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Abstract 
The fermion sign problem is studied in the path integral formalism. The standard picture of Fermi liquids is first critically analyzed, 
pointing out some of its rather peculiar properties. The insightful work of Ceperley in constructing fermionic path integrals in terms 
of constrained world-lines is then reviewed. In this representation, the minus signs associated with Fermi-Dirac statistics are self 
consistently translated into a geometrical constraint structure (the  nodal hypersurface) acting on an effective bosonic dynamics. As 
an illustrative example we use this formalism to study 1+1-dimensional systems, where statistics are irrelevant, and hence the sign 
problem can be circumvented. In this low-dimensional example, the structure of the nodal constraints leads to a lucid picture of the 
entropic interaction essential to one-dimensional physics. Working with the path integral in momentum space, we then show that the 
Fermi gas can be understood by analogy to a Mott insulator in a harmonic trap. Going back to real space, we discuss the topological 
properties of the nodal cells, and suggest a new holographic conjecture relating Fermi liquids in higher dimensions to soft-core 
bosons in one dimension. We also discuss some possible connections between mixed Bose/Fermi systems and supersymmtery. 
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1. Introduction  
Since the last twenty years or so a serious intellectual 
crisis has developed in the condensed matter physics 
enterprise dealing with strongly interacting electrons in 
solids. An intellectual crisis in science is actually the 
best one can hope for -it should not be confused with an 
economic- or sociological crisis. This field is flourishing 
right now [1] and there is a general perception that after 
a slump in the 1990's the field has reinvented itself. 
What is this intellectual crisis about? Substantial 
progress is made on the experimental side, both with 
regard to the discovery of electron systems in solids that 
behave in very interesting and puzzling ways (high- cT
superconductors[2] and other oxides[3], 'heavy fermion' 
intermetallics[4], organics[5], 2D electron gasses in 
semiconductors[6]), and in the rapid progress of new 
instruments that make possible to probe deeper and 
farther in these mysterious electron worlds (scanning 
tunneling spectroscopy[7], photoemission[8], neutron- 
[9] and resonant X-ray scattering[10]). On the theoretical 
side there is also much action. This is energized by the 
'quantum field theory'[11] revolution that started in the 
1970's in high energy physics, and is still in the process 
of unfolding its full potential in the low energy realms, 

as exemplified by topological quantum computation[12], 
quantum criticality[13] and so forth. 
 But the intellectual crisis manifests itself through the 
fact that the experimental- and theoretical communities 
are increasingly drifting apart despite all the pressures to 
stay together. This is not because the people are bad 
scientists but instead it is caused by the dynamics of 
science itself. The theorists deduce from their powerful 
field theory very interesting suggestions for experiment 
but these are either impossible to realize in the 
laboratory or they are positioned on the fringe of the 
experimental main stream. The attitude of the 
experimentalists is determined by the expectation that 
theorists are just there to explain why the data do not 
resemble anything that is found in the books. 
 The cause is obvious. The experimentalists measure 
systems formed from electrons and electrons are fermions. 
The theorists are playing with the mathematical marvel 
called quantum field theory. But the latter works so well 
because via the euclidean path integral it boils down to 
exercises in equilibrium statistical physics. It is about 
computing probabilistic partition sums in euclidean space-
time following the recipe of Boltzmann and this seems to 
have no secrets for humanity. The origin of the crisis is 
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that this Boltzmannian path integral logic does not work at 
all when one wants to describe problems characterized by 
a finite density of fermionic particles. The culprit is that 
the path integral is suffering from the fermion sign 
problem. The Boltzmannian computation is spoiled by 
'negative probabilities' rendering the approach to be 
mathematically ill defined. In fact, the mathematics is as 
bad as it can be: Troyer and Wiese[14] showed recently 
that the sign problem falls in the mathematical complexity 
class "NP hard", and the Clay Mathematics Institute has 
put one of its 7 one million dollar prizes on the proof that 
such problems cannot be solved in polynomial time. 
 Although not always appreciated, the fermion sign 
problem is quite consequential for the understanding of 
the physical world. Understanding matter revolves around 
the understanding of the emergence principles prescribing 
how large number of simple constituents (like elementary 
particles) manage to acquire very different properties 
when they form a wholeness. The path integral is telling 
us that in the absence of the signs these principles are the 
same for quantum matter as they are for classical matter. 
But these classical emergence principles are in turn resting 
on Bolzmannian statistical physics. When this fails 
because of the fermion signs, we can no longer be 
confident regarding our understanding of emergence. To 
put it positively, dealing with fermionic quantum matter 
there is room for surprises that can be very different from 
anything we know from the classical realms that shape our 
intuition. In fact, we have only comprehended one such 
form of fermionic matter: the Fermi-gas, and its 
"derivative" the Fermi-liquid. The embarrassment is that 
we are completely in the dark regarding the nature of other 
forms of fermionic matter, although we know that they 
exist because the experiments are telling us so. 
 The 'quantum weirdness' of the Fermi-gas is obvious: 
how to understand the Fermi-surface, the Fermi-energy 
and so forth, just knowing about classical statistical 
physics? The interacting Fermi-liquid is a bit more than 
the Fermi-gas, but focusing on the emergence principles 
it is deep inside the same thing. As Landau pointed out, 
the Fermi-liquid is connected by adiabatic continuation 
to the Fermi-gas meaning that the two are qualitatively 
indistinguishable at the long times and distances where 
emergence is in full effect. The great framework of 
diagrammatic perturbation theory developed in the 
1950's[15] does allow to arrive at quite non trivial 
statements associated with the presence of the 
interactions but it only works under the condition that 
the Fermi-liquid is adiabatically connected to the Fermi 
gas. But conventional Feynman diagrams are impotent 
with regard to revealing the nature of 'non Fermi liquids'. 
To complete the 'fermionic' repertoire of theoretical 
physics, Bardeen, Cooper and Schrieffer discovered the 
"Hartree-Fock" mechanism[16], showing how the Fermi-
gas can become unstable towards a bosonic state, like the 
superfluids- and conductors, charge- and spin density 
wave states and so forth. Despite fermionic peculiarities 
(like the gap function), this is eventually a recipe telling 
us how the fermi-gas can turn into bosonic matter that is 

