,12 This explains why
discontinuous ferromagnetic transitions are seen in various
materials, including MnSi (Ref. 13), Sr1−xCaxRuO3 (Ref. 14),
CoO2 (Ref. 15), UGe2 (Ref. 16), and URhGe (Ref. 17).

It has been argued6 that fluctuation-driven first-order
transitions are indicative of the appearance of precursor,
incommensurate magnetic states. Recently, this possibility
has been explored in d = 3 within a fermionic version of
the quantum order-by-disorder mechanism.18–20 The central
idea is to self-consistently calculate fluctuations around mag-
netically ordered states. This approach not only reproduces
the nonanalytic free energy of the homogeneous ferromagnet
within a much simpler calculation but also predicts the
formation of an incommensurate spiral state, preempting the
first-order transition into the ferromagnet. Spiral formation
may be driven in the mean field by, e.g., a feature in the
density of states21–25 or a breaking of inversion symmetry
by the crystal structure, resulting in a Dzyaloshinsky-Moriya
interaction.26–28 Our mechanism for spiral formation does not
require either of these complications and is driven by quantum

fluctuations of itinerant electrons with a simple, isotropic
dispersion.

The quantum order-by-disorder phenomenon has much in
common with the Coleman-Weinberg mechanism of mass
generation in high-energy physics29 and with the Casimir
effect.30 It is familiar in the context of condensed-matter
physics.31–35 However, where the fermionic version differs
from all these approaches is that it encodes the quantum
fluctuations in fermionic particle-hole excitations, rather than
in fluctuations of the bosonic order parameter. The instability
towards incommensurate order is associated with particular
deformations of the Fermi surface. These alter the spectrum
of the electronic soft modes which couple to the magnetic
order parameter, leading to a self-consistent lowering of the
free energy. The spiral is more stable than the homoge-
neous ferromagnet because the corresponding elliptical Fermi-
surface deformations increase the surface-to-volume ratio and
therefore enlarge the phase space available for low-energy,
particle-hole modes.

Fluctuation-driven spiral phases near ferromagnetic quan-
tum critical points are within the realm of experimental
detection. The first clear example is PrPtAl, where detection by
neutron diffraction is possible because of an amplification of
magnetic moments due to the coupling between conduction
electrons and local spins.36 In the presence of disorder,
long-range order in the spiral phase is destroyed, leading to
a helical glass with a highly anisotropic correlation length.37

Such a glassy state appears to have been observed recently near
the avoided ferromagnet quantum critical point of CeFePO
(Ref. 38). Since fluctuation-driven first-order behavior is such
a robust feature of itinerant ferromagnets,11 we expect that the
instability towards incommensurate order should be similarly
generic and also occur in quasi-two-dimensional systems.

In this paper, we employ the fermionic quantum order-
by-disorder approach to demonstrate that the phase diagram
in d = 2 has the same topology as in d = 3 and exhibits a
spiral phase at low temperatures. We perform a resummation
of the leading divergences, which enables us to follow the
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phase boundaries of the spiral phase far from the tricritical
point down to T = 0. The analytic structure depends crucially
on the spatial dimension. In d = 3, the resummation of the
leading divergent terms yields a contribution to the free energy
�F1 ∼ M4 ln(M2 + T 2), in agreement with previous results.5

In d = 2 we find �F1 ∼ M2T and �F1 ∼ M3 ln M , in the
regimes T � M and T � M , respectively. These expressions
are generalized for the modulated spiral state. We show that
the low-temperature behavior is controlled by a hierarchy of
divergences, and we derive a recursion relation that relates
all subleading divergences to the leading term �F1. We use
this recursion to resum all corrections at T = 0 to find the
exact location of the quantum critical point in d = 3 from the
expression �F ∼ M4 ln(M).

The outline of this paper is as follows. In Sec. II we
introduce our model and summarize the key steps of the
field-theoretical derivation of the free energy, which is written
as a functional of the electron dispersion in the presence of
spiral ferromagnet order. We further illustrate how the free
energy of the incommensurate state can be deduced from
the expression for the homogeneous state. In Sec. III we
analyze the fluctuation integral and classify the contributions
that diverge as T → 0 in terms of the number of derivative
operators they contain. We obtain closed-form expressions
in d = 2 and d = 3 from a resummation of the leading
divergences of all orders. To go beyond this, we derive a
recursion relation for the subleading terms and do the full
resummation for T = 0 in d = 3. The resulting phase diagrams
are presented in Sec. IV, and our findings are discussed in
Sec. V in the context of other work and possible extensions.

II. QUANTUM ORDER-BY-DISORDER FRAMEWORK

A. Electronic Hamiltonian

We work with a model of itinerant electrons in d dimensions
at chemical potential μ. We allow the electrons to interact via
a contact Hubbard repulsion of strength g. The Hamiltonian
of this model is

H =
∑
k,σ

(εk − μ)n̂k,σ + g

∫
ddr n̂↑(r)n̂↓(r), (1)

where we measure momenta in units of the Fermi momentum
kF . We only consider an isotropic free-electron dispersion
εk = k2/2, which does not allow for a nesting of the Fermi
surface. While the mean-field theory of this model does not
predict any incommensurate states, fluctuations have been
shown to stabilize a modulated spiral state close to the
underlying ferromagnetic quantum critical point in d = 3.
In the remainder of this section, we will briefly revisit the
fermionic quantum order-by-disorder approach, keeping the
spatial dimension general. The different nonanalytic structures
of the fluctuations in d = 2 and d = 3 will be analyzed in detail
in Sec. III.

B. Free-energy functional

The key steps in deriving the free-energy functional are
as follows. (i) Starting from a coherent-state path integral,
we perform a Hubbard-Stratonovich decoupling of the elec-
tron interaction term in spin and charge channels. (ii) We

decompose the fluctuation fields introduced in this way into
zero- and finite-frequency components. The former correspond
to static order in the system. Here, we include the spiral
magnetic order parameter

MQ(r) = M[nx cos(Q · r) + ny sin(Q · r)], (2)

with Q = Qnz in the free-fermion propagator. This facilitates
the self-consistent expansion and resums particular classes of
diagrams to infinite order. (iii) We trace over the fermions,
keeping all terms up to quadratic order in the finite-frequency
fluctuation fields. (iv) We perform the Gaussian integrals over
the fluctuation fields. (v) Finally, we do the summation over
Matsubara frequencies.

