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Symmetry of reentrant tetragonal phase in Ba1−xNaxFe2As2:
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Magnetostructural phase transitions in Ba1−xAxFe2As2 (A = K, Na) materials are discussed for both
magnetically and orbitally driven mechanisms, using a symmetry analysis formulated within the Landau theory
of phase transitions. Both mechanisms predict identical orthorhombic space-group symmetries for the nematic
and magnetic phases observed over much of the phase diagram, but they predict different tetragonal space-group
symmetries for the newly discovered reentrant tetragonal phase in Ba1−xNaxFe2As2 (x ∼ 0.24–0.28). In a
magnetic scenario, magnetic order with moments along the c axis, as found experimentally, does not allow any
type of orbital order, but in an orbital scenario, we have determined two possible orbital patterns, specified by
P 4/mnc1′ and I4221′ space groups, which do not require atomic displacements relative to the parent I4/mmm1′

symmetry and, in consequence, are indistinguishable in conventional diffraction experiments. We demonstrate
that the three possible space groups are, however, distinct in resonant x-ray Bragg diffraction patterns created by
Templeton & Templeton scattering. This provides an experimental method of distinguishing between magnetic
and orbital models.
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I. INTRODUCTION

The interplay between magnetic and structural degrees of
freedom is one of the central problems in the physics of iron-
based superconductors. Knowledge of the normal state from
which superconductivity emerges is crucial to uncovering the
true nature of the superconducting phase.

In hole-doped systems, such as Ba1−xKxFe2As2 and
Ba1−xNaxFe2As2, the magnetic transition is first order and it
is associated with substantial structural distortions that reduce
the symmetry from paramagnetic tetragonal I4/mmm1′ to
magnetic orthorhombic CAmca(FCmm′m′) [Figs. 1(a), 1(c)]
[1–5]. (We specify magnetic space groups in the Belov-
Neronova-Smirnova and Opechowski-Guccione (in brackets)
notations. Symmetries of phases without magnetic order are
specified by gray groups [6].) At first sight, it is not an unusual
observation, because the magnetic order parameter (μ) is
orthorhombic and therefore a coupling of the orthorhombic
strain (e12) is naturally expected through the linear-quadratic
free-energy invariant, e12μ

2 (magnetoelastic coupling). This
type of coupling implies improper critical behavior for the
strain component—a critical exponent twice that for the mag-
netic order-parameter—in contradiction with experimental
data [1–5]. Data indicate instead that the e12 strain component
is bilinearly coupled to some other order parameter, and that the
magnetoelastic contribution is small [7]. This conclusion is re-
inforced by experimental data obtained for the electron-doped
Ba(Fe1−xCox)2As2 systems where magnetic and structural
transitions are decoupled and are both second order [8–10].
As the sample temperature decreases, the structural transition
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tetragonal I4/mmm1′ → orthorhombic Fmmm1′ at Tnem

precedes the magnetic transition Fmmm1′ → CAmca at Tmag

(Fig. 1), and the temperature gap between the two phases
changes with composition [8].

The exact nature of the primary order parameter in the
nematic Fmmm1′ phase is undecided at the present time.
Symmetry breaking is associated with a one-dimensional time-
even order parameter (η) that transforms as the �+

4 (k = 0) irre-
ducible representation (irrep) of the paramagnetic I4/mmm1′
space group. (We adopt Miller and Love notations for
the special points of the I4/mmm1′ Brillouin zone and
associated irreps as implemented in the ISOTROPY [11] and
ISODISTORT [12] software used in the present study.) A specific
property of �+

4 is that it is not contained in the vector
(mechanical) reducible representations of Ba(2a), Fe(4e), and
As(4d) Wyckoff positions. In consequence, no atomic dis-
placive modes are allowed, which usually serve as soft modes
at displacive structural phase transitions, with this symmetry.
A purely ferroelastic nature of the transition, related to the e12

strain component as the primary order parameter (martensitic
type), is very unlikely due to the similar critical temperatures in
Ba1−xAxFe2As2 systems with small A = Na and large A = Rb
substitutional ions [5,13]. The unit cell volume changes in
opposite ways with composition in these systems (different
sign of chemical pressure which works as the driving force
for proper ferroelastic transformations [14]) while transition
temperatures are almost the same. These observations imply
that the I4/mmm1′ → Fmmm1′ structural transition has a
purely electronic origin. The same conclusion has also been
done based on measurements of elastoresistance coefficients
and shear modulus [15–17].

Two views are current about the mechanism of symmetry
lowering in the nematic phase. The first one magnetic, also
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FIG. 1. (Color online) (a) Parent I4/mmm1′ crystal structure
with atoms in the positions Ba/A 2a(4/mmm1′), Fe 4d(4̄m21′), As
4e(4mm1′). (b) Orthorhombic Fmmm1′ structure of the nematic
phase with atoms in the positions Ba/A 4a(mmm1′), Fe 8f (2221′), As
8i(mm21′). (c) Orthorhombic magnetic CAmca structure with atoms
in the positions Ba/A 4a(mm′m′), Fe 8f (2′22′), As 8g(2m′m′) [6].
The displayed coordinate system does not correspond to the standard
setting of CAmca (see Table I for the standard setting).

known as spin nematic, exploits magnetic fluctuations as
the driving force for the structural distortions [7,18,19]. The
magnetic order parameter (mX+

2 ) is two-dimensional and its
components (μ1,μ2) are associated with two arms of the wave
vector star, k1 = (−1/2,1/2,0) and k2 = (1/2,1/2,0) (X point
of the I4mmm1′ Brillouin zone). In the widely used notations,
these propagation vectors are k1 = (π,0) and k2 = (0,π )
specified for the so called unfolded Brillouin zone (defined
for the two-dimensional Fe sublattice). Magnetic fluctuations
between these two components become nonequivalent at
Tnem > Tmag which breaks the fourfold symmetry without
long-range magnetic order. The second mechanism involves
orbital ordering of the iron 3d electrons as the primary
instability, which renormalizes magnetic exchange parameters
in the system and triggers magnetic order [20–26].

Both mechanisms predict the same space-group symmetries
for the nematic Fmmm1′ (Tmag < T < Tnem) and magnetic
CAmca (T < Tmag) phases, making it impossible to decide by
symmetry which order parameter actually drives the transition.
Very recently, a new structural transition that restores tetrago-
nal symmetry (within the available experimental resolution)
has been discovered in a Ba1−xNaxFe2As2 material in a
narrow range of compositions close to x ∼ 0.25 [27]. The
reentrant transition takes place at Tr = 40–50 K, well above
the critical temperature where the superconductivity emerges,
Tc = 20–30 K, and it is accompanied by a change in the
magnetic structure.