in turn ruled by the Ginzburg-Landau-Wilson classical 
emergence rules. In this regard, the other theoretical 
main streams in correlated electron physics rest on the 
same bosonization moral: the one dimensional electron 
systems[17], as discussed in section VI; the Kondo-type 
impurity problems being boson problems in disguise 
[18], which in turn form the fundament for the popular 
dynamical mean-field theory[19], and so forth. 
 Summarizing, given the present repertoire of 
theoretical physics, all we know to do with fermionic 
matter is to hope that it is a Fermi gas or bound in 
bosons. But we are facing a zoo of 'non-Fermi-liquid' 
states of electrons coming out of the experimental 
laboratories and the theorists are standing empty handed 
because the fermion signs render all the fancy theoretical 
technologies to be useless. The NP hardness of the sign 
problem tells us that there is no mathematically exact 
solution but how many features of the physical world we 
understand well are actually based on exact 
mathematics? Nearly all of it is based on an effective 
description, mathematics that is tractable while it does 
describe accurately what nature is doing although it is 
not derived with exact mathematics from the first 
principles. Is there a way to handle non-Fermi-liquid 
matter on this phenomenological level? 
 The remainder of this paper is dedicated to the case 
that there is reason to be optimistic. This optimism is 
based on a brilliant discovery some fifteen years ago of 
an alternative path-integral description of the fermion 
problem by David Ceperley[20, 21]. This 'constrained' or 
'Ceperley' path integral has a Boltzmannian structure 
(i.e., only positive probabilities) but the signs are traded 
in for another unfamiliar structure: a structure of 
constraints acting on a 'bosonic' configuration space that 
is coding for all the effects of Fermi-Dirac statistics. This 
is called the reach and it amounts to the requirement that 
for all imaginary times τ between zero and β�
( = 1 / ( )Bk Tβ ) the worldline configurations should not 
cross the hypersurface determined by the zero's of the 
full N -particle, imaginary time density matrix. 
Although the constrained path integral suffers from a 
self-consistency problem since the exact constrain 
structure is not known except for the non-interacting 
Fermi-gas, it appears that this path integral is quite 
powerful for the construction of phenomenological 
effective theories. The information carried by the reach 
lives 'inside' the functional integral and should therefore 
be averaged. This implies that only global- and averaged 
properties of this reach should matter for the physics in 
the scaling limit. The reach is in essence a high 
dimensional geometrical object, closely related to the 
more familiar 'nodal hypersurface' associated with the 
sign changes of ground state wave function. The 
theoretical program is to classify the geometrical and 
topological properties of the reach in general terms, to 
find out how this information is averaged over in the 
path integral, with the potential to yield eventually a 
systematic classification of phenomenological theories 
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of fermionic matter. 
 Given that Ceperley derived his path integral already 
quite some time ago, why is it not famous affair? These 
path integral are not so easy to handle. Although various 
interesting results were obtained[22], even the attempt to 
reconstruct the Fermi-liquid in this language stalled[23]. 
But these efforts were limited to a very small 
community, with a focus on large scale numerical 
calculations. The potential of the Ceperley path integral 
to address matters of principle appears to be overlooked 
in the past. We discovered the Ceperley path integral in 
an attempt to understand the scale invariant fermionic 
quantum critical states as found in the heavy fermion 
intermetallics. We started out on the more primitive level 
of wave function nodal structure, discovering by 
accident the much more powerful Ceperley path integral 
approach. We believe that we have delivered proof of 
principle[24] that this language gives penetrating 
insights in the nature of a prominent non-Fermi liquid 
state: the fermionic quantum critical states realized in the 
heavy fermion intermetallics. Since this work is still 
under review we will not address it in any detail. 
However, to make further progress, we were confronted 
with the need to better understand the detailed workings 
of the Ceperley path integral and we decided to revisit 
the description of the Fermi gas and the Fermi liquid. 
The outcomes of this pursuit are summarized in this 
paper. This paper contains some new results: the 
supersymmetric quantum gas as implied by even 
permutations (4), and especially the closed solution of 
the Ceperley path integral of the Fermi gas in 
momentum space (section VII). But there are also many 
loose ends and this paper is in first instance intended as 
an easy to read tutorial on the Ceperley path integral. We 
hope that it will infect others to take up this fresh- and 
wide open subject, where much terrain can be 
conquered. 
 This tutorial is organized as follows. We start out in 
chapter II with a somewhat unconventional discussion of 
the Fermi-liquid. To get the problem sharply in focus, 
we step back from the usual textbook viewpoint and 
instead consider the Fermi-liquid from the perspective of 
the emergence principles governing classical- and 
bosonic matter. In the present context, this perspective 
has a special relevance: Ceperley's path integral tells that 
fermionic matter is also subjected to the rules of 
statistical physics and viewed in this light the Fermi-
liquid turns into an outrageous, confusing entity. We will 
make the case that the Fermi-liquid is  holographic in the 
same sense of the holographic principle associated with 
black holes and string theory[25]. We claim that 
regardless the number of space dimensions the physics 
of the Fermi-liquid at low temperature is in one-to-one 
relation with the physics of a system of soft core 
interacting bosons in one dimension. This might sound 
absurd but it will turn out to become more reasonable 
dealing with the real space representation of the 
Ceperley path integral in the final chapter. 
 We continue in chapter III reviewing the only signful 

fermion path integral that can be solved: the classic 
Feynman path integral for the Fermi-gas. This is just a 
summary of the beautiful treatment found in Kleinert's 
path integral book[26]. This story appears to be not as 
widely known as it should. It shows that the Fermi-gas is 
quite like the Bose gas, where the hard work is done by 
worldlines that at low temperature wrap infinite times 
around the imaginary time circle. However, the negative 
probabilities interfere, turning into alternating sums over 
winding numbers that eventually take the shape of the 
Fermi-Dirac distribution function. Chapters IV is dealing 
with side lines inspired on section III but we found both 
instructive to an extent that they should be included. 
Chapter IV is actually of some relevance for the 
Ceperley path integral but it might well have a broader 
significance. We were puzzled by the issue of how to 
deal with the prescription that only even permutations 
should be summed over in the Ceperley path integrals. It 
is well understood that the braiding properties of 
worldlines underpin the workings of quantum statistics, 
referring for instance to the understanding of anyons and 
topological quantum computation in two space 
dimension. What is then the meaning of the even 
permutations? As we will show in section IV, it renders 
the free quantum gas to become supersymmetric! 
 In Chapter V the core business starts: we introduce 
the Ceperley path integral, reviewing it's derivation as 
well as various other technical issues. As a first example 
of the workings of this path integral we will discuss in 
section VI the one dimensional Fermi-gas. In a way it is 
nothing new, but we will make the case that the 
bosonization step becomes particularly transparent in the 
Ceperley language: the reach becomes the 'Pauli 
hypersurface', meaning that the fermion statistics just 
takes the form of hard core interactions between the 
particles. We subsequently highlight a 'maximally' 
statistical physics view on the one dimensional electron 
systems that one of us developed some time ago[27, 28] 
but which is not particularly well known in the 
community. This emphasizes the aspect that the typical 
'fermionic' aspects of physics in one dimensions are 
actually coding for the rather intricate effects of entropic 
interactions, using tricks from soft matter physics to 
reconstruct the Fermi-gas. 
 Chapter VII is intended to be the highlight of this 
paper. We present a quite simple solution of the 
Ceperley path integral for the Fermi-gas: the Fermi-gas 
turns out to be in one-to-one correspondence with a 
system of cold atoms in an harmonic trap, subjected to a 
deep optical lattice potential such that the atoms form a 
perfect Bose Mott-insulator! This can be taken as 
completely literal, except that this atom trap lives in 
single particle momentum space instead of the real space 
of the atoms. You might have already figured out that 
this is a correct statement, and you might wonder why 
this is not in the undergraduate books. The reason is that 
one needs the Ceperley path integral to forget once and 
for all that fermions are incomprehensible. 
 Finally in Chapter VIII we turn to the real space 
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description of the Fermi-gas. This was the alley tried by 
Ceperley and coworkers where they got stuck, and we 
have not managed either to get it fully under control. The 
perspective on this issue does change, knowing about the 
momentum space solution of chapter VII. What is at 
stake is the structure of duality transformations in the 
Ceperley formalism: real- and momentum space 
dynamics are dual to each other. In order to learn how to 
address the problems at arbitrary couplings it is 
important to understand the duality structure. On the real 
space side one gets a better view on the richness of the 
Ceperley path integral. A highlight is the understanding 
of the  topology of the reach, based on a conjecture by 
Ceperley[20] that was recently proven by Mitas[29]. The 
outcome is that there is no topological restriction on the 
windings of the 'Ceperley particle' worldlines as long as 
these are constructed from triple particle exchanges. We 
will argue that the low temperature thermodynamics 
should be governed by the winding sector and the zero 
temperature Fermi gas can be viewed as a Bose 
condensate of Ceperley particles. However, the presence 
of the reach changes radically the winding statistics as 
compared to the boson case and it appears that the 
windings of the Ceperley particles in  any higher 
dimension are counted as if they are the windings 
associated with soft core bosons living in one space 
dimension -- the literal interpretation of the 'Fermi-liquid 
holography' introduced in section II. 
 