This procedure yields a general expression for the free
energy F(M,Q) as a functional of the electron mean-field
dispersion εσ

k in the presence of spiral order,

ε±
k = k2

2
±

√
(k · Q)2 + (gM)2. (3)

At mean-field level we obtain

Fmf(M,Q) = gM2 − T
∑

k,σ=±
ln[1 + e−(εσ

k −μ)/T ], (4)

while the fluctuation contribution is given by the integral

�F(M,Q) = 2g2
′∑

k1,...,k4

n(ε+
k1

)n(ε−
k2

)[n(ε+
k3

) + n(ε−
k4

)]

ε+
k1

+ ε−
k2

− ε+
k3

− ε−
k4

. (5)

The summation runs over the momenta k1, . . . ,k4 sub-
ject to the constraint k1 + k2 = k3 + k4, and n(ε) = 1/[1 +
e(ε−μ)/T ] denotes the Fermi function. Note that this result is
derived from self-consistent second-order perturbation theory
after subtraction of an unphysical UV divergence.19,39

C. Angular averages

The free energy is a functional of the electron dispersion
equation (3). As a result of this, M and Q enter the free energy
in a similar manner, and since derivatives of the integrands in
Eqs. (4) and (5) are strongly peaked near kF , there exist simple
proportionalities between the finite-Q and Q = 0 coefficients.
The proportionality factors are determined by combinatorial
factors and angular averages over powers of

η2
k = (k · Q)2

k2
F Q2

. (6)

For example, the ratio of the Q2M2 and M4 coefficients is
given by 2〈η2

k〉. The fact that the two coefficients become
negative at the same time explains why the fluctuation-driven
first-order transition to the homogeneous ferromagnet is
preempted by a transition into a spiral state.

The angular averages depend on the dimension d and are
defined as 〈· · · 〉 = �−1

d

∫
d�d · · · , with �d being the angular

part of the volume element and �d being the surface area of a
unit sphere in d dimensions. The relevant averages are easily
calculated as〈

η2n
k

〉 =
{

(2n − 1)!!/(2n)!! (d = 2),
1/(2n + 1) (d = 3),

(7)

where !! denotes the double factorial function.40 These
observations enable us to calculate the free energy F(M,Q) of
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the spiral state from the free energy F (M) := F(M,Q = 0)
for the homogeneous ferromagnet by the equation

F(M,Q) = 〈
F

(√
M2 + η2

kQ
2
)〉 − 〈F (ηkQ)〉, (8)

where we have rescaled Q by g for convenience. Note that
the free energy only contains even powers of M and Q since
the electronic Hamiltonian (1) is isotropic and does not break
inversion symmetry, r → −r.

D. Mean-field contribution

The coefficients αmf, βmf, and γmf in the Landau expansion
for the homogeneous ferromagnet,

Fmf(M) = αmfM
2 + βmfM

4 + γmfM
6 + · · · , (9)

are given by integrals over derivatives of the Fermi function,

αmf = g + 2g2

2!

∫
ddk n(1)(εk),

βmf = 2g4

4!

∫
ddk n(3)(εk), (10)

γmf = 2g6

6!

∫
ddk n(5)(εk).

For the isotropic dispersion εk = k2/2, these reduce to simple
one-dimensional integrals. Using Eq. (8), we obtain the mean-
field contribution,

Fmf(M,Q) = (
αmf + 2βmf

〈
η2

k

〉
Q2 + 3γmf

〈
η4

k

〉
Q4

)
M2

+ (
βmf + 3

〈
η2

k

〉
Q2)M4 + γmfM

6, (11)

to the free energy of the spiral ferromagnet.

III. RESUMMATION OF FLUCTUATIONS

In this section we analyze the analytic structure of the
fluctuation integral �F(M,Q) [Eq. (5)] in general dimension
to obtain closed-form expressions from a resummation of
the leading divergences in d = 3 and d = 2. We first focus
on the fluctuation integral of the homogeneous ferromagnet,
�F (M) = �F(M,Q = 0), which is given by Eq. (5) with
εσ

k = k2/2 − σgM , and then generalize to finite Q, using
Eq. (8).

It is most convenient to express �F (M) in terms of the
components of the particle-hole density of states ρ(q,ε) =

ρ̃(q,ε) − �ρ(q,ε), where these are defined as

ρ̃σ (q,ε) =
∫

ddk n
(
εσ

k− q
2

)
δ
(
ε − εσ

k+ q
2
+ εσ

k− q
2

)
,

(12)
�ρσ (q,ε) =

∫
ddk n

(
εσ

k− q
2

)
n
(
εσ

k+ q
2

)
δ
(
ε − εσ

k+ q
2
+ εσ

k− q
2

)
,

and are calculated in Appendix A for dimensions d = 3 and
d = 2. With these definitions of ρ̃ and �ρ, the fluctuation
contribution to the free energy becomes

�F (M) = 2g2
∑
σ=±

∫
q,ε1,ε2

�ρσ (q,ε1)ρ̃−σ (−q,ε2)

ε1 + ε2
. (13)

Here the integrals run over q ∈ Rd and ε1,ε2 ∈ R.

A. Landau expansion of �F

We generate a Landau expansion of the fluctuation contri-
butions for Q = 0 by Taylor expanding the expression Eq. (13)
for small M ,

�F (M) = αflM
2 + βflM

4 + γflM
6 + · · · , (14)

where, e.g., αfl = ∂M2�F |M=0. We exchange derivatives with
respect to M for derivatives with respect to μ using the relation
σg∂μ = −∂M to write these coefficients in terms of integrals
of the form

Jm,n(T ) =
∫

q,ε1,ε2

�ρ(m)(q,ε1)ρ̃(n)(−q,ε2)

ε1 + ε2
. (15)

These integrals depend only on derivatives of the particle-
hole density of states with respect to μ for M = 0. We use
the shorthand notation ρ̃(m) = ∂m

μ ρ̃ and �ρ(m) = ∂m
μ �ρ. Using

this notation, we can write the M2 coefficient as

αfl = 4g4

2!
(J0,2 − 2J1,1 + J2,0)

= g2

2!