Based on theoretical predictions of an additional phase
at finite doping that restores tetragonal symmetry, labeled
the C4 phase, and a successful refinement of the neutron
diffraction data in the I4/mmm1′ space group (which does not
remove the orbital degeneracy), the reentrant phase transition
has been interpreted as providing evidence for the magnetic
mechanism [27]. However, the exact symmetry of the C4

phase is not yet known and may provide an additional
experimental method of distinguishing between magnetic and
orbital ordering mechanisms. The microscopic spin-nematic
calculations were based on a simplified model, in which only

the iron sublattice is explicitly included, although a more
complete symmetry analysis of itinerant magnetic models has
been published [28]. The prediction of the correct space group
within the Landau theory of phase transitions [29] should
include all atoms in the structure and all parameters that can
affect the final symmetry. In particular, the analysis should
include details of the magnetic structures, which were refined
in the present study from neutron powder diffraction data
as well as from single-crystal measurements in the recent
investigation reported by Wasser et al. [30]. The main aim
of the present work is, therefore, to analyze symmetry aspects
of the newly discovered low-temperature tetragonal phase to
show the symmetry-allowed space groups of the reentrant
tetragonal phase and to propose resonant x-ray experiments
that may identify which is correct.

The paper is organized as follows. In Sec. II, we pro-
vide experimental neutron diffraction data collected for the
Ba0.76Na0.24Fe2As2 composition exhibiting evidence of the
reentrant tetragonal phase. In Sec. III, we analyze the magnetic
and orbital ordering mechanisms for symmetry lowering in
both the orthorhombic and tetragonal phases. In the magnetic
scenario, the assumption that the symmetry of the reentrant
phase is fully determined by the magnetic order parameter
sets constraints on the possible orbital patterns (if any) which
are compatible with it. In the orbital scenario, the symmetry
is determined by the intersection between the symmetry
of the orbital pattern and the triggered magnetic order
parameter. The corresponding orbital order in the reentrant
phase should not allow coupling to any atomic displacements
and symmetry-breaking strain components. Instead, the local
symmetry of sites used by Fe ions should break the orbital
degeneracy. Compatible orbital ordered patterns have been
predicted based on the microscopic spin-orbital model [20].
Allowed isotropy subgroups are shown in Sec. III C to be
P 4/mnc1′ and I4221′, which both keep the original setting
and origin of the parent group. By construction, the subgroups
possess identical extinction rules for Bragg diffraction of
neutrons and x-rays. We demonstrate in Sec. IV that the
technique of resonant x-ray Bragg diffraction can distinguish
between P 4/mnc1′ and I4221′ type structures that would
result from an orbitally driven scenario and the I4/mmm1′
space group that is predicted for the magnetically driven
mechanism. Previously, resonant x-ray Bragg diffraction has
been used to confirm a similar purely electronic transition
in neptunium dioxide (NpO2). In this case, the reduction
of the fluorite structure Fm3̄m1′ to Pn3̄m1′ also does not
involve atomic displacements [31]. Our simulation of resonant
x-ray diffraction in Sec. IV is not unlike that reported for
Fm3̄m1′ → Pn3̄m1′ [32]. Conclusions from our work are
found in Sec. V.

II. EXPERIMENTAL EVIDENCE OF REENTRANT
PHASE IN Ba0.76Na0.24Fe2As2

The high-resolution neutron powder diffraction data col-
lected for the Ba0.76Na0.24Fe2As2 composition above 90 K
were successfully refined in the tetragonal I4/mmm1′ space
group (for details of the neutron diffraction experiment see
Ref. [27]). At Tmag = 90 K, the first-order phase transition
to the magnetic orthorhombic CAmca phase is evidenced
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FIG. 2. (Color online) (a) a and b unit cell parameters of Ba0.76Na0.24Fe2As2 as a function of temperature (parameter for the I4/mmm1′

phase is multiplied by
√

2). (b) Phase fractions of the orthorhombic and tetragonal phases as a function of temperature. (c) Temperature
dependence of integrated intensity of the magnetic (−1/2,1/2,1) reflection. Inset shows the temperature dependence of the unit cell parameter c.
(d) Rietveld refinement of the neutron powder diffraction pattern collected on the WISH diffractometer (ISIS). The cross symbols (black) and
solid line (red) represent the experimental and calculated intensities, respectively, and the line below (blue) is the difference between them.
Tick marks indicate the positions of Bragg peaks. The first two rows from the top correspond to the nuclear I4/mmm1′ and Fmmm1′ phases;
the second two rows represent their magnetic counterparts. Inset shows the patterns collected at 1.5 K and 100 K, at a vicinity of the strongest
magnetic peaks. (e) Ordered moment as a function of temperature in the orthorhombic and reentrant tetragonal phases.

by splitting of some of the fundamental peaks and the
appearing of additional Bragg reflections consistent with
the propagation vector k = 1/2,1/2,0. This orthorhombic
phase involves stripe-type antiferromagnetic ordering which
is typical for the potassium- and sodium-doped compositions
with x < 0.24. Below Tr = 40 K, the transition to the reentrant
tetragonal phase takes place as reported in Ref. [27]. The
transition is not complete and the reentrant phase coexists
with the orthorhombic one down to the lowest measured
temperature 1.5 K. Inspection of the diffraction patterns and the
qualitative Rietveld refinement did not reveal any evidence of
the symmetry lowering in the nuclear structure of the reentrant
phase in comparison with the structure of the high-temperature
paramagnetic phase and, therefore the nuclear scattering for
the reentrant phase was modeled using the parent I4/mmm1′
symmetry. The scattering for the orthorhombic phase was done

in the Fmmm1′ space groups. The unit cell parameters and
the phase fractions as a function of temperature are shown in
Figs. 2(a) and 2(b), respectively. The unit cell of the reentrant
tetragonal phase is stretched in the (ab) plane and shrunken
along the c axis compared to the paramagnetic one. The
refinement indicates that the transition at Tr results in changing
the unit cell parameters of the orthorhombic phase as well. The
coupling between the phases can be caused by the internal
strains appearing on the phase boundaries and therefore the
coupling strength might depend on the microstructure and can
vary from one sample to another.

The transition to the reentrant phase involves also modifica-
tion of the magnetic scattering as indicated by the temperature
dependence of the integrated intensity of the (−1/2,1/2,1)
magnetic reflection [Fig. 2(c)]. The propagation vector of
the magnetic structure does not change across the transition
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TABLE I. Equilibrium order parameter directions in the mX+
2 representation space and the magnetic space groups for the four stable phases

obtained by minimization of the free energy (1). Columns “basis” and “origin” represent the basis vectors and the origin choice of the magnetic
subgroups, respectively, in respect of the parent I4/mmm1′ space group. The magnetic space groups for the case of the reducible �+

4 ⊕ mX+
2

order parameter are given as well.