2. Know the enemy: the strangeness of the Fermi-

liquid. 
The only exactly solvable many Fermion problem is the 
non-interacting Fermi-gas. Surely, every student in 
physics knows the canonical solution. Introduce creation 
and annihilation operators that anti-commute, 

†
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is some set of single particle quantum numbers; 
a representative example is the spinless gas in the 
continuum where k
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represents single particle momentum 
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manipulations that its grand canonical free energy is  
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where kn� is recognized as the momentum distribution 
function. At zero temperature this momentum 
distribution function turns into a step function: = 1kn�

for | | Fk k≤
�

and zero otherwise where the Fermi-

momentum 2= 2 /F Fk mE � . The step smears at 
finite temperature, and this is another way of stating the 
fact that only at zero temperature one is dealing with a 
Fermi-surface with a precise locus in single particle 
momentum space separating occupied- and unoccupied 
states. 
 The simplicity of the Fermi-gas is deceptive. This 
can be highlighted by a less familiar but illuminating 
argument. As Landau guessed correctly[15, 16], the 
Fermi-gas can be adiabatically continued to the 
interacting Fermi-liquid. The meaning of this statement 
is that when one considers the system at sufficiently 
large times and distances and sufficiently small 
temperatures('scaling limit') a state of interacting 
fermionic matter exists that is physically 
indistinguishable from the Fermi-gas. It is characterized 
by a sharp Fermi surface and a Fermi energy but now 
these are formed from a gas of non-interacting 
quasiparticles that have still a finite overlap ('pole 
strength' kZ � ) with the bare fermions, because the former 
are just perturbatively dressed versions of the latter, 
differing from each other only on microscopic 
scales[15]. This is the standard lore, but let us now 
consider these matters with a bit more rigor. The term 
describing the interactions between the bare fermions 
will have the general form, 

† †
1

,
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k k q
H V k k q c c c c ′′+ −

′
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It is obvious that single particle momentum does not 
commute with the interaction term, 

†
1, 0,kk

c c H  ≠ 
�� (8) 

 henceforth, single particle momentum is in the presence 
of interactions no longer a quantum number and single 
particle momentum space becomes therefore a fuzzy, 
quantum fluctuating entity. But according to Landau we 
can still point at a surface with a sharp locus in this space 
although this space does not exist in a rigorous manner 
in the presence of interactions! 
 In the textbook treatments of the Fermi-liquid this 
obvious difficulty is worked under the rug. Since the 
above argument is rigorous, it has to be the case that the 
Fermi-surface does not exist when one is dealing with 
any finite number of particles! Since we know 
empirically that the Fermi-liquid exists in the precise 
sense that interacting Fermi-systems are characterized by 
a Fermi-surface that is precisely localized in momentum 
space in the  thermodynamic limit it has to be that this 
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system profits from the singular nature of the 
thermodynamic limit, in analogy with the mechanism of 
spontaneously symmetry breaking that rules bosonic 
matter. 
 We refer to the peculiarity of bosonic- and classical 
systems that (quantum) phases of matter acquire a sharp 
identity only when they are formed from an infinity of 
constituents[16, 30]. Consider for instance the quantum 
crystal, breaking spatial translations and rotations. 
Surely, one can employ a STM needle to find out that the 
atoms making up the crystal take definite positions in 
space but this is manifestly violating the quantum 
mechanical requirement that 'true' quantum objects 
should delocalize over all of space when it is 
homogeneous and isotropic. The resolution of this 
apparent paradox is well known. One should add to the 
Hamiltonian an 'order parameter' potential ( )V R where 
R refers to the dN dimensional configuration space of 
N atoms in d dimensional space, having little potential 
valleys at the real space positions of the atoms in the 
crystal. It is then a matter of order of limits, 

0
0
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N V i

r rδ
→∞ →

〈 − 〉∑ � �
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0
0
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� and 0

ir
� are the position operator and the 

equilibrium position of the i -th atom forming the 
crystal. Henceforth, the precise positions of the atoms in 
the solid, violating the demands of quantum mechanical 
invariance, emerge in the thermodynamic limit -- we 
know that a small number of atoms cannot form a crystal 
in a rigorous sense. 
 Returning to the Fermi-liquid, the commonality with 
conventional symmetry breaking is that in both cases 
non existent quantum numbers (position of atoms in a 
crystal, single particle momentum in the Fermi-liquid) 
come into existence via an 'asymptotic' emergence 
mechanism requiring an infinite number of constituents, 
at least in principle. But this is as far the analogy goes. In 
every other regard, the Fermi-liquid has no dealings with 
the classical emergence principles, that also govern 
bosonic matter. 
 Although it is unavoidable that the Fermi-liquid 
needs the thermodynamic limit it is not at all clear what 
to take for the order parameter potential V . In this 
regard, the Fermi-liquid is plainly mysterious. The 
textbook treatises of the Fermi-liquid, including the quite 
sophisticated 'existence proofs', share a very perturbative 
attitude. The best treatments on the market are the ones 
based on functional renormalization and the closely 
related constructive field theory[31, 32]. Their essence is 
as follows: start out with a Fermi gas and add an 
infinitesimal interaction, follow the (functional) 
renormalization flow from the UV to the IR to find out 
that all interactions are irrelevant operators. 
Undoubtedly, the conclusions from these tedious 
calculations that the Fermi-gas is in a renormalization 