(
∂2
μ�F |M=0 − 16g2J1,1

)
. (16)

In the second line we have used integration by parts to write
the coefficient in terms of the symmetric integrals J1,1 and
�F |M=0 = 4g2J0,0. Repeating this process up to order M10,
we find the coefficients listed in Table I. In the limit T → 0, the
integrals Jn,n(T ) diverge for n � 2 in d = 2,3. The divergence
becomes stronger with increasing order n and therefore as we
move from left to the right in each row of Table I. At each order

TABLE I. Dependency of expansion coefficients in the Landau expansion for the homogeneous ferromagnet on the
integrals Jn,n.

Expansion coefficient Jn,n-components

αfl
g2

2! ∂
2
μ�F |M=0 − 16g4

2! J1,1

βfl
g4

4! ∂
4
μ�F |M=0 − 32g6

4! ∂2
μJ1,1 + 64g6

4! J2,2

γfl
g6

6! ∂
6
μ�F |M=0 − 48g8

6! ∂4
μJ1,1 + 192g8

6! ∂2
μJ2,2 − 256g8

6! J3,3

δfl
g8

8! ∂
8
μ�F |M=0 − 64g10

8! ∂6
μJ1,1 + 384g10

8! ∂4
μJ2,2 − 1024g10

8! ∂2
μJ3,3 + 1024g10

8! J4,4

ηfl
g10

10! ∂
10
μ �F |M=0 − 80g12

10! ∂8
μJ1,1 + 640g12

10! ∂6
μJ2,2 − 2560g12

10! ∂4
μJ3,3 + 5120g12

10! ∂2
μJ4,4 − 4096g12

10! J5,5

...
...

...
...

...
...

...
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M2n in the Landau expansion, the leading small-T dependence
comes from the term proportional to Jn,n(T ).

The behavior of phase boundaries very close to the finite-
temperature tricritical point is controlled by the smallness of
M and therefore by the coefficients α, β, and γ . The phase
boundaries at low temperatures far from the tricritical point
are determined by the leading divergences as T → 0. Using
Table I, we may begin to spot patterns in the coefficients of Jn,n.
On the leading diagonal of Table I, we note that the coefficient
of Jn,n takes the particularly simple form of (−1)n22n/(2n)!.
Resumming the terms of all orders in M along this diagonal,
we obtain

�F1(M) = 4g2
∞∑

n=1

(−1)n(2gM)2n

(2n)!
Jnn(T ). (17)

We later calculate closed-form expressions for �F1 in d =
3 and d = 2. Continuing down the chain to the mth diagonal,
we obtain the free-energy contribution,

�Fm(M) = g2m∂2m
μ 4g2

×
∞∑

n=1

(−1)n(2g)2n(2n − 1)!!M2(m+n)

(2n)!(2n + 2m − 1)!!m! 2n
Jnn(T ).

(18)

Using this expression, we find a differential equation which
relates �Fm to �Fm−1,

∂M

(
�Fm

M

)
= g2∂2

μ�Fm−1

2m
. (19)

As we approach T = 0, we find that subleading corrections
become more significant, and so to find the correct quantum
critical point, we must be able to calculate them in this
limit. Repeated application of Eq. (19) enables us to calculate
all subleading corrections from the functional form of the
leading resummed correction �F1. Resummation of all these
subleading corrections is a tractable calculation in d = 3.

B. Calculation of �F1 and �F in d = 3

We proceed by deriving an explicit expression for the
resummation �F1(M) (17) of leading divergences in d = 3.
Details of the calculation of particle-hole density of states (12)
and the integrals Jn,n(T ) (15) are given in Appendixes A and
B, respectively. After summation over n, the final result takes
the form

�F1(M) = −2λ(1 + ln 2)M2 + λM4 ln

(
4g2M2 + T 2

4μ2

)
,

(20)

where we have defined λ = 4g6ν3
F /(3μ2) with νF = kF /2π2

and μ = k2
F /2. Note that we have included the nondivergent

fluctuation correction of order M2, corresponding to the n = 1
term in the sum. As noted in previous work,19 this term changes
the location of the tricritical point and the phase behavior near
it. The logarithmic contribution arises from the summation
of all divergent terms n � 2 and is of the same form as the
diagrammatic result.5

Using this resummed form and relation (8), we can
also obtain a closed-form expression for the leading

fluctuation correction �F1(M,Q) to the free energy of the
spiral ferromagnet,

�F1(M,Q)/λ

= −2(1 + ln 2)M2 +
(

M4 + 2

3
M2Q2 + 1

5
Q4

)

× ln

[
4g2(M2 + Q2) + T 2

4μ2

]

− 1

5
Q4 ln

(
4g2Q2 + T 2

4μ2

)
− 14

45
M2Q2

+
[

16

15
M4 − 8

15
M2 T 2

4g2
+ 2

5

(
T 2

4g2

)2]

×
⎡
⎣

√
M2 + T 2

4g2

Q
arctan

⎛
⎝ Q√

M2 + T 2

4g2

⎞
⎠ − 1

⎤
⎦ . (21)

Given the form of �F1 in Eq. (20), we may then use
the recursion relation (19) to calculate the full, all-orders
quantum correction �F (M) = ∑∞

n=1 �Fn(M,0) at T = 0
(see Appendix C). The result is that

�F (M) = 2
√

πλM4 ln

[
g2M2

μ2

]
. (22)

Having calculated the form of the leading correction to the
free energy for general T and M , �F1, and the resummation
of all the divergent contributions to the free energy at T = 0,
�F , we may now postulate an analytical form for the full,
resummed quantum fluctuation contribution to the free energy
that interpolates between these two cases. We suggest the
functional form41

�F (M) = λM4 ln

[(
4g2M2

μ2

)2
√

π

+ T 2

μ2

]
. (23)

This expression encapsulates the leading corrections in the
vicinity of the tricritical point, where �F ∼ M4 ln(T ), and
also gets the precise location of the T = 0 intercept correct,
thereby capturing the important physics in a simple, closed
form.