Irrep Order parameter Space group Basis Origin

mX+
2 μ1 = μ2 = 0 I4/mmm1′ (1,0,0)(0,1,0)(0,0,1) (0,0,0)

mX+
2 μ1 �= 0,μ2 = 0 CAmca(FCmm′m′) (0,0,1)(1,1,0)(−1,1,0) (0,0,0)

mX+
2 μ1 = μ2 �= 0 PC4/mbm(PP 4′/mmm′) (−1,1,0)(−1,−1,0)(0,0,1) (−1/2,1/2,0)

mX+
2 μ1 �= 0,μ2 �= 0,μ1 �= μ2 PCbam(CP m′m′m) (−1,1,0)(−1,−1,0)(0,0,1) (0,0,0)

�+
4 ⊕ mX+

2 η �= 0,μ1 = 0,μ2 = 0 Fmmm1′ (1,1,0)(−1,1,0)(0,0,1) (0,0,0)
�+

4 ⊕ mX+
2 η �= 0,μ1 �= 0,μ2 = 0 CAmca(FCmm′m′) (0,0,1)(1,1,0)(−1,1,0) (0,0,0)

�+
4 ⊕ mX+

2 η �= 0,μ1 �= 0,μ2 �= 0a PCbam(CP m′m′m) (−1,1,0)(−1,−1,0)(0,0,1) (0,0,0)

aThe cases when μ1 �= μ2 and μ1 = μ2 both result in the same orthorhombic PCbam symmetry at η �= 0.

but the structure of the low-temperature tetragonal phase
is different from the higher-temperature orthorhombic one.
Assuming irreducible nature of the magnetic order parameter
in the tetragonal phase, the best refinement quality (Rmagnetic =
7.47%) of the powder diffraction data [Fig. 2(d)] was obtained
in the antiferromagnetic stripe model with the magnetic dipoles
polarized along the c axis, in agreement with the recent single
crystal study of Wasser et al. [30]. Thus, the main impact of the
transition at Tr on the magnetic structure of Ba0.76Na0.24Fe2As2

is swapping the moment’s direction from in-plane to out-
of-plane in the reentrant phase. The magnetic structure of
the low-temperature orthorhombic phase (coexisting with the
tetragonal one) was found to be qualitatively identical to the
structure of the higher-temperature phase. The temperature
dependence of the magnetic moments refined independently
for the orthorhombic and tetragonal phases is shown in
Fig. 2(e). The ordered moment of the tetragonal phase is
notably smaller than the moment of the orthorhombic phase
assuming single-k magnetic structures. The symmetry aspects
of these models as well as their two-k counterparts (which are
indistinguishable in the powder diffraction data) are discussed
in the next section.

III. ANALYSIS OF MECHANISMS
FOR SYMMETRY LOWERING

A. Magnetic mechanism with in-plane moments

We start with the symmetry analysis of the reentrant
tetragonal phase of Ba1−xNaxFe2As2 with magnetic moments
in the (ab) plane. The published spin-nematic calculations did
not include spin-orbit coupling so no moment direction was
defined, but this is one of the possible ground states discussed
within a magnetic scenario [7,18,19,28,33,34]. It seems to be
in contradiction with the neutron diffraction data presented
in Sec. II and recently reported by Wasser et al. [30], which
both indicate that the moments are parallel with the c axis,
but we include this discussion for completeness and uniform
consideration of some symmetry aspects of the transitions at
Tmag and Tr as well as possible relevance to other systems.

When the magnetic moments are confined within the (ab)
plane, as experimentally found in the orthorhombic phase of
all Ba1−xAxFe2As2 pnictides, the magnetic order parameter
is associated with the time-odd and two-dimensional irrep
mX+

2 of the parent I4mmm1′ space group [35]. The two

components of the order parameter are related to the k1 =
(−1/2,1/2,0) and k2 = (1/2,1/2,0) propagation vectors of
the I4mmm1′ Brillouin zone. The integrity basis consists of the
two polynomial invariants μ2

1 + μ2
2 and μ2

1μ
2
2, which results

in the Landau free-energy decomposition:

F (μ1,μ2) = a1
(
μ2

1+μ2
2

)+b1
(
μ4

1+μ4
2

) + b2
(
μ2

1μ
2
2

)

+ c1
(
μ6

1+μ6
2

) + c2
(
μ4

1μ
2
2 + μ2

1μ
4
2

)

+ d1
(
μ8

1 + μ8
2

)+c2
(
μ6

1μ
2
2+μ2

1μ
6
2

)

+ d3
(
μ4

1μ
4
2

)+ · · · . (1)

Note that we are going to discuss purely symmetry aspects
which do not depend on fluctuations and, therefore we use
the classical Landau decomposition instead of the Ginzburg-
Landau one. Minimization of F (μ1,μ2) truncated at the eighth
degree leads to four possible stable phases [36,37]. The
equilibrium order parameters and the magnetic symmetries
(for the case of the mX+

2 representation) of the corresponding
phases are listed in Table I. The symmetry of the phase where
both components of the magnetic order parameter are nonzero
and equal (μ1 = μ2 �= 0) is tetragonal PC4/mbm.

The magnetic PC4/mbm structure involves two propaga-
tion vectors and implies the orthogonal spin configuration
shown in Fig. 3(a). A structural distortion (ξ ) violating
the body centering condition—Miller indexes with h + k + l

even—is expected in the case of the PC4/mbm symmetry
as a secondary order parameter through the magnetoelastic
coupling ξμ1μ2 ≡ ξμ2 for μ1 = μ2 = μ. Corresponding
distortive modes are associated with the M+

1 [k = (1,1,1)]
irrep of I4/mmm1′ and involve displacements of both Fe
and As ions along the c axis, lowering the symmetry down
to P 4/mmm1′ [Fig. 3(b)]. These displacements allow Bragg
reflections h + k + l odd with l �= 0, which can be observed in
conventional diffraction experiments using x rays or neutrons.
No Bragg reflections of this type were visible in neutron
powder diffraction measurements. It is interesting to note that
the PC4/mbm space group allows the orbital ordering shown
in Fig. 3(b) since the site symmetry of the Fe ions is 2.mm. This
orbital pattern with the M+

1 symmetry is coupled to the primary
magnetic order parameter mX+

2 through the magnetoelastic
coupling invariant specified above.

The free-energy given by Eq. (1) is only a “minimal” de-
composition necessary to discuss the symmetry of the reentrant
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FIG. 3. (Color online) (a) Tetragonal magnetic structure with the
PC4/mbm space group, involving two propagation vectors k1 =
(−1/2,1/2,0) and k2 = (1/2,1/2,0) and atoms in the positions Ba/A1
2a(4′/mm′m), Ba/A2 2b(4′/mm′m), Fe 8i(2.mm), As1 4g(4′m′m),
As2 4h(4′m′m) [6]. Only the unit cell of the parent I4/mmm1′

structure is displayed (see Table I for the choice of the magnetic cell).
(b) Atomic displacements (and orbital ordering) with P 4/mmm1′

symmetry, allowed in the magnetic PC4/mbm space group as a
secondary order parameter, which contribute to the h + k + l odd
reflections with l �= 0.

phase using a single irreducible magnetic order parameter.
To take into account the transition to the nematic Fmmm1′
phase at Tnem, an additional time-even order parameter must
be included in the decomposition. The symmetry breaking at
the I4/mmm1′ → Fmmm1′ transition is associated with the
one-dimensional irreducible representation �+

4 . The primary
order parameter η has the symmetry of this representation
and is linearly coupled to the e12 strain component. For our
symmetry discussion, the explicit physical meaning of η is not
essential (it can be either Ising spin nematic or orbital ordering
order parameter).