group sense stable against small perturbations are 
correct. The problem is that these perturbative treatments 
lack the mighty general emergence principles that we 
worship when dealing with classical and bosonic matter. 
 To stress this further, let us consider a rather classic 
problem that seems to be more or less forgotten although 
it was quite famous a long time ago: the puzzle of the 
3 He Fermi-liquid[16]. The 3 He liquid at temperatures 
in the Kelvin range is not yet cohering and it is well 
understood that it forms a dense van der Waals liquid. 
Such liquids have a bad reputation; all motions in such a 
classical liquid are highly cooperative to an extent that 
all one can do is to put them into a computer and solve 
the equations of motions by brute force using molecular 
dynamics. When one cools this to the millikelvin range, 
quantum coherence sets in and eventually one finds the 
impeccable textbook version of the Fermi-liquid: the 
macroscopic properties arise from dressed helium atoms 
that have become completely transparent to each other, 
except that they communicate via the Pauli principle, 
while they are roughly ten times as heavy as real 3 He 
atoms. When one now measures the liquid structure 
factor using neutron scattering one finds out that on 
microscopic scales this Helium Fermi-liquid is more or 
less indistinguishable from the classical van der Waals 
fluid! Hence, at microscopic scales one is dealing with 
the same 'crowded disco' dynamics as in the classical 
liquid except that now the atoms are kept going by the 
quantum zero-point motions. On the microscopic scale 
there is of course no such thing as a Fermi surface. For 
sure, the idea of renormalization flow should still apply, 
and since one knows what is going on in the UV and IR 
one can guess the workings of the renormalization flow 
in the 3 He case: one starts out with a messy van der 
Waals ultraviolet, and when one renormalizes by 
integrating out short distance degrees of freedom one 
meets a 'relevant operator creating the Fermi-surface'. At 
a time scale that is supposedly coincident with the 
inverse renormalized Fermi-energy this relevant operator 
takes over and drags the system to the stable Fermi-
liquid fixed point. How to construct such a 'Fermi-
surface creation operator'? Nobody seems to have a clue! 
 Although the microscopic details are quite different, 
the situation one encounters in interesting electron 
system like the ones realized in manganites[3, 33], heavy 
fermion intermetallics[4] and cuprate superconductors 
[2] is in gross outlines very similar as in 3 He. In various 
guises one finds coherent quasiparticles (or variations on 
the theme, like the Bogoliubons in the cuprates) only at 
very low energies and low temperatures. Undoubtedly 
the UV in these systems has much more to do with the 
van der Waals quantum liquid than with a free Fermi-
gas. Still, the only activity the theorists seem capable off 
is to declare the UV to be a Fermi-gas that is hit by small 
interactions. It is not because these theorists are 
incompetent: humanity is facing the proverbial brick 
wall called the fermion sign problem that frustrates any 
attempt to do better. 
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Arrived at this point we hope that we have convinced 
the reader that even the 'simple' Fermi-liquid is plainly 
mysterious. This mystery is of course rooted in the fact 
that the fermion signs disconnect the many fermion 
problem from the powerful principles of statistical physics 
that allow us to fully comprehend the emergence logic of 
classical- and bosonic matter. We already stressed that 
nobody has a clue how to construct a mathematical 
definition of a 'Fermi-surface generating renormalization 
group operator' and the closely related issue of the 'Fermi-
surface stabilizing order parameter potential'. But there are 
a couple of other features that are disconnected from 
anything we know in statistical physics. 
 The relationship between thermal and quantum 
fluctuations is plainly weird in Fermi-liquids and Fermi-
gasses. In sign free, i.e. bosonic or 'Bolzmannion', 
quantum systems one has a simple rule telling how these 
fluctuations relate, which is rooted in the postulates. The 
thermal path-integral can be taken as basic postulate, 
being both applicable to fermionic and sign-free quantum 
matter[13]. It states that everything takes place in 
Euclidean space-time, being spanned by the space 
dimensions and imaginary time τ . In this formalism, 
temperature determines the 'maximum duration of 
imaginary time': for open spatial boundaries, euclidean 
space-time has the topology of a cylinder where imaginary 
time is the compact direction with a compactification 
radius = / ( )BR k Tτ � . Henceforth, at zero temperature 
everything takes place in a ( 1)d + -dimensional space 
(ignoring complications like an external heat bath) where 
d is the number of space dimensions. Addressing general 
scaling limit issues, like the existence (or not) of order, 
one is at finite temperatures interested in times long 
compared to Rτ . It follows that thermal fluctuations are 
'one dimension more important' than quantum 
fluctuations, at least as long one can get away with the 
well understood role of target space dimensionality in 
statistical physics. Henceforth, the well known Mermin-
Wagner rules[34] imply that at zero temperature one can 
have algebraic long range order in = 1d , while at any 
finite temperature one needs at least = 2d ; one can truly 
break a continuous symmetry in = 2d at = 0T , but at 
any finite temperature one needs = 3d , and so forth. This 
'space-time geography' applies as well to fermionic 
problems but the complication is of course that the 
connection with statistical physics is shattered! This has a 
very strange consequence that can be easily overlooked. 
We argued already that in some weird fermionic sense, the 
Fermi-liquid 'breaks symmetry'. But from the canonical 
side we know some answers: from the discontinuity in the 
momentum distributions we learn that the Fermi-surface 
acquires a precise locus in momentum space only at zero 
temperature (omitting the non-generic = 1d case that 
follows the boson rules[17]). The Fermi-Dirac distribution 
teaches us in turn that the Fermi-surface 'smears' in 
momentum space at any finite temperature, regardless the 
dimensionality of target space. Henceforth, one has zero 

temperature order, and finite temperature disorder, 
regardless dimensionality to the extent that it is even true 
in =d ∞ . This is quite hard to comprehend when you 
would only know statistical physics! 
 We can actually push this further by considering the 
thermodynamics of the Fermi-liquid in more detail, just 
forgetting for the moment how we got there, and 
insisting that there exist eventually a 
bosonic/Boltzmannian description. The argument is a 
no-brainer but the conclusion is quite spectacular: the 
Fermi-liquid demonstrates an extreme form of the  
holographic principle that was discovered in the context 
of the quantum physics of black holes[25]. The precise 
statement is:  the low energy physics of a Fermi-liquid in 
arbitrary dimensions is in precise correspondence with 
an interacting Boltzmannian system in 1+1 dimensions.
This is surely consistent with the observation that the 
Fermi-liquid shows a zero temperature (algebraic) order, 
while it is disordered at any finite temperature. This is 
the typical trait of one dimensional bosonic physics but 
the Fermi-liquid weirdness is that it is doing this job in 
all dimensions. Let us make this claim more precise, by 
considering the grand canonical free energy of the 
Sommerfeld gas in arbitrary space dimension > 2d .
This can be regarded as representative for the Fermi-
liquid in the scaling limit, i.e. modulo the 
renormalization of the Fermi-energy and at temperatures 
sufficiently small compared to the Fermi-energy, 
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From this free energy follows the temperature 
dependence of the specific heat, 
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and the chemical potential, 
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 The Sommerfeld expansion breaks down in = 2d where 
the above thermodynamic functions become non-analytic 
functions at = 0T and cannot be expanded in powers of 

/B Fk T E . For example, for the chemical potential in 
= 2d one obtains = ln[exp( / ) 1]B F Bk T E k Tµ − .

However, the above expressions strictly hold in 
= 2d ε+ .
Let us now consider an arbitrary interacting massless 

bosonic system. In any space dimension 1d ≥ such a 
system cannot avoid (algebraic) long range order and the 
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thermodynamics is set by the massless Goldstone bosons 
characterized by a dispersion ( ) =k c kε � . Assuming that 
the order survives at finite but small temperatures the 
Free energy becomes, 

= ,
d

B
d B

k TF Vk T
c

 −Γ  
 �

(14) 

 with dΓ a dimensionless prefactor and it follows that 

= ( 1)
d

B
V d B

k TC d d k V
c

 + Γ  
 �

, while for the chemical 

potential it is interesting to consider a superfluid where 
2Tµ −∼ for 1 1+ D Boson systems. 