C. Calculation of �F1 in d = 2

In d = 2, it has not proved possible to write down a closed,
analytic form for the first resummed correction to the free
energy �F1. However, it is still possible to use our formalism
to find the asymptotic forms of this correction in the limits
T � M and T � M . These are given by

�F1(M) =
{
c−M3 ln M for T � M,

c+M2T for T � M,
(24)

with coefficients c− = 16g4π3/2/[(2π )5�(3/2)] and c+ =
16

√
2g4π3/2Li1/2(−1)/(2π )5. Details of the derivation are

given in Appendix D.
Again, we perform the angular averages (8) to generalize

to finite Q and investigate possible instabilities towards spiral
formation. The high-temperature form modifies the mean-field
coefficient of M2, adding a term linear in T , which cannot
contribute to a term ∼Q2. In the regime of low temperatures,
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T � M , the fluctuation corrections generate extra terms in the
Landau expansion of F(M,Q),

�F1(M,Q) = c−
[
M3 ln M + 1

2Q2M(1 + 3 ln M)

+ 3
16Q4M−1(1 + 3

4 ln M
)]

, (25)

where we have included terms up to order Q4.

IV. PHASE DIAGRAMS

We are now in a position to calculate the phase diagrams in
d = 3 and d = 2 by minimizing of the free energy F(M,Q) =
Fmf(M,Q) + �F(M,Q). In d = 3, we use the proposed
interpolating form (23), whereas in d = 2, we approximate
�F(M,Q) by the leading resummed correction �F1(M,Q).
We show that despite the different analytic structures of the
fluctuation contributions contained in �F , the phase diagrams
in two and three dimensions have the same topology, and both
show an instability to a spiral state below the temperature Tc

of the tricritical point. The spiral phase intervenes between the
homogeneous ferromagnet at strong electron repulsions g and
the paramagnet at small g. Let us start by writing conditions
for the different phase transitions we seek. Note that the free
energy is defined such that F(M = 0,Q) = 0.

(i) The second-order transition from the paramagnet into
the ferromagnet for T > Tc as the coupling g is increased
is obtained by ∂M2F |M=0 = 0. [As before we have defined
F (M) = F(M,Q = 0).]

(ii) A first-order transition between the paramagnet and
the ferromagnet as g is increased when T < Tc occurs when
F (M�) = 0 and ∂M2F |M=M� = 0 for some M� �= 0.

(iii) Allowing for the possibility of spiral states, we find that
the first-order transition from paramagnet into ferromagnet is
preempted by a first-order transition into a spiral phase. This is
slightly more involved; we must first solve ∂Q2F(M,Q) = 0
to obtain the optimal pitch Q̃(M) for a given magnetization
M �= 0. We then look for a first-order transition in F̃ (M) =
F(M,Q̃(M)) as described in condition (ii).

(iv) A Lifshitz transition takes place from the spiral state
into the ferromagnet, where the pitch Q of the spiral goes
smoothly to zero. This is given by the line along which Q̃ = 0.

A. Phase diagram in d = 3

A phase diagram in d = 3 has been calculated in Ref. 19,
taking into account fluctuation corrections to the M2, M4, and
M2Q2 coefficients. In this section we will show that while this
approximation is valid in the vicinity of the tricritical point,
it fails to describe the behavior at low temperatures. Since
the order of the divergences of the coefficients increases with
the order in the Landau expansion, it is crucial to use the
resummation (21) of leading divergences to obtain the phase
boundaries at low temperatures.

For comparison, we recalculate the phase diagram of
Ref. 19 from the truncated Landau expansion

Ftrunc(M,Q) = (
α + 2

3βQ2 + 3
5γQ4

)
M2

+ (β + γQ2)M4 + γM6, (26)

including fluctuation corrections αfl = −2λ(1 + ln 2) and
βfl = 2λ(1 + ln T ) up to quartic order. Note that the ln T

contribution of βfl arises from the zeroth-order term of an
expansion of the logarithm in �F1 (20) while the nondivergent
contribution to βfl comes from the subleading terms in the
second row of Table I.

The second-order phase boundary between the ferromagnet
and the paramagnet is determined by α = 0, consistent with
condition (i). Fluctuations render the transition first order
below the temperature Tc of the tricritical point, which is
determined by the intersection of the α = 0 and β = 0 lines.
For contact repulsion, we obtain Tc/μ ≈ 0.3, in agreement
with previous work.4,18,19

The tricritical temperature is considerably reduced by
disorder4 and finite-range interactions.4,42 With increasing
range of electron interactions, the relative strength of fluc-
tuation corrections λ decreases, leading to an exponential
suppression of Tc. This is apparent from the condition β =
βmf + 2λ(1 + ln Tc) = 0.

In order to determine the first-order transition line between
the spiral and the paramagnet, we follow the recipe described
under condition (iii). This leads to the condition αγ = 17

63β2

for the phase boundary.19 Finally, the condition Q̃ = 0, which
defines the Lifshitz line between the spiral and the ferromagnet
(iv), coincides with the α = 0 line below Tc.