The extended free energy containing coupling terms η(μ2
1 −

μ2
2) and η2(μ2

1 + μ2
2) describes three additional phases with the

symmetries specified in Table I for the case of the coupled
�+

4 ⊕ mX+
2 order parameter. Below Tmag, the long-range

magnetic ordering associated with the mX+
2 representation

and the (μ1,0) order parameter direction usually takes place
as a second-order phase transition from the parent (for this
transition) symmetry Fmmm1′. The continuous nature of this
transition implies that the magnetic phase must be the result of
a common action of the two order parameters, time-even �+

4 (η)
and time-odd mX+

2 (μ1,0). The symmetry of this reducible
order parameter �+

4 (η) ⊕ mX+
2 (μ1,0) is CAmca (see Table I)

so it is identical to the symmetry of the mX+
2 (μ1,0) order

parameter alone.
In spite of the identical symmetry, the cases of the reducible

and irreducible order parameters are essentially different and
this is the key point at this stage. For instance, a transition
from the parent tetragonal phase I4/mmm1′ to the phase with
the irreducible order parameter is allowed to be continuous,
whereas a transition to the phase with the reducible order
parameter must necessarily be first order. Another crucial
point is that in the case of the reducible order parameter

�+
4 ⊕ mX+

2 , a condensation of the second component of the
magnetic order parameter mX+

2 (μ1 = μ2 �= 0) will not restore
tetragonal symmetry. The resultant symmetry will still be an
intersection between �+

4 (η) and mX+
2 (μ1 = μ2 �= 0) which

results in the orthorhombic PCbam magnetic space group
(Table I).

This is the fundamental difference between reducible and
irreducible order parameters; only in the latter case can a
condensation of additional components increase the symmetry
of the system. Thus, the continuous nature of the Fmmm1′ →
CAmca transition (resulting in the reducible order parameter)
and the crossover to the tetragonal PC4/mbm phase (requiring
an irreducible order parameter) are mutually exclusive, if one
assumes the purely magnetic nature of the transition to the
reentrant phase. The low-temperature phase transition must
necessarily involve a structural (electronic) instability which
cancels the �+

4 (η) time-even order parameter. In the case of
the orbital reconstruction mechanism, η is replaced by another
order parameter and the symmetry of the system is determined
by the intersection between the symmetry of the new orbital
pattern and the triggered magnetic order parameter.

Note that a similar conclusion about the reducible character
of the distortions is applicable for the case of the single mag-
netostructural I4/mmm1′ → CAmca phase transition with
identical critical behavior for the orthorhombic strain com-
ponent e12 and the magnetic order parameter as experimen-
tally observed in the Ba1−xKxFe2As2 and Ba1−xNaxFe2As2

systems [3–5]. This critical behavior indicates that the e12

strain component is not induced by the magnetic order
parameter as a secondary distortion through the magnetoelastic
coupling. Instead, this behavior points to a linear coupling
between e12 and some other order parameter η having its
own instability near the transition temperature. The biquadratic
relation between η and the magnetic order parameter implies
a reducible nature of the distortions in the CAmca phase and
indicates that the coupling between these order parameters has
a microscopic origin rather than symmetry-related one.

B. Magnetic mechanism with out-of-plane moments

The tetragonal PC4/mbm space group obtained in the
previous section with the irreducible mX+

2 magnetic order
parameter seems to be irrelevant to the case of the reentrant
phase in Ba1−xNaxFe2As2, since it has been experimentally
shown that the magnetic moments are along the c axis (see
Sec. II and Ref. [30]). Thus, to adopt the magnetic mechanism
for these experimental findings, we have to introduce in our
phenomenological approach another magnetic order parameter
(μ3,μ4) with the symmetry of the mX+

3 irrep which trans-
forms the out-of-plane components of the magnetic dipoles
with k1 = (−1/2,1/2,0) and k2 = (1/2,1/2,0) propagation
vectors. Note that this is not forbidden by symmetry since
the transition to the reentrant phase is strongly first order.
The image group of mX+

3 and therefore the free-energy
decomposition is identical to the previous case of the mX+

2
irrep. The equilibrium order parameters obtained by minimiza-
tion of the functional (1) correspond to the stable magnetic
phases for mX+

3 listed in Table II. The tetragonal space group
PC42/ncm with μ3 = μ4 �= 0 is the symmetry of the system
in the adopted magnetic scenario. It should be pointed out
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TABLE II. Equilibrium order parameter directions in the mX+
3 representation space and the magnetic space groups for the four stable

phases obtained by minimization of the free energy (1). Columns “basis” and “origin” represent the basis vectors and the origin choice of the
magnetic subgroups in respect of the parent I4/mmm1′ space group.

Irrep Order parameter Space group Basis Origin

mX+
3 μ3 = μ4 = 0 I4/mmm1′ (1,0,0)(0,1,0)(0,0,1) (0,0,0)

mX+
3 μ3 �= 0,μ4 = 0 CAmca(FCmm′m′) (−1,−1,0)(0,0,−1)(1,−1,0) (0,0,0)

mX+
3 μ3 = μ4 �= 0 PC42/ncm(PP 42/m′mc) (−1,1,0)(−1,−1,0)(0,0,1) (1/2,−1/2,−1/2)

mX+
3 μ3 �= 0,μ4 �= 0,μ3 �= μ4 PCccn(CP ccm′) (−1,1,0)(−1,−1,0)(0,0,1) (0,0,0)

that the proper phenomenological approach for the magnetic
mechanism, which describes both CAmca (μ1 �= 0,μ2 = 0)
and PC42/ncm (μ3 = μ4 �= 0) magnetic phases, should be
based on the Landau decomposition written in terms of
the reducible mX+

2 ⊕ mX+
3 order parameter components,

μ1,μ2,μ3,μ4. Minimization of this functional yields six more
“mixed” phases where some of the components of both mX+

2
and mX+

3 order parameters are nonzero. The corresponding
magnetic structures combine both in-plane and out-of-plane
configurations, but since there are no solutions with tetragonal
symmetry between the “mixed” phases, we do not consider
them any further.