 As we learned in freshmen courses, the temperature 
dependence of thermodynamic quantities of 
Boltzmannions strongly depends on temperature, like the 
Debye specific heat d

VC T∼ , reflecting that for 
increasing dimensionality more collective degrees of 
freedom become available with the effect that entropy 
increases more rapidly for increasing temperature. On 
the other hand,  the number of degrees of freedom 
counted by the increase of entropy for increasing 
temperature of the Fermi-liquid is entirely independent 
of dimensionality, being actually coincident with the 
number of degrees of freedom of a 1+1D bosonic 
system. We learned to comprehend this on the signfull 
side by arguing that the microscopic degrees of freedom 
are locked up in the Fermi sea, while for rising 
temperature only degrees of freedom are released in a 
thin shell /B Fk T E∼ around the Fermi-surface. This is 
of course a fine explanation but to make it work we need 
the fermion signs. But we have now learned that a 
Boltzmannian description of the Fermi-liquid exists, in 
the form of the Ceperley path integral. Although the 
constrained structure is quite non-trivial, it cannot cause 
miracles and because it is a Boltzmannian machine it has 
to give in eventually to the iron 'Mermin-Wagner' order 
parameter rules. Henceforth, it has to be that in the 
Ceperley formalism we are dealing with an effective 1+1 
dimensional order parameter theory. 
 The last 'anomaly' of the Fermi-liquid appears again 
as rather innocent when one has just worked oneself 
through a fermiology textbook. However, giving this a 
further thought, it is actually the most remarkable and 
most mysterious feature of the Fermi-liquid. Without 
exaggeration, one can call it a 'UV-IR connection', 
indicating the rather unreasonable way in which 
microscopic information is remembered in the scaling 
limit. It refers to the well known fermiology fact that by 
measuring magneto-oscillations in the electrical 
transport (Haas van Alphen-, and Shubnikov de Haas 
effects) one can determine directly the average distance 
between the microscopic fermions by executing 
measurements on a macroscopic scale[35]. This is as a 
rule fundamentally impossible in strongly interacting 
classical- and sign free quantum matter. Surely, this is 
possible in a weakly interacting and dilute classical gas, 

as used with great effect by van der Waals in the 19-th 
century to proof the existence of molecules. But the trick 
does not work in dense, strongly interacting classical 
fluids: from the hydrodynamics of water one cannot 
extract any data regarding the properties of water 
molecules. Surely, the weakly interacting Fermi-gas is 
similar to the van der Waals gas but a more relevant 
example is the strongly interacting 3 He, or either the 
heavy fermion Fermi-liquid. At microscopic scales it is 
of course trivial to measure the inter-particle distances 
and the liquid structure factor of 3 He will directly reveal 
that the helium atoms are apart by 4 angstroms or so. 
But we already convinced the reader that there is no such 
thing as a Fermi surface on these scales. Descending to 
the scaling limit, a Fermi-surface emerges and it 
encloses a volume that is protected by the famous 
Luttinger theorem[36, 37]:  it has to enclose the same 
volume as the non-interacting Fermi gas at the same 
density! Using macroscopic magnetic fields, 
macroscopic samples and macroscopic distances 
between the electrical contacts one can now measure via 
de Haas van Alphen effect, etcetera, what Fk is and the 
Fermi momentum is just the inverse of the inter-particle 
distance modulo factors of 2π . This is strictly 
unreasonable. We repeat, on microscopic scales the 
system has knowledge about the inter-particle distance 
but there is no Fermi-surface; the Fermi surface emerges 
on a scale that is supposedly in some heavy fermion 
systems a factor 100 or even 1000 larger than the 
microscopic scale. But this emerging Fermi-surface still 
gets its information from somewhere, so that it knows to 
fix its volume satisfying Luttinger's rule! In a later 
section we hope to shed some light on the 'mysteries' 
addressed in this section using Ceperley's path integral 
but we are still completely in the dark regarding this 
particular issue. It might well be that there are even 
much deeper meanings involved; we believe that it has 
dealings with the famous anomalies in quantum field 
theories[38]. These are tied to Dirac fermions and the 
bottom line is that these process in rather mysterious 
ways ultraviolet (Planck scale) information to the 
infrared, with the effect that a gauge symmetry that is 
manifest on the classical level is destroyed by this 
'quantum effect'. 
 To summarize, in this section we have discussed the 
features of the Fermi-liquid that appear to be utterly 
mysterious to a physicist believing that any true 
understanding of physics has to rest on Boltzmannian 
principle: 
 (i) What is the order parameter and order parameter 
potential of the zero temperature Fermi-liquid? 
 (ii) How to construct a 'Fermi-surface creation 
operator', which is supposed to be the relevant operator 
associated with the IR stability in the renormalization 
group flow? 
 (iii) Why is there 'Fermi-liquid order' at zero 
temperature in any 2d ≥ , while it gets destroyed by any 
finite temperature regardless dimensions? More 
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precisely, why is the Fermi-liquid holographic and what 
are the degrees of freedom of the 'holographic screen' 
populated by the effective bosons?  
 (iv) Why is it possible to retrieve microscopic 
information via the Luttinger sum rule by performing 
macroscopic magneto-transport measurements, even in  
the asymptotically strongly interacting Fermi-liquid? 
 The bottom line of this paper will be, although we 
know for sure that there are 'Bolzmannian' answers to 
these questions, and although we know quite well where 
to look for them, we have no conclusive answers in the 
offering right now. But the remainder will make clear 
why these questions are so interesting. 
 
3. The sign-full worldline path integral. 
There is just one sign-full path integral problem that can 
be completely solved: the non-interacting Fermi gas in 
worldline representation, in any dimension. It is the 
usual business, when one can solve a problem exactly in 
one representation (i.e. canonical) it can also be solved 
in any other representation. In fact, the Fermi-gas path 
integral is a textbook problem, although we are aware of 
only one textbook where it is worked out in detail: 
Kleinert's Path integral book[26]. Let us first summarize 
the 'mechanics' of this path-integral, referring the reader 
to Kleinert's book for the details, to subsequently use this 
solvable case as an example to highlight the rather 
awkward and counterintuitive workings of the 'negative 
probabilities'. All along it is interesting to compare it 
with the free boson path integral which works the same 
way except that it corresponds with a well behaved 
Bolzmannian problem. 
 Consider the partition function for Bosons or 
Fermions; this can be written as an integral over 
configuration space 1R = (r , , r ) Nd

N ∈… R of the 
diagonal density matrix evaluated at an imaginary β� ,

= = R (R,R; ).HTre dβ ρ β− ∫Z (15) 
The path integral formulation of the partition function 
rests on a formal analogy between the quantum 

mechanical time evolution operator in real time ˆ /iHte− �

and the finite temperature quantum statistical density 

operator ˆˆ = He βρ − , where the inverse temperature 
= 1 / Bk Tβ has to be identified with the imaginary time 
/it � . The partition function defined as the trace of this 

operator and expression (15) simply evaluates this trace 
in position space. More formally this can viewed as a 
Wick rotation of the quantum mechanical path integral, 
and requires a proper analytic continuation to complex 
times. This rotation tells us that the path integral defining 
the partition function lives in D -dimensional Euclidean 
space, with = 1D d + and d the spatial dimension of 
the equilibrium system. This analogy tells us that to 
study the equilibrium statistical mechanics of a quantum 
system in in d space dimensions, we can study the 
quantum system in a Euclidean space of dimension 

1d + , where the extra dimension is now identified as a 
"thermal" circle of extent β . At finite temperature this 
circle is compact and world-lines of particles in the 
many-body path integral (15) then wrap around the 
circle, with appropriate boundary conditions for bosons 
or fermions. The discrete Matsubara frequencies that 
arise from Fourier transforming modes on this circle 
carry the idea of Kaluza-Klein compactification to 
statistical mechanics. We will come back to a careful 
consideration of the evaluation of the partition function 
(15) in section IV when we discuss the connection 
between winding vs. cycle decomposition in preparation 
for some observations regarding supersymmetry. 
 For distinguishable particles interacting via a 
potential V the density matrix can be written in a 
worldline path integral form as, 

R R'
(R,R'; ) = R exp( [R] / ),Dρ β

→
−∫ �D S

 
(16) 
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 ∫
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but for indistinguishable bosons or fermions one has also 
to sum over all !N permutations P of the particle 
coordinates,  