The resulting phase diagram is shown in Fig. 1. The low-
temperature behavior of the first-order transition line between
the paramagnet and the spiral phase is clearly unphysical.
The phase boundary does not terminate on the T = 0 axis but
instead approaches zero temperature asymptotically as g → 0,

homogeneous FM

spiral 
FM

without re-summation

FIG. 1. (Color online) Phase diagram in d = 3 as a function
of inverse electron repulsion 1/g and temperature T/μ. Above
the tricritical point (shown in red) we find a continuous transition
between the ferromagnet at large g and a paramagnet at small g.
The spiral forms below the tricritical point between the paramagnet
and the ferromagnet. The effect of the resummation of leading
divergences is illustrated. (i) The dashed line shows the case without
resummation, which shows unphysical behavior as T → 0. (ii) Using
the resummation of the leading divergences �F1, the spiral region
becomes invisible on the scale of this phase diagram, collapsing into
a region very close to the homogeneous magnetic state. (iii) The solid
line shows the phase boundary of the spiral found using the form for
�F in Eq. (23) and gives the exact T = 0 intercept and the correct
behavior in the vicinity of the tricritical point.
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suggesting that there exists a transition into a spiral state at
low temperatures for arbitrarily small values of g, far from the
avoided quantum critical point.

In what follows, we will study the changes to the phase
diagram which result from the inclusion of the functional form
for �F1(M) given in Eq. (20), which gives just the leading
resummed corrections from quantum fluctuations, and the
interpolating form �F (M) given in Eq. (23), which captures
the divergences of all the higher-order terms in the Landau
expansion. In order to investigate the spiral phase behavior,
we use the finite-Q generalization �F (M,Q) of Eq. (23),
which is obtained by carrying out the angular averages.

The main effect of the resummation is to cut off the
ln T divergence by finite M . This fundamentally changes
the behavior of the first-order spiral/paramagnet line as
illustrated in Fig. 1. The phase boundary has a vertical
intercept with the T = 0 axis at a finite value gκ , consistent
with the Clausius-Clapeyron condition. Using just the leading
resummed expression �F1(M) in (20), we are left with a
very narrow region of spiral order. However, we know that
for small values of T , the subleading resummed corrections
will become significant, so we must include all the subleading
corrections too. We may explicitly calculate the location of
the T = 0 intercept for the first-order spiral transition line
to find a critical coupling 1/gc ∼ 0.1012. Previous Monte
Carlo analysis18 suggests the transition into the spiral state at
T = 0 will occur at 1/g ≈ 0.133. The numerical disagreement
between the two approaches may stem from the fact that to
carry out the T = 0 Monte Carlo calculation, the contact
interaction must be replaced by one with a negative finite
range.

B. Phase diagram in d = 2

We proceed to calculate the phase diagram in d = 2 by min-
imizingF(M,Q) = Fmf(M,Q) + �F1(M,Q) withFmf given
by Eq. (8), with 〈η2

k〉 = 1/2 and 〈η4
k〉 = 3/8 and �F1 defined

in Eq. (25). Note that since �F1 is only known in the regimes
T � M and T � M [see Eq. (25)], we will only be able to
determine the asymptotic behavior of the phase boundaries
and have to interpolate between the two regimes. There are
crucial differences between the cases d = 2 and d = 3.

(i) In two dimensions, the density of states is constant,
leading to an exponentially weak temperature dependence of
αmf. As a consequence, the critical interaction strength gc(T )
for the mean-field transition of the ferromagnet is practically
constant up to T ≈ 0.2μ [see Fig. 2(a)].

(ii) The fluctuation contributions in d = 2 are very different.
Even in the vicinity of the tricritical point, we do not have a
simple Landau expansion of the free energy; the corrections
are intrinsically nonanalytic across the whole phase diagram.

(iii) The angular averages 〈η2n
k 〉 are larger in d = 2 and

decay as 1/
√

n for large n, opposed to 1/n in d = 3. This has
a profound effect on how the free energy of the spiral relates
to that of the homogeneous ferromagnet.

In spite of these differences, the phase diagram for the two-
dimensional case turns out to be remarkably similar to that for
three dimensions. We proceed to construct the phase diagram
in three steps. (i) We first analyze the effects of the fluctuation
corrections �F1(M) on the continuous transition between

homogeneous FM

(a)

(b)

homogeneous FM

FIG. 2. (Color online) Intermediate phase diagrams in d = 2 for
Q = 0. (a) Continuous phase boundaries between the ferromagnet
and the paramagnet obtained from the condition α = 0, first using just
the mean field α = αmf (brown line) and then including the effects of
fluctuations α = αmf + αfl (green line). In the regime M � T � μ,
αfl = c+T (c+ < 0), leading to a stabilization of ferromagnet order.
Around T � μ fluctuations saturate, causing reentrant behavior. We
interpolate between the two regimes, indicated by a dashed green
line. (b) The leading fluctuation correction �F1(M) = c−M3 ln M in
the regime T � M causes a first-order transition at low temperatures
(solid red line). The first-order line at higher temperatures is obtained
by interpolation (dashed red line) to the tip of the reentrant α = 0
line, where one expects the location of the tricritical point.

the ferromagnet and the paramagnet. This is controlled by
the asymptotic form of �F1 in the regime T � M since M

vanishes continuously at the second-order transition. (ii) We
determine the fluctuation-driven first-order transition, using
the low-temperature asymptotic form of �F1, which is valid
for T � M . We extrapolate this first-order line to higher
temperatures and estimate the position of the tricritical point.
(iii) We obtain the first-order spiral-to-paramagnet transition
by minimizing F(M,Q) in the low-temperature regime.
(iv) Finally, we find that similar to the d = 3 case, the Lifshitz
line along which Q → 0 coincides with the line α = 0. This
line is again extrapolated up to the tricritical point.

(i) Second-order line. Using the asymptotic expression
�F1(M) = c+M2T , valid for μ � T � M , we obtain the
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fluctuation-corrected transition line between the paramagnet
and the ferromagnet by the condition α = αmf + c+T = 0.
Since αmf is almost constant at low temperatures and since
c+ < 0, the region of stability of the ferromagnet increases
with temperature where the phase boundary is almost linear.
This is shown in Fig. 2(a). At higher temperatures, the
fluctuation effects saturate, and the second-order line then
tracks the mean-field transition, albeit at lower values of g. We
expect that the true second-order transition line interpolates
between these two asymptotic limits, leading to the reentrant
behavior sketched in Fig. 2(a).