The two-k magnetic structure with tetragonal PC42/ncm

symmetry imposes zero dipole magnetic moments for half of
the Fe sites (Fig. 4). The remarkable feature is that the site
symmetry of Fe in the 4e and 4f Wyckoff positions with
zero and nonzero magnetic dipole moments are (4̄′2′m) and
(4̄2′m′), respectively. These site symmetries do not remove
the degeneracy between the dxz and dyz orbitals and their
linear combinations. In other words, the symmetry does not
permit any type of orbital ordering and therefore the “chicken
and egg” question, whether magnetism drives orbital ordering
or vice versa (the major issue in the orthorhombic magnetic
phase), does not exist for this phase. It can be driven only
by magnetic instability. Thus, proving experimentally the

FIG. 4. (Color online) Tetragonal magnetic structure with the
PC42/ncm space group, involving two propagation vectors k1 =
(−1/2,1/2,0) and k2 = (1/2,1/2,0) and atoms in the positions
Ba/A 4c(m′.mm′); Fe1 4e(4̄′2′m), the site with zero magnetic dipole
moment; Fe2 4f (4̄2′m′), the site with nonzero magnetic dipole
moment; As 8i(2.mm) [6]. Only the unit cell of the parent I4/mmm1′

structure is displayed (see Table II for the choice of the magnetic cell).

two-k nature of the magnetic order in the reentrant phase,
for instance by neutron diffraction experiment with uniaxial
strain applied to the crystal, would provide strong evidence for
the magnetically driven scenario.

Contrary to the case with the in-plane moments, the
out-of-plane tetragonal magnetic structure does not permit
any atomic displacements and keeps all the atoms in the
same positions as they are in the parent I4/mmm1′ space
group. The magnetic order parameter allows a magnetoelastic
coupling invariant with time-even physical quantities (ξ )
transforming as M+

2 irrep, ξμ3μ4 ≡ ξμ2 for μ3 = μ4 = μ.
This coupling, however, does not change the site symmetry of
Fe and therefore in the diffraction experiment, discussed in the
Sec. IV, the crystal structure symmetry of the system can be
well approximated by the parent I4/mmm1′ space group.

C. Orbital ordering mechanism

In this mechanism the primary instability is related to a
spontaneous change of the dxz and dyz orbital occupancies that
reduce Fe-site symmetry from 4̄m21′ to 2221′. Site symmetry
breaking is associated with the B1 point group representation,
subduced by the �+

4 space group irrep that induces global
orthorhombic distortions [11,12]. The macroscopic strain
component e12 transforms as the �+

4 irrep as well, resulting
in a linear coupling to the primary order parameter, e12η. In
this scenario, an electronic instability renormalizes exchange
parameters in the system and triggers a magnetic ordering; thus
the symmetry of the system is always an intersection between
the orbital ordering and magnetic order parameters.

It should be pointed out that the interaction between
orbital ordering and magnetic order parameters is caused by
microscopic reasons rather than symmetry. This means that
the dominant phenomenological free-energy coupling term
should not be necessarily the lowest degree one, as for the case
of secondary order parameters, and depends on the explicit
form of this interaction. Experimental data [3–5] indicate the
dominant role of the quadratic-quadratic free-energy invariant
η2μ2 representing the linear part of the interaction.

Since �+
4 is a one-dimensional order parameter, the

orbital reconstruction in the reentrant tetragonal phase of
Ba1−xNaxFe2As2 must be associated with another irreducible
representation. The high-resolution neutron diffraction data
(nuclear structure) were successfully refined in the parent
I4/mmm1′ space group (see Sec. II and Ref. [27]). This sym-
metry does not remove the orbital degeneracy and, therefore,
in the orbital-ordering mechanism the actual symmetry must
be different. To be consistent with the experimental data, we
should assume that the orbital ordering in the reentrant phase
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FIG. 5. (Color online) (a) Orbital ordering associated with the
M+

3 irrep resulting in the tetragonal P 4/mnc1′ space group. The
crystallographic positions occupied by atoms in P 4/mnc1′ are Ba/A
2a(4/m..1′), Fe 4d(2.221′), As 4e(4..1′). (b) Combination of the
M+

3 orbital ordering with the mX+
3 (μ3 �= 0,μ4 = 0) magnetic order,

resulting in the orthorhombic PCccn magnetic space group with
atoms in the positions Ba/A 4e(..2′/m′), Fe1 4a(2′2′2), Fe2 4b(2′2′2),
As 8k(..2′) [6].

does not allow coupling to any atomic displacements and
symmetry-breaking strain components. In addition, the site
symmetry of the crystallographic position used by Fe should
break the orbital degeneracy. These symmetry conditions
can be reformulated in an exact group-theoretical way and
rigorously checked.

The desired isotropy subgroup should be associated with
a space group irreducible representation which is induced by
the Fe-site irrep B1, whose subduction frequency is zero for all
reducible vector representations in the structure. The relevant
analysis reveals that only two one-dimensional irreducible
representations of the I4/mmm1′ space group satisfy both
conditions, namely, M+

3 [k = (1,1,1)] and �−
1 (k = 0) [11,12].

The corresponding isotropy subgroups are P 4/mnc1′ and
I4221′ which both keep the original setting and origin
of the parent group. Symmetry reductions I4/mmm1′ →
P 4/mnc1′ and I4/mmm1′ → I4221′ are caused by losing
site symmetry alone, with no atomic displacements relative
to the parent I4/mmm1′ structure. This means that the
conventional Rietveld analysis of neutron or conventional
x-ray diffraction data is not able to reveal the actual structural
symmetry. The orbital patterns associated with the P 4/mnc1′
and I4221′ subgroups are shown in Figs. 5(a) and 6(a),
respectively. They represent an alternation of the dxz and
dyz orbitals in the (ab) plane and are different in the way
of stacking the ordered layers along the c axis. In fact, if
one considers only the two-dimensional layers formed by
Fe ions, these patterns are identical to the antiferro O(π,π )
orbital state in the original work by Krüger et al., Ref. [20].
This type of orbital ordering is stable in a wide parametric
space (see the phase diagram in Fig. 4 of Ref. [20]) and
has a common phase boundary with the ferro-orbital O(0,0)
orthorhombic phase. Moreover, examination of the structural
parameter λ controlling the stability of the orbitally ordered
phases, as a function of Na doping in Ba1−xNaxFe2As2,

FIG. 6. (Color online) (a) Orbital ordering associated with the
�−

1 irrep resulting in the tetragonal I4221′ space group. The
crystallographic positions occupied by atoms in I4221′ are Ba/A
2a(4221′), Fe 4d(2.221′), As 4e(4..1′). (b) Combination of the
�−

1 orbital ordering with the mX+
3 (μ3 �= 0,μ4 = 0) magnetic order,

resulting in the orthorhombic CA2221 magnetic space group with
atoms in the positions Ba/A 4a(22′2′), Fe1 4c(2′22′), Fe2 4d(2′22′),
As 8f (.2′.) [6].

indicates that the system moves in the right direction towards
the O(0,0) → O(π,π ) transition.

The lifting of the orbital degeneracy in the P 4/mnc1′ and
I4221′ structures would be a purely electronic effect without
any structural signature (no structural distortions are allowed
apart from the non-symmetry-breaking strain component e33).
If confirmed, it would represent a very unusual situation
in comparison with other known orbitally ordered systems
(such as manganites or cuprates) where the orbital and lattice
degrees of freedom are intimately related and lifting of
orbital degeneracy is manifested by local distortions of the
coordinated structural units.