/
1(R,R; ) = ( 1) (R, R; ),

!
p

B F D
P

P
N

ρ β ρ β±∑ (18) 

where p is he parity of the permutation. For the bosons 
one gets away with the positive sign, but for fermions 
the contribution of a permutation with uneven parity to 
the partition sum is a 'negative probability', as required 
by the anti-symmetry of the fermionic density matrix. 
This is the origin of the sign problem. 
 The partition sum describes worldlines that 'lasso' the 
circle in the time direction. Every permutation in the sum 
is composed out of so called permutation cycles. For 
instance, consider three particles. One particular 
contribution is given by a cyclic exchange of the three 
particles corresponding with a single worldline that 
winds three times around the time direction with winding 
number = 3w (see Fig. 1), a next class of contributions 
correspond with a 'one cycle' with = 1w and a two-cycle 
with = 2w (one particle returns to itself while the other 
two particles are exchanged), and finally one can have 
three one cycles (all particles return to their initial 
positions). For bosons this is just equivalent to a problem 
of interacting ring polymers and this can be solved to 
any required accuracy using quantum Monte-Carlo -- see 
e.g. the impressive work by Ceperley on 4 He,[39, 40] 
making the case that this strongly interacting boson 
problem has no secrets left. But for fermions one can 
only handle the non-interacting limit, because of the 
fermion signs. 
 For the non-interacting Bose and Fermi gas the 
evaluation of the path integral reduces to a combinatorial 
exercise. Let us first illustrate these matters for the 
example of = 3N particles. It is straightforward to 
demonstrate, that the identity permutation gives a  
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Figure 1. Worldline configuration corresponding to a cyclic 
exchange of three particles, 1 2→ , 2 3→ , and 3 1→ , or in 
short notation (123) (upper left). On a cylinder (upper right), 
the worldlines form a closed loop winding = 3w times 
around the cylinder. In the extended zone scheme (bottom), the 
exchange process of three particles can be identified with a 
worldline of a single particle at an effective inverse 
temperature 3β .

contribution 3
0( )Z β to the partition function (here 

0( )Z β denotes the partition function of a single 
particle), whereas an exchange of all three particles 
contribute as 0 (3 )Z β . The meaning is simple: in the 
absence of interactions the 3-cycle can be identified with 
a single particle worldline returning to its initial position 
at an effective inverse temperature 3β (see Fig. 1). 
Further on, a permutation consisting of a = 1w and a 

= 2w cycle contributes with 0 0( ) (2 )Z Zβ β . To write 
down the canonical partition function for = 3N non-
interacting bosons or fermions we only have to know the 
combinatorial factors (e.g. there are 3 permutations made 
out of a = 1w and a = 2w cycle) and the parity of the 
permutation to obtain 

( =3) 3
0 0 0/

1( ) = [ ( ) 3 ( ) (2 )
3!

N
B FZ Z Z Zβ β β β±

02 (3 )].Z β+ (19) 
 This result can easily be generalized to N particles. We 
denote the number of 1-cycles, 2-cycles, 3-cycles, N… -
cycles the permutation is build of with 1C , 2C , 3C ,… ,

NC and denote the combinatorial factors counting the 
numbers of permutations with the same cycle 
decomposition 1, NC C… with 1( , )NM C C… . For N
particles we have to respect the overall constraint 

= wwN C∑ and obtain 
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!

N wCww
w Cww

C CN

N
NB FZ M C C

N
β

∑
−∑±∑

…
…

[ ]0
=1

( ) .
N

Cw
w

Z wβ×∏ (20) 

Although the combinatorial factors can be written down 
in closed form, 

1
!( , ) = ,
!

N Cww
w

NM C C
C w∏
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 the canonical partition function (20) is very clumsy to 
work with because of the constraint acting on the sum 
over cycle decompositions. However, it is possible to 
derive a recursion relation for the canonical partition 
function or examine it in terms of so called loop 
decompositions. For details we refer the reader to the 
appendix. The constraint problem can be circumvented 
by going to the grand-canonical ensemble. After simple 
algebraic manipulations we arrive at the grand-canonical 
partition function 
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 corresponding to a grand-canonical free energy 
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∞
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 with the ± inside the sum referring to bosons ( + ) and 
fermions ( − ), respectively. This is a quite elegant result: 
in the grand-canonical ensemble one can just sum over 
worldlines that wind w times around the time axis; the 
cycle combinatorics just adds a factor 1/ w while 

0 ( )exp( )Z w wβ β µ refers to the return probability of a 
single worldline of overall length wβ . In the case of 
zero external potential we can further simplify 

0
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d
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1= ( ) ,dZ

w
β (24) 

 to obtain for the free energy and average particle 
number GN , respectively, 
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To establish contact with the textbook results for the 
Bose- and Fermi-gas one just needs that the sums over 
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windings can be written in an integral representation as, 
1

1
( )0=1

1( 1) = ,
( ) 1

w
w

w

e d
w e

β µ ν

ν β ε µ
ε

ε
ν

∞ −∞−
−

±
Γ∑ ∫ ∓

(27) 

and one recognizes the usual expressions involving an 
integral of the density of states ( /2( ) dN ε ε∼ in d
space dimensions) weighted by Bose-Einstein or Fermi-
Dirac factors. 
 The bottom line is that at least for bosons Eqs. (25, 
26) has the structure of a Bolzmannian partition sum and 
one can rest on the powerful conceptual machinery of 
statistical physics. Surely, the canonical route is shorter 
but it has the 'transfer-matrix attitude': very powerful 
when it solves the problem exactly but it is 'overly 
algebraic', not adding much to the 'no-nonsense' 
conceptual structure, characteristic for statistical physics. 
 For example, Einstein just used Eqs. (25, 26, 27) to 
deduce that for 3d ≥ a true phase transition occurs in 
the Bose gas from a high temperature classical gas to the 
Bose-Einstein condensate. Given that there are no 
interactions this is peculiar and just knowing about the 
canonical side one can only take Bose-Einstein 
condensation as a mysterious quantum phenomenon that 
drops out from the algebra. But knowing the path-
integral side one cannot afford mysteries: it is just an 
equilibrium ring polymer problem, and plastic cannot 
have secrets! Indeed, in the winding representation one 
meets a meat-and-potato thermodynamic singularity. At 
the transition 0µ → and one directly infers from Eqs. 
(25, 26) that very long worldlines corresponding with 
winding numbers w N∼ are no longer penalized, while 
there are many more long winding- than short winding 
contributions in the sum. It is straightforward to show 
that in the thermodynamic limit worldlines with w
between N and N have a vanishing weight above the 
BEC temperature, while these infinite long lines 
dominate the partition sum in the condensate[41]. 
 A related issue is the well known fact that the non-
interacting Bose-Einstein condensate and the superfluid 
that occurs in the presence of finite repulsions are 
adiabatically connected: when one switches on 
interactions the free condensate just turns smoothly into 
the superfluid and there is no sign of a phase transition. 
This can be seen easily from the canonical Bogoliubov 
theory[42, 43]. Again, although the algebra is fine matters 
are a bit mysterious. The superfluid breaks spontaneous 