(ii) First-order line. We now focus on the regime T �
M , where the resummed fluctuations are of the asymptotic
form �F1(M) = c−M3 ln M with c− > 0. This contribution
leads to a first-order transition between the ferromagnet and
the paramagnet at low temperatures and values of g that are
considerably smaller than those determined by the condition
α = 0 for the second-order line. To determine the first-order
phase boundary, we numerically search for solutions M �= 0
of the equations F (M) = 0 and ∂M2F = 0. If we follow this
first-order line to higher T , we expect a tricritical point at the
intersection with the α = 0. The most likely scenario is that
this point coincides with the tip of the reentrant α = 0 line,
sketched in Fig. 2(b).

(iii) Spiral phase. Finally, we allow for states where Q �= 0.
As found previously, the Lifshitz line where Q → 0 is given by
the extension of the second-order ferromagnet-to-paramagnet
transition line to temperatures below the tricritical point.43

We continue to calculate the first-order, paramagnet-to-
spiral transition line in the limit T → 0, using the asymptotic
form of �F1(M,Q) in the regime T � M (25). We follow
the same procedure we used in d = 3 and first determine the
optimal pitch Q̃(M) for a given magnetization. This requires

spiral FM

homogeneous FM

FIG. 3. (Color online) Phase diagram in d = 2 as a function of
inverse electron repulsion 1/g and temperature T/μ. Dashed lines
are interpolations between different asymptotic regimes. The phase
diagram has the same topology as the one in d = 3 (see Fig. 1) and
exhibits a spiral phase below the tricritical point, which is shown
in red. As in d = 3, the transition between the ferromagnet and the
spiral is of the Lifshitz type, while the spiral/paramagnet transition is
first order.

an expansion of F(M,Q) up to fourth order in Q. We then
determine the first-order transition of F̃ (M) = F(M,Q̃(M)).
As in the 3d case we find that this first-order transition
preempts the one into the homogeneous state. From the
asymptotic form of the free energy, we can only determine
the phase boundary for small values of T and rely on an
interpolation up to the tricritical point. The resulting phase
diagram is shown in Fig. 3.

V. CONCLUSIONS AND DISCUSSION

Despite its apparent simplicity, the Hamiltonian (1) yields
a rich and interesting phase diagram when we include the
possibility of fluctuation-driven phases near the ferromagnetic
quantum critical point. Previous application of the quantum
order-by-disorder approach to the three-dimensional case18,19

showed that quantum fluctuations not only drive the transition
first order at low temperatures but also stabilize an incommen-
surate spiral phase below the tricritical point. These results are
valid in the vicinity of the tricritical point but fail for much
smaller temperatures, where the phase behavior is no longer
controlled by the smallness of the magnetization M but instead
by the leading divergences of all orders in M as T → 0.

In this work we have presented a detailed analysis of the
nonanalytic structure of the fluctuation corrections to the free
energy in d = 2 and d = 3. We have demonstrated that there
exists an underlying hierarchy of divergences and obtained
closed-form expression for the resummation of the leading
terms of all orders in M . By adopting the fermionic quantum
order-by-disorder approach and self-consistently expanding
around an electronic state with a spiral magnetization, we
have derived resummed expressions for the free energy of the
spiral ferromagnet. This resummation of leading divergences
allows us to track phase boundaries at low temperatures far
away from the tricritical point.

Our results demonstrate that not only the fluctuation-driven
first-order transitions but also the instabilities towards spiral
order are generic features of itinerant ferromagnets. Despite
the different nonanalytic structures, we find very similar phase
diagrams in d = 2 and d = 3. There are, however, differences
which can be tested by future experiments. In d = 3, the
spiral phase is found in a narrow region on the border of
ferromagnetism, leading to a sequence of transitions from
paramagnet to spiral and finally to ferromagnet as temperature
is decreased, consistent with recent experiments on PrPtAl
(Ref. 36). This order of transitions is not possible in d = 2.
Because of the reentrant behavior of the phase boundary of the
homogeneous ferromagnet, we predict that the spiral phase is
located below the ferromagnetic state and stable over a larger
region of the phase diagram.

Expressions for nonanalytic contributions to the free energy
have been previously obtained by diagrammatic methods.4,6–11

Our work shows that the diagrammatic calculations are
equivalent to self-consistent second-order perturbation theory.
In d = 3, we indeed recover the previously known5 result
�F1 ∼ M4 ln(M2 + T 2) and find the exact form of the T = 0
free energy. This analytic form allows us to find the precise
location of the quantum critical point for the ferromagnet in 3d.

In d = 2, we break new ground. In contrast to the three-
dimensional case, a straightforward calculation of a Landau
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expansion for the free energy where each coefficient of M2n is
a simple function of T is not possible. This signposts the fact
that the system is intrinsically nonanalytic, even in the vicinity
of the tricritical point. Indeed, there is a lack of consensus
on the form of the quantum corrections we should expect
from diagrammatic work.9,11 In Ref. 11, Belitz and Kirkpatrick
argue that the fluctuation contributions are of the form �F ∼
M2

√
M2 + T 2, which is in agreement with our result �F1 ∼

M2T in the regime T � M . However, the result of Ref. 11
is based on the assumption that the singular behavior of the
fluctuation integral for T � M is cut off in the same way.
Our work shows that this assumption is incorrect and that the
asymptotic behavior for T � M is given by �F1 ∼ M3 ln M .

Our results lay the groundwork for studying the mul-
ticritical behavior of itinerant ferromagnets. In d = 3, the
resummed form for the phase diagram has already been used
to study superconducting instabilities mediated by magnetic
fluctuations.44 In this instance, the intertwined magnetic spiral
state and the superconducting instability resulted in the forma-
tion of a pair-density-wave state at very low temperatures. In
two-dimensional systems such exotic states might be stabilized
at higher temperatures since quantum fluctuations become
more important and the resulting nonanalyticities are of a
different form. Future applications of the fermionic quantum
order-by-disorder approach include the study of multiple-band
effects, orbital fluctuations, and the competition between
nesting instabilities and fluctuation-driven phase formation.
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APPENDIX A: PARTICLE-HOLE DENSITY OF STATES

In order to evaluate the fluctuation integral �F (M)
[Eq. (13)], we must first calculate the particle-hole densities
of states ρ̃(q,ε) and �ρ(q,ε), which are defined in Eq. (12).
We will do this separately for the cases d = 3 and d = 2.