There are no symmetry restrictions on the magnetic order
parameter and the new orbital pattern may trigger different
magnetic configurations. One of the probable candidates for
the magnetic structure in the reentrant phase, which provides
a good fit to magnetic intensities (see Fig. 2(d) (inset) and
Ref. [30]) implies a propagation vector k = (1/2,1/2,0) and
magnetic dipole moments polarized along the c axis. This
magnetic configuration is associated with the mX+

3 irrep
as specified in the previous section. The stability of this
configuration in terms of the nearest and next-nearest neighbor
exchange interactions has been discussed by Krüger et al. in
Ref. [20]. Between the equilibrium phases listed in Table II,
only the magnetic configuration with CAmca symmetry keeps
magnetic moments constant on all the Fe sites. Note that the
space group symbol is identical to the phase with the same
order parameter direction in the mX+

2 irrep from Table I;
the unit cell choice is however different in both cases, which
implies different magnetic structures. The tetragonal phase
PC42/ncm imposes zero ordered moment for half of the sites.
Although this can occur in an itinerant magnetic scenario [28],
it is unlikely in an orbital scenario with localized electrons
because of the large entropy that it entails.
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TABLE III. The magnetic space groups for the case of the M+
3 ⊕ mX+

3 and �−
1 ⊕ mX+

3 reducible order parameters.

Irrep Order parameter Space group Basis Origin

M+
3 (η) ⊕ mX+

3 (μ3,μ4) η �= 0,μ3 �= 0,μ4 = 0 PCccn(CP ccm′) (1,−1,0)(1,1,0)(0,0,1) (0,0,0)
�−

1 (η) ⊕ mX+
3 (μ3,μ4) η �= 0,μ3 �= 0,μ4 = 0 CA2221(FC22′2′) (1,1,0)(0,0,1)(1,−1,0) (1/4,1/4,0)

A combination of the mX+
3 (μ3,0) magnetic order parameter

with the orbital ordering having M+
3 and �−

1 symmetries
results in PCccn (CP ccm′) [Fig. 5(b)] and CA2221 (FC22′2′)
[Fig. 6(b)] magnetic space groups, respectively (Table III). In
both cases, the resultant magnetic symmetry is orthorhombic
which does not allow atomic displacements relative to a
tetragonal I4/mmm1′ structure, but it permits a coupling to
the symmetry-breaking strain component e12. In the powder
neutron diffraction experiment (see Sec. II and Ref. [27]),
this component was not detected but this is possible if the
magnetoelastic coupling is weak.

The key point is that the orbital patterns with the
P 4/mnc1′ and I4221′ symmetries cannot be induced by
either mX+

3 (μ3 = μ4 �= 0) or mX+
3 (μ3 �= 0,μ4 = 0) magnetic

order parameters. The corresponding magnetic space groups
PC42/ncm and CAmca listed in Table II forbid this kind of
orbital ordering [38] and therefore the P 4/mnc1′ and I4221′
patterns can appear only as a result of the electronic instability
unrelated to the magnetic degree of freedom. Therefore, an
experimental observation of one of these patterns in the x-ray
resonant experiment discussed in the next section would be
unambiguous evidence for an orbitally driven mechanism.

IV. X-RAY RESONANT SCATTERING

We calculate unit cell structure factors for Bragg diffraction
by P 4/mnc1′ and I4221′ type structures, labeled (A) and (C),
to unveil signatures of the orbital ordering. A calculation for the
I4/mmm1′ type structure, labeled (B), provides a reference
point to our findings.

Structure factors for Templeton & Templeton (T & T)
scattering are made functions of the angle of rotation of
a crystal about the Bragg wave vector—an azimuthal-angle
scan [39,40]. Bulk properties of a material, subject to elements
of symmetry in the crystal class, are revealed in a structure
factor evaluated for Miller indices h = k = l = 0, i.e., the
forward direction. Intensities of nontrivial Bragg spots (h,k,l)
depend on translations in the unit cell and the symmetry of
sites used by resonant ions. Our calculations include each and
every one of the elements of symmetry in a space group. This is
conveniently achieved with a theory of resonant scattering that
uses atomic multipoles, defined to possess discrete symmetries
with respect to inversion of space coordinates and the reversal
of the direction of time [41–43]. In the present work we discuss
structural order and all multipoles are time-even.

Bragg spots from T & T scattering are forbidden by
extinction rules. Intensities are weak compared to allowed
intensities, because they are created only by electron states that
possess angular anisotropy. By its very nature, T & T scattering
is tailor-made for investigations of orbital ordering [40].

Absorption that proceeds by electric dipole transitions,
E1-E1, reveals parity-even multipoles. In the case of an Fe ion,

enhancements obtained by tuning the primary x-ray energy to
L edges expose the 3d ground state (2p → 3d). Selection rules
from crystal symmetry may forbid E1-E1, but allow weaker
events, e.g., parity-odd E1-E2. Absorption using E2-E2 at the
Fe K edge also gives direct information on the 3d ground state.
We give explicit results for unit cell structure factors using
E1-E1 and E1-E2 events. Structure factors for an E2-E2
event are readily derived using expressions in the literature [43]
and information we provide.

Let 〈OK
Q 〉 be a Hermitian spherical multipole, with rank

K and projection Q constrained by the condition −K �
Q � K . Angular brackets 〈...〉 denote an expectation value,
or time average, of the enclosed tensor operator, and mul-
tipoles are properties of the ground state of electrons.
The complex conjugate of a multipole is derived from
〈OK

Q 〉∗ = (−1)Q〈OK
−Q〉. In Cartesian coordinates (x,y,z), a

rotation through an angle ϕ about the z axis results in
the change 〈OK

Q 〉 → exp(iϕQ)〈OK
Q 〉. Rotations through 180◦

about the x axis and the y axis result in C2[1,0,0]〈OK
Q 〉 ≡

C2x〈OK
Q 〉 = (−1)K〈OK

−Q〉 and C2[0,1,0]〈OK
Q 〉 ≡ C2y〈OK

Q 〉 =
(−1)K+Q〈OK

−Q〉. In addition, we use identities C2[1,1,0] =
C2yC4z = C4zC2x and C2[1,−1,0] = C2xC4z = C4zC2y .

A. Orbital ordering has the M+
3 symmetry

The space group is P 4/mnc1′ and Fe use 4d sites with the
point group 2.221′.

(i) Point group; 〈OK
Q 〉 is unchanged by C2z, C2[1,1,0] and

C2[1,−1,0]. We find Q = ±2p, and the identity 〈OK
−Q〉 =

(−1)K+p〈OK
Q 〉. It follows that K is even for p = 0. A

monopole, 〈O0〉, is allowed while a dipole is forbidden,
〈O1〉 = 0.

(ii) Space group; Fe sites, (0,1/2,1/4), (1/2,0,1/4),
(0,1/2,3/4), (1/2,0,3/4).