(1)U symmetry, thereby carrying rigidity as examplified 
by the fact that it carries a Goldstone sound mode while it 
expels vorticity. The free condensate is a non-rigid state, 
that does not break symmetry manifestly, so why are they 
adiabatically connected? The answer is obvious in the 
path-integral representation[39, 40]: although interactions 
will hinder the free meandering of the polymers, a lot of 
this hindrance is required to make it impossible for 
worldlines to become infinitely long below some 
temperature. The fraction of infinitely long worldlines is 
just the condensate fraction and even in the very strongly 

coupled 4 He superfluid these still make up for roughly 
30% of all worldlines! The only way one can get rid of 
the infinite windings in the interacting system is to turn it 
into a static array of one cycles - the 4 He crystal. This 
simple argument underlies the widespread believe that 
'simple' bosons can only form superfluids or crystals, 
while for instance a non-superfluid 'Bose metal' cannot 
possibly exist[44]. How to avoid the windings when the 
worldlines can meander over infinite distances? 
 This preceding paragraph illustrates the reasons to 
worship path-integrals when one has learned the 
language. Are they helpful dealing with fermions? Let us 
attempt to address the 'mysteries' (i) and (iii) of Section 
II: the Fermi-gas represents a form of order (the locus of 
the Fermi surface, the jump in kn ) but in all dimensions 

2d ≥ this 'order' disappears at any finite temperature. 
Thinking in a statistical physics language it appears at 
first sight that the only source of this thermodynamic 
singularity can reside in the 'infinite windings'. Let us 
first consider the zero temperature case,where the Fermi 
gas is described by the wave function 
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Here the momenta 1, , Nk k� fill the Fermi sea. The 
slater determinant is a signful summation over !N
different permutation patterns, each characterized by a 
certain cycle decomposition as explained previously, 
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Now we want to ask the question, what is the probability 
for large cycles to occur? This probability can be written 
as an incoherent sum 

21= | | ,
!L
large cycles

P
N

ψ
−
∑ P (30) 

 which is insensitive to the fermion sign, thus leading to 
the same result as for bosons. LP can be computed by 
examining the cycle structure of the random 
permutations of N objects. This is already done by the 
mathematicians Golomb and Gaal[45]. According to 
their result, the probability that the greatest cycle length 
is k satisfies the recursion relation 

[ / ]
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1 !( , ) =
( )!!

N k

j
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NP k N
N kjj k −∑

( 1, )

=1
( , ),

min k N kj

t
P t N kj

− −
× −∑ (31) 

where [ ]a represents the largest integer not greater than 
a . For / 2 <N k N≤ , the probability has the simple 
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form ( , ) = 1/P k N k . For large N , the probability that 
the length of greatest cycle lies between / 2N and N is 

= /2
( , ) ln 2 0.693.

N

k N
P k N ≈ ≈∑ (32) 

For / 3 < / 2N k N≤ , the total probability is 
/2

= /3 ( , ) 0.258N
k N P k N ≈∑ ,while for / 4 < / 3N k N≤ ,

/3
= /4 ( , ) 0.044N

k N P k N ≈∑ . Thus there is 99.5 per cent 
possibility that the greatest cycle has length larger than 

/ 4N . Our conjecture is that in the large N limit, the 
probability to have infinite winding is unity 

=
( , ) = 1,lim

N

N k Nc

P k N
→∞

∑ (33) 

where the lower bound cN → ∞ as N →∞ , and 
/ 0lim c

N
N N

→∞
→ . For example, cN can be chosen as 

N and one indeed finds that Eq. (33) is satisfied. 
 So we have rigorously proved that the zero 
temperature Fermi gas is characterized by infinite 
windings. As for bosons, does this mean that at any finite 
temperature a sudden change has occurred to short 
windings? One can easily deduce the answer from Eqs. 
(25, 26). At a temperature of order of the Fermi 
temperature FT the chemical potential of the Fermi-gas 
switches from negative to positive and this means that in 
any term of the winding sum a worldline which has a 
winding number that is larger by one unit than another is 
more important for the free energy by a factor eβµ , a
very large factor indeed for FEµ 	 and β → ∞ !
Henceforth, when the effects of Fermi-Dirac statistics 
become noticeable at temperatures FT T≤ the sum is by 
default dominated by infinite long windings that 
however cancel each other nearly completely because of 
the alternating sign in Eqs. (25, 26)! 
 The resolution of this 'paradox' of course lies in the 
fact that when one is dealing with an alternating sum 
which is not absolutely convergent every individual term 
in the sum is meaningless, while one has to consider the 
sum as a whole. To cite a well known example, 

= 1 2 4 8 16h − + − + −�
= 1 2 ,h−

and it follows that = 1/ 3h . This is of course the same 
thing as a Fermi-Dirac factor, and after performing the 
transformation to the integral representation, Eq. (27), 
one just discovers that the sum over winding boils down 
to the usual result that the Fermi-Dirac distributions 
turns into a step function only when β → ∞ . The 
fermion signs translate in the Fermi-Dirac alternating 
winding sums in the case of the free Fermi gas and that 
is the end of the story. One can only handle these sums 
when the problem is exactly solvable, and the signs have 
the net effect of destroying the connection with the 
powerful conceptual structure of statistical physics. 

 The Fermi-gas is to an extent misleading: it is actually 
the only example of a fermion system that is completely 
solved. No closed form, exact solution exists for finite 
interactions. Surely, there is no doubt that the Fermi-liquid 
exists but there is no general mathematical proof stating 
that it has to exist given specific microscopic 
circumstances. The claims in this direction are all based 
on special, or even pathological limits, like the weak 
coupling and low density limits. The Fermi-liquid is at the 
same time a monument of scaling limit phenomenology 
[31,32]: considering long times and large distances, 
physics simplifies and emergence principles take over that 
can be caught in simple but powerful mathematical 
structures. To find such principles for fermionic matter is 
the outlook of this paper. 
 To conclude this exposition of the sign problem, the 
best way to highlight its severity is by employing the 
rigorous language of mathematical complexity theory. 
One can classify mathematical problems according to the 
criterium of how the computation time of some 
hypothetical computer will scale with the number of 
degrees of freedom N . When this time is polynomial in 
N the problem is considered as solvable in principle. 
This is different for problems in the 'nondeterministic 
polynomial' (NP) class, that have a time that grows 
exponentially with N on a classical, deterministic 
computer, and a special subclass of such problems are 
called 'NP hard' if any problem in NP can be mapped 
onto it with polynomial complexity. The bottom line is 
that when one can solve one particular NP-hard problem, 
one has solved all NP problems. To illustrate the gravity 
of this affair: the traveling salesman and the spin glass 
problem are NP hard. Recently, Troyer and Wiese[14] 
proved that the fermion sign problem is NP hard. Hence, 
when you manage to demonstrate a polynomial time 
solution for the sign problem you can cash a million 
dollars at the Clay Mathematics Institute! 
 This proof is actually remarkably simple. The 
classical Ising spin glass in three dimensions,  

< , >
= z z

jk j k
j k

H J σ σ− ∑ , (34) 

 where the spins jσ take the values 1± while the 
couplings J are randomly chosen from 0, 1± , is in the 
complexity class NP hard. By a trivial rotation of the 
quantization axis one can write this as well as a signful 
quantum problem,  

< , >
= x x

jk j k
j k

H J σ σ− ∑ , (35) 

the Hamiltonian has only off diagonal matrix elements in 
a basis spanned by eigenstates of zσ . When the 
exchange couplings J would be all positive definite all 
matrix elements would be negative and the ground state 
wave function would be nodeless and therefore bosonic. 
This problem is easy to solve in polynomial time. 
However, when the signs of the J 's can be positive and 
negative the signs appear, while at the same time the 
frustrations switch on causing the NP-hardness of the 
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equivalent spin-glass problem: Q.E.D. 
 