1. Three dimensions

In d = 3 and for M = 0, ρ̃ takes the form

ρ̃(q,ε) =
∫ 1

−1
d cos θ

∫ ∞

0

2πk2dk

(2π )3
n

(
k2

2
+ q2

8
− kq cos θ

2

)
× δ(ε − kq cos θ ). (A1)

The integrals over cos θ and k may be done exactly. We are
not so interested in the particle-hole densities themselves, but
rather in their derivatives with respect to μ, which enter the
integrals Jn,n. For the nth derivative we obtain

∂n
μρ̃(q,ε) = ρ̃(n)(q,ε) = 1

(2π )2q
∂ (n−1)
μ n[φ−(q,ε)], (A2)

where we have defined

φ±(q,ε) = 1

2

(
ε

q
± q

2

)2

. (A3)

Similarly, we find that

�ρ(n)(q,ε) = 1

(2π )2q
∂ (n−1)
μ {n[φ+(q,ε)]n[φ−(q,ε)]}. (A4)

2. Two dimensions

In d = 2, we must calculate the integral

ρ̃(q,ε) =
∫ 2π

0
dθ

∫ ∞

0

kdk

(2π )2
n

(
k2

2
+ q2

8
− kq cos θ

2

)
× δ(ε − kq cos θ ). (A5)

We carry out the θ integral to get

ρ̃(q,ε) = 2

(2π )2

∫ ∞

0
k dk

n
(

k2

2 + q2

8 − ε
2

)
√

k2q2 − ε2
θ (k2q2 − ε2).

(A6)

By a suitable change of variables, we reduce this to

ρ̃(q,ε) =
√

2

(2π )2q

∫ ∞

0

dx√
x

n[x + φ−(q,ε)], (A7)

where the functions φ±(q,ε) are defined as before (A3). An
identical calculation for �ρ yields

�ρ(q,ε) =
√

2

(2π )2q

∫ ∞

0

dx√
x

× n[x + φ+(q,ε)]n[x + φ−(q,ε)]. (A8)

Although it is possible to perform integrals (A7) and (A8)
and write the results in terms of polylogarithmic functions, the
expressions in integral form will prove more useful to us.

APPENDIX B: CALCULATION OF �F1(M) IN d = 3

It is convenient to define a new function n̄(x) to keep our
calculations uncluttered; this takes the form

n̄(x) = 1

1 + ex/T
(B1)

and is a Fermi function with chemical potential μ = 0. The
most divergent part of the integral Jn,n in d = 3 comes from

Jn,n = 2

(2π )6

∫
dq dε1 dε2

(ε1 + ε2)
δ(n−2)[φ−(q,ε1) − μ]

× δ(n−2)[φ−(q,ε2) − μ]n̄(ε2). (B2)

We integrate by parts (n − 2) times each with respect to ε1

and ε2 to find

Jn,n = 2

(2π )6

∫
q2n−2

k2n−2
F

dq dε1 dε2

(
∂n−2

∂εn−2
1

∂n−2

∂εn−2
2

1

ε1 + ε2

)

× δ

[
ε1 − q

2
(q − 2kF )

]
δ

[
ε2 − q

2
(q − 2kF )

]
n̄(ε2),

(B3)

and we use the δ functions to integrate over ε1 and ε2,

Jn,n = 2(2n − 4)!

(2π )6

∫ ∞

−2kF

dδq
(2kF )2n−2

k2n−2
F (2kF δq)2n−3

n̄(kF δq),

(B4)
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where δq = q − 2kF is the deviation of the particle-hole pair’s
momentum from 2kF , which is expected to be small. We
simplify this equation by folding the integral around δq = 0
and use the expression n̄(kF δq) = 1

2 [1 − tanh(kF δq/2T )].
The second term provides a cutoff for the lower limit of the
integral, which now yields

Jn,n = −4(2n − 4)!ν3
F

(2μ)2n−2

∫ 2

T
2μ

du

u2n−3
, (B5)

where we have made a simple change of variables, u = kF δq,
and defined νF = kF /2π2. Substituting this expression into
Eq. (17), we find

�F1 = −64g2ν3
F μ2

∫ 2

T
2μ

du

∞∑
n=2

(2n − 4)!(−1)n(2gM)2n

(2n)!u2n−3(2μ)2n
.

(B6)

Taking sequential derivatives with respect to M , we simplify
our expression significantly to obtain

∂4
M�F1 = −64g6ν3

F

μ2

∫ 2

T
2μ

du

∞∑
n=2

(−1)n(2gM)2n−4

u2n−3(2μ)2n−4

= −64g6ν3
F

μ2

∫ 2

T
2μ

du
u

g2M2 + u2

= 32g6ν3
F

μ2
ln

(
g2M2

μ2
+ T 2

4μ2

)
. (B7)

To get �F1, we integrate this four times with respect to M ,
keeping only terms that will give us an overall coefficient of
M4. This gives the final closed-form expression

�F1(M,T ) = 4g6ν3
F M4

3μ2
ln

(
g2M2

μ2
+ T 2

4μ2

)
(B8)

for the resummation of leading divergences in d = 3.