We assign the first site with multipoles 〈OK
Q 〉 to be the

reference site. Environments at the remaining three sites are
generated from the reference by operations C2y,IC2[1,1,0],
and IC2y , respectively, in which I denotes inversion. The basis
of all our calculations is an electronic structure factor,

�K
Q =

∑

d

exp(id · τ )
〈
OK

Q

〉
d, (2)

where the sum is over Fe ions at sites d in the unit cell, and
the Bragg wave vector τ (hkl) = (h,k,l) with integer Miller
indices. In the result

�K
Q (P 4/mnc1′) = 〈

OK
Q

〉
exp(iπl/2)(−1)K

× [1 + σπ (−1)l][1 + (−1)h+k(−1)p],
(3)

the parity signature of 〈OK
Q 〉 is σπ = ±1. We stress that

�K
Q (P 4/mnc1′) embodies all symmetry present in the space
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FIG. 7. The plane of scattering spanned by primary (q) and sec-
ondary (q ′), and the Bragg wave vector τ (hkl) = q − q ′. Polarization
labeled σ and σ ′ is normal to the plane, and polarization labeled π

and π ′ lies in the plane of scattering. The beam is deflected through
an angle 2θ . In the nominal setting of the crystal, the b axis and c axis
are parallel with q + q ′ and σ polarization, respectively.

group, and it can be used to calculate unit cell structure factors
for nuclear scattering of neutrons, and Thomson and T &
T scattering of x rays. The same remarks apply to structure
factors �K

Q (I4/mmm1′) and �K
Q (I4221′).

(I) Space-group allowed reflections obey �K
Q �= 0 for Q =

2p = 0 and σπ = +1. Extinction rules for Fe ions in space
group P 4/mnc1′ are found to be h + k even and l even.

(II) Space-group forbidden reflections (0,0,l) with l odd.
The electronic structure factor (3) is different from zero for
σπ = −1. Corresponding multipoles are parity-odd and time-
even, which are here denoted by 〈UK

Q 〉 and usually referred to
as polar. They are visible in an E1-E2 event that possesses
multipoles with rank K = 1,2,3.

With h = k = 0 in (3) the integer p is even. For an E1-E2
event only p = 0 is allowed, and K = 2. Unit cell structure
factors, F , are obtained from Scagnoli and Lovesey [43].
They are expressed in terms of two quantities AK

Q = AK
−Q and

BK
Q = −BK

−Q, created from (�K
Q + �K

−Q) and (�K
Q − �K

−Q),
respectively, after aligning the crystal with respect to states of
polarization in the primary x-ray beam depicted in Fig. 7. We
find B2

Q = 0 and the nonzero A2
Q are

A2
0 = −2

〈
U 2

0

〉
exp(iπl/2), A2

2 = −
√

3/2A2
0. (4)

Note that the quadrupole 〈U 2
0 〉 is purely real.

Rotation of the crystal about the Bragg wave vector (0,0,l)
is denoted by the (azimuthal) angle ψ . Unit cell structure
factors for unrotated polarization are zero, Fσ ′σ = Fπ ′π = 0,
and in rotated channels Fπ ′σ = −Fσ ′π is independent of the
azimuthal angle, namely,

Fπ ′σ (E1-E2) = i(2/
√

5) cos2 θ
〈
U 2

0

〉
exp(iπl/2), (5)

where θ is the Bragg angle shown in Fig. 7. The structure
factor (5) for T & T scattering is purely real for l odd.

(III) Space-group forbidden reflections (h,k,0) with h + k

odd. In this case, the structure factor (3) can be different from
zero for p odd, and σπ = +1. We consider an E1-E1 absorp-
tion event. This event engages parity-even quadrupoles 〈T 2

Q〉
with Q = ±2, and we write 〈T 2

+2〉 = i〈T 2
+2〉′′. In Cartesian

coordinates, 〈T 2
+2〉′′ is a quadrupole of (xy) type.

Let the Bragg wave vector (h,k,0) subtend an angle βo

with the a axis, with cos βo = [1 + (k/h)2]−1/2. We find the
nonzero A2

Q and B2
Q are

A2
2 = 4(−1)k

〈
T 2

+2

〉′′
sin(2βo),

B2
2 = −i4(−1)k

〈
T 2

+2

〉′′
cos(2βo). (6)

Unit cell structure factors for T & T scattering are purely real
and take the values

Fσ ′σ (E1-E1) = −sin2(ψ)A2
2,

Fπ ′σ (E1-E1) = −(1/2) sin θ sin(2ψ)A2
2 + i cos θ sin(ψ)B2

2 ,

Fπ ′π (E1-E1) = [1 − sin2 θ sin2(ψ)]A2
2, (7)

and Fσ ′π (θ ) = Fπ ′σ (−θ ). In (7) the c axis is normal to
the plane of scattering for ψ = 0. There are no signals in
unrotated channels of polarization for Bragg spots (h,0,0)
and (0,k,0) at which βo = 0 and π/2, respectively. In the
general case, structure factors for unrotated polarization are
functions of cos(2ψ), whereas intensity in rotated channels
has a more interesting dependence on ψ because Fπ ′σ and
Fσ ′π are functions of sin(ψ) and sin(2ψ). Because all unit cell
structure factors are purely real, the corresponding intensity
is independent of circular polarization in the primary x-ray
beam.

(IV) Space-group forbidden reflections (h,0,l) with h and
l odd integers. In this case, the structure factor (3) can be
different from zero for p odd, and σπ = −1. There is only one
value p = 1 (Q = ±2) for an E1-E2 event where an octupole
(K = 3) is the maximum rank. T & T scattering is generated
by 〈U 2

±2〉 (purely imaginary) and 〈U 3
±2〉 (purely real).

AK
Q and BK

Q depend on the orientation of the Bragg wave
vector with respect to crystal axes. Let (h,0,l) subtend an an-
gle β with the crystal a axis with cos β = [1 + (la/hc)2]−1/2.
Using ZK = 4〈UK

+2〉 exp(iπl/2) we arrive at

A2
1 = −Z2 sin β, B2

2 = Z2 cos β,

A3
0 = (

√
30/2)Z3 sin2 β cos β,

A3
2 = (1/2)Z3 cos β(3 cos2 β − 1), (8)

B3
1 = −(

√
10/4)Z3 sin β(3 cos2 β − 1),

B3
3 = (

√
6/4)Z3 sin β(cos2 β + 1).