APPENDIX C: CALCULATION OF �F(M) IN d = 3

We wish to use the recursion relation given in the text
[Eq. (19)] to calculate the complete, all-orders resummation
at T = 0. First, we write �F1 in terms of the variable y =√

2μ/gM and define the functions fn(y) by

�Fn(M) = (gM)2fn(y). (C1)

In terms of this new variable, the recursion relation (19)
takes the form

fn(y) = 1

n!
∂2n−2
y f1(y). (C2)

By Fourier transforming this expression to k space and after
summation over n, we find that �F = ∑

n�Fn is given by

�F̃ (k) = g2M2 1 − e−k2

k2
f̃1(k). (C3)

We approximate the Fourier transform of (1 − e−k2
)/k2

by a triangular function with the same total area to do the
convolution and approximate for y � 1. Expressing the result
in terms of M , we find the full resummation of the T = 0

quantum corrections to all orders, which is given by

�F (M) = 2
√

πλM4 ln

[
g2M2

μ2

]
. (C4)

APPENDIX D: CALCULATION OF �F1(M) IN d = 2

Using the integral expressions (A7) and (A8) for the
particle-hole densities of states in d = 2, Jn,n is given by a
five-dimensional integral

Jn,n = 2

(2π )5

∫
dq

q
dε1 dε2 dx dy∂n

μn[x + φ−(q,ε1)]

× ∂n
μ{n[y + φ−(q,ε2)]n[y + φ+(q,ε2)]}

√
xy(ε1 + ε2)

, (D1)

where φ±(q,ε) are defined as before and the ranges of
integration are ε1,ε1 ∈ (−∞,∞) and q,x,y ∈ [0,∞).

In order to do the integrals over ε1 and ε2, we first focus on
the most divergent term, where all the derivatives hit the second
Fermi function and none hit the third. We make the same
approximation as before, namely, that n′(x) = −δ(x − μ), and
then linearize the arguments of the derivatives of the Fermi
functions as for d = 3. We write the derivatives with respect
to argument in terms of derivatives with respect to ε and then
integrate by parts with respect to ε1 and ε2, (n − 1) times each.
This gives

Jn,n = 2(2n − 2)!

(2π )5

∫
dq

q
dε1 dε2 dx dy

n̄(ε2)√
xy(ε1 + ε2)2n−1

× q2n

k2n
F

δ(y − kF ε2/q + kF δq)δ(x − kF ε1/q + kF δq).

(D2)

After these approximations, the integrals over ε1 and ε2 are
trivial, and we obtain

Jn,n = 2(2n − 2)!

(2π )5kF

∫ ∞

−2kF

dδq

∫ ∞

0
dx

∫ ∞

0
dy

1√
xy

× n̄(2y + kF δq)

(x + y + 2kF δq)2n−1
, (D3)

with δq = q − 2kF as before. We now feed this back into the
resummation expression (17) and simplify by taking two M

derivatives,

∂2
M�F1 = −32g4

(2π )5kF

∫ ∞

−2kF

dδq

∫ ∞

0
dx

∫ ∞

0
dy

1√
xy

× x + y + kF δq

4g2M2 + (x + y + kF δq)2
n̄(2y + kF q̃).

(D4)

Changing variables u = y + kF δq and doing the integral over
x, we get

∂2
M�F1 = −32g4

(2π )5kF

π√
2

∫ ∞

−2k2
F

du

∫ ∞

0
dy

1√
y

×
√√

u2 + 4g2M2 + u

u2 + 4g2M2
n̄(y + u). (D5)
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We now do the y integral to get

∂2
M�F1 = 32g4π3/2

√
T

(2π )5
√

2kF

∫ ∞

−4μ

du Li1/2(−e−u/T )

×
√√

u2 + 4g2M2 + u

u2 + 4g2M2
. (D6)

Since this integration cannot be done analytically, we
approximate it in two limits. First, when T � M we take
M = 0 inside Eq. (D6), which becomes

∂2
M�F1 = 32g4π3/2

√
2T

(2π )5
√

2kF

∫ ∞

−4μ

du√
u

Li1/2(−e−u/T ). (D7)

Only positive values of u contribute to this integral when taking
the limit T → 0; the lower limit becomes u = 0. We may then
scale out T to get

∂2
M�F1 = 32g4π3/2T

(2π )5kF

∫ ∞

0

du√
u

× Li1/2(−e−u). (D8)

We split the integral into two regions, u ∈ [0,1], where
we approximate Li1/2(−e−u/T ) ≈ Li1/2(−1), and u ∈ [1,∞),
where Li1/2(−e−u/T ) ≈ 0, to give

∂2
M�F1 = 64g4π3/2T

(2π )5kF

Li1/2(−1), (D9)

which corresponds to a term in the free energy

�F1(M) = 16
√

2g4π3/2Li1/2(−1)

(2π )5
M2T . (D10)

Next, we turn our attention to the limit where T � M .
Setting T = 0 in Eq. (D6), we now see that only values of
u < 0 contribute. For this range of u, we may approximate the
polylogarithm by Lin(−eu) ∼ un/�(n + 1), where � is the

Euler � function. This gives

∂2
M�F1 = −32g4π3/2

(2π )5
√

2kF �(3/2)

×
∫ 4μ

0
du

√
u
√

u2 + 4g2M2 − u2

u2 + 4g2M2
. (D11)

We rescale u = 2Mũ, and scale out μ to get

∂2
M�F1 = −32g4π3/2M

(2π )5�(3/2)

×
∫ 2/M

0
dũ

√
ũ
√

ũ2 + g2 − ũ2

ũ2 + g2
. (D12)

Splitting the integral as before and approximating the two
halves, we find∫ 2/M

0
dũ

√
ũ
√

ũ2 + g2 − ũ2

ũ2 + g2

≈
∫ 1

0
dũ

√
ũ
√

ũ2 + g2 − ũ2

ũ2 + g2
+

∫ 2/M

1
dũ

1√
ũ2 + g2

.

(D13)

The first term gives us a numerical constant, which corresponds
to a subleading ∂2

M�F1 ∼ M piece. The second integral
gives us arcsinh(2/M) − arcsinh(1). Recall that arcsinh(x) =
ln(x + √

x2 + 1) and that we are working in the limit where
M < 1; then this first, positive term gives us a leading
contribution

∂2
M�F1 = 32g4π3/2

(2π )5�(3/2)
M ln M, (D14)

which corresponds to the term

�F1(M) = 16g4π3/2

(2π )5�(3/2)
M3 ln M (D15)

in the free energy for sufficiently small values of T .
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