In terms of these quantities, the four unit cell structure factors
for the Bragg spot (h,0,l) with h and l odd are

Fσ ′σ (E1-E2) = (2/
√

30) sin θ cos(2ψ)A2
1 − i(1/5

√
6) sin θ [5 cos(2ψ) + 3]B3

1 + i(2/
√

10) sin θ sin2(ψ)B3
3 ,

Fπ ′σ (E1-E2) = (1/2
√

30)(5 cos 2θ + 1) sin(2ψ)A2
1 − (2/

√
30) sin 2θ cos(ψ)B2

2 + i sin 2θ cos(ψ)

× [−(1/5
√

2)A3
0 + (1/

√
15)A3

2

] + i sin2 θ sin(2ψ)
[
(1/

√
6)B3

1 + (1/
√

10)B3
3

]
,
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Fπ ′π (E1-E2) = − (2/
√

30) sin 3θ cos(2ψ)A2
1 + i(2/5

√
6) sin θ [sin2 θ (5 sin2(ψ) − 1) + 3 cos2 θ ]B3

1

− i(2/
√

10) sin θ [cos2(ψ) + cos2 θ sin2(ψ)]B3
3 , (9)

and Fσ ′π (θ ) = −Fπ ′σ (−θ ). Note that all unit cell structure
factors are purely real, which means that the corresponding
intensity is independent of circular polarization in the primary
x-ray beam. The crystal b axis is in the plane of scattering
for ψ = 0. Structure factors for unrotated polarization are
functions of cos(2ψ), whereas intensity in rotated channels
has a more interesting dependence on ψ because Fπ ′σ and
Fσ ′π are functions of cos(2ψ) and sin(2ψ).

A simple calculation shows that octupoles do not contribute
to Fσ ′π and Fπ ′σ when cos2 β = 2/3. Also, the combination
of B3

1 and B3
3 in both Fσ ′σ and Fπ ′π is independent of the

azimuthal angle for the same condition on β. Using cell lengths
a = 3.91904(4) Å and c = 13.0242(3) Å we find that (l/h) =
2.35 satisfies cos2 β = 2/3. Thus, data gathered in the rotated
channel for the Bragg spot (3,0,7) can be interpreted in terms
of quadrupoles alone, to a good approximation, which can
then be used to extract good values for octupoles from data
gathered in unrotated channels of polarization. At the Fe K
edge (7.112 keV) the Bragg spot (3,0,7) corresponds to sin
θ = 0.816.

B. No orbital ordering

The space group is I4/mmm1′ and Fe use 4d sites with the
point group 4̄m21′.

(i) Point group; 〈OK
Q 〉 is unchanged by C2z, IC4z, and IC2x .

We find Q = ±2p,(−1)pσπ = +1, and the identity 〈OK
−Q〉 =

(−1)K+p〈OK
Q 〉.

(ii) The electronic structure factor is

�K
Q (I4/mmm1′) =〈

OK
Q

〉
exp(iπl/2)(−1)k[1+(−1)h+k(−1)p]

× [1 + (−1)h+k+l]. (10)

Space groups P 4/mnc1′ and I4/mmm1′ have the same
rules for allowed reflections. And unit cell structure factors
for (h,0,l) with h and l odd, which are controlled by polar
multipoles (9), are the same for the two space groups. But
(h,k,0) with h + k odd and (0,0,l) with l odd is forbidden in
I4/mmm1′ and allowed in P 4/mnc1′, for which the unit cell
structure factors are given in (II).

C. Orbital ordering has �−
1 symmetry

The space group is I4221′ and Fe use 4d sites with the
point group 2.221′.

�K
Q (I4221′) = �K

Q (I4/mmm1′), where the latter is given
in (10), and both (h,k,0) with h + k odd and (0,0,l) with l odd
are forbidden. A distinguishing feature of I4221′ is that both
parity-even and parity-odd events can contribute to the Bragg
spot (h,0,l) with h and l odd.

Consider an E1-E1 event and define Z2 =
i4〈T 2

+2〉′′ exp(iπl/2), which is purely real for l odd. Unit cell
structure factors are written in terms of A2

1 = −Z2 sin β and
B2

2 = Z2 cos β, where β is the angle subtended by (h,0,l) and

the a axis. We find

Fσ ′σ (E1-E1) = −i sin(2ψ)A2
1,

Fπ ′σ (E1-E1) = −i sin θ cos(2ψ)A2
1 + i cos β sin(ψ)B2

2 ,

Fπ ′π (E1-E1) = −i sin2 θ sin(2ψ)A2
1, (11)

and Fσ ′π (θ ) = Fπ ′σ (−θ ). Notice that the dependence of
structure factors on the azimuthal angle is different for E1-E2
and E1-E1 events at (h,0,l) with h and l odd; comparing (9)
for E1-E2 and (11) for E1-E1 we see that cos(2ψ) ⇔ sin(2ψ)
and cos(ψ) ⇔ sin(ψ).

V. CONCLUSION

Structural properties of iron-based superconductors have
been discussed using the symmetry methods formulated with
the Landau theory of phase transitions. Two mechanisms,
namely, magnetic and orbital ordering, for symmetry lowering
in the orthorhombic and the newly discovered reentrant
tetragonal phases are considered in detail. The key result of
the present study is the identification of distinct space group
symmetries for the reentrant tetragonal phase, predicted by
magnetic and orbital ordering mechanisms. This provides a
direct way to experimentally reveal the underlying physical
mechanism through a precise structural determination avail-
able at modern diffraction facilities.

The magnetic mechanism with in-plane magnetic moments
implies magnetoelastic coupling resulting in the atomic dis-
placements and orbital ordering which reduce the crystallo-
graphic space group symmetry (space group without magnetic
subsystem) down to P 4/mmm1′. The symmetry lowering
can be detected by conventional diffraction methods through
an observation of h + k + l odd reflections with l �= 0. The
magnetic mechanism with out-of-plane magnetic moments, as
found in Ba0.76Na0.24Fe2As2 from the present neutron powder
diffraction experiment, implies a two-k magnetic structure
which does not allow any orbital ordering and the crystal
structure symmetry (without magnetic subsystem) of the
system is well approximated by the parent I4/mmm1′ space
group. An experimental confirmation of the two-k nature of
the magnetic structure (for instance in a single-crystal neutron
diffraction experiment with uniaxial strain or applied magnetic
field) would provide strong evidence for the magnetic scenario
and the relevance of the itinerant electronic model.

The orbital ordering mechanism does not require the
magnetic structure to be two-k and predicts the crystal
structure symmetry lowering down to P 4/mnc1′ or I4221′
depending on the stacking of the (ab) ordered layers along the
c axis. Both types of orbital ordering do not allow any atomic
displacements in comparison with the parent I4/mmm1′ space
group but all three space groups can be distinguished in x-ray
resonant scattering by inspecting the (h,k,0) with h + k odd,
(0,0,l) with l odd, and (h,0,l) with h and l odd reflections,
with respect to the presence of T & T scattering and the
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parity of the multipoles contributing to the diffraction. The
first two families of reflections are expected to be nonzero
only in the case of the P 4/mnc1′ symmetry. The third type
of the reflections can distinguish the I4/mmm1′ and I4221′
space groups. The orbital patterns with the P 4/mnc1′ and
I4221′ symmetries cannot be induced by the magnetic order
parameter and can appear only as independent instability.
An observation of these patterns in x-ray resonant scatter-

ing would provide strong evidence for the orbitally driven
scenario.
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