4. Supersymmetry 
In this section we will consider the meaning of 
supersymmetry in the world-line path integral 
formalism. It is a new symmetry introduced to related 
the physics of bosons (which mediate forces) and 
fermions (the constituents of matter) [46], and leads to 
many beautiful mathematical properties [47, 48]. 
Supersymmetry is an idea that has a long and illustrious 
history in the high-energy physics community and has 
made appearances even within condensed matter. It is 
presently the most promising idea for new physics 
beyond the standard model and there is much hope that 
the first glimpses of it will be gleaned at the Large 
Hadron Collider in the next few years. This hope is 
predicated on the ability of supersymmetry to solve one 
of the principal open issues facing high-energy physics 
(aside from gravity), that of the hierarchy problem 
associated with the mass of the Higgs boson, which is 
believed to drive the electroweak symmetry-breaking 
phase transition. The solution derives from a new class 
of non-renormalization theorems controlling certain 
quantum corrections in manifestly supersymmetric 
systems. In the context of gravitational physics, 
supersymmetry has been instrumental in formulating a 
consistent theory of quantum gravity within the 
framework of string theory, and has led to the discovery 
of deep and profound dualities relating seemingly 
incongruous theories. 
 It is standard practice when teaching quantum field 
theory to high-energy physicists these days to focus on 
the second quantization of theories at zero temperature 
and chemical potential, this being both a convenient 
limit and a good starting point for those interested in the 
kind of collider physics that is the experimental 
underpinning of high-energy particle physics today. 
There are, though, a new generation of experiments, for 
example the Relativistic Heavy Ion Collider (RHIC) [54, 
55], which mean to probe our understanding of Quantum 
Chromodynamics (QCD, the theory of quarks) at ever 
higher temperatures and densities, with an eye to 
understanding the phase transition in the early universe 
that is conjectured to have transformed a plasma of 
quarks and gluons into the Hadrons (protons, neutrons 
and so on) that dominate the low energy world we see. 
 Yet, given the prominent role of phase transitions and 
symmetry-breaking in our understanding of the standard 
model and extensions thereof, together with the postulated 
role of supersymmetry, a natural question to ponder is the 
meaning of supersymmetry at finite temperature and 
density. It is often stated that supersymmetry is broken at 
any finite non-zero temperature, though the precise 
meaning of this statement and the consequent implications 
are not immediately obvious. This belief relies on how 
supersymmetry relates bosonic and fermionic degrees of 
freedom and the fact that at finite temperatures they 
follow different statistical distributions. Studies of this 
question [49, 50, 51, 52, 53] leave open some unresolved 

questions, in particular the influence of non-
renormalization theorems when zero-temperature 
supersymmetric systems are raised to a finite temperature. 
 We will not address these issues in full generality 
here, but will point out an interesting observation 
(hitherto unknown) about free supersymmetric systems 
when formulated in the language of first-quantized 
world-line path integrals, and suggest ways to press into 
the regime of interacting systems. To set the stage for 
this discussion, we will first take a detour to study the 
partition function of a free system in the world-line 
language, making explicit the sum over windings. We 
then demonstrate that the combinatoric sums can be 
reorganized into sums over numbers of cycles. This will 
be our goal for section 8.2. With this tool kit at our 
disposal, in section 4 we then show how supersymmetry 
can be understood as a restriction on the types of cycles 
we must sum over when constructing partition functions. 
 We will now present some thoughts on the nature of 
supersymmetry in the language of world-line path 
integrals. Though we only consider the case of free 
particles explicitly, we feel that this way of looking at 
supersymmetry might suggest new insights into the 
underlying meaning of supersymmetry in a way that 
allows one to move to study its properties and 
implications at finite temperature and chemical potential. 
We start by considering the physics of a gas of bosons 
intermingled with a gas of fermions. The grand 
canonical free energy for a gas of free bosons, written as 
a sum over windings, is  

0
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 with 0( )Z β the partition function of a single particle at 
inverse temperature β , and D is the spatial 
dimensionality of the system. For free fermions  
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 where the chemical potentials are in general unrelated, 
and consistency requiring that the chemical potential of 
free bosons be negative semi-definite. Since no such 
constraint exists for free fermions, we are free to choose 
the chemical potential of the fermions such that 

= 0'µ µ ≤ . The free energy of the full system then 
becomes  
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Here we notice an intriguing property of a gas of free 
bosons and fermions with equal chemical potential: it is 
equivalent (due to cancellations) to a system composed 
of a new type of particle, with the same chemical 
potential, but the strange property that it can only wind 
an odd number of times around the thermal circle. Going 
back to the original picture in terms of a gas of free 
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fermions and bosons, we note that, in the zero 
temperature limit, it is now easy to check the expected 
value of the internal energy vanishes. The vanishing of 
the energy of the system is precisely the order parameter 
for unbroken supersymmetry. Thus a system of free 
particles which are only allowed to wind an odd number 
of times is supersymmetric! This is true even for finite 
chemical potential. The vanishing of the energy at zero 
temperature is of course also a feature of the normal 
Bose-Einstein condensate. This new class of particle 
which only experiences odd windings also undergoes a 
condensation in dimensions greater than two, but with a 
critical temperature that is shifted higher relative to the 
normal boson case. At temperatures below this critical 
value, the chemical potential of the system vanishes (for 

> 2d ), which implies that the Fermi surface for the 
original fermions also degenerates and the fermion 
occupation vanishes since the fermions can not condense 
in the zero-momentum state. As we cross above the 
critical temperature the chemical potential becomes 
finite, a Fermi surface appears, but simultaneously we 
have the situation that the occupation of the zero 
momentum state becomes non-macroscopic. So 
magically the appearance of a finite density of fermions 
is associated with the change from a macroscopically 
occupied zero-momentum state to non-macroscopic 
occupation. The fermions kick out the bosons! 
 We have arrived at this conclusion without any 
mention of an underlying algebraic system describing 
fermionic symmetries of the system, which is how 
supersymmetry is usually discussed in the context of 
both classical and quantum field theories, though this 
structure is implicit in the way we constructed the 
system from a gas of bosons and fermions. We can take 
this winding rule as a new definition characterizing 
supersymmetric systems (at least free ones), even at 
finite temperature. 
 Some open questions to ponder are: (1) Is it possible 
to relate the sum over odd windings to a symmetry 
algebra? It is evident from our construction that there is a 
symmetry relating bosons to fermions. (2) How do we 
include interactions into this picture? After all, the power 
of supersymmetry lies in its ability to help us understand 
complicated interacting systems; free systems are too 
easy. Here perturbation theory, perhaps in the relativistic 
notation we introduced by Feynman [56] should be 
analyzed. (3) Taking this new view, what do we learn 
about supersymmetric systems at finite temperature? A 
well known property of supersymmetric systems is the 
non-renormalization theorems which protect certain 
quantities against quantum corrections. These theorems 
are usually presented in the context of zero temperature 
quantum field theory. Since, in the path integral 
formulation of the quantum statistical partition function, 
quantum fluctuations are associated with imaginary time 
dynamics, we conjecture that the contribution made to 
any thermodynamic quantity by these fluctuations 
cancel, at all temperatures, though at finite temperature, 

corrections arising from thermal fluctuations survive, a 
result of the fact that away from = 0T the Bose and 
Fermi distributions differ from each other. It is usually 
claimed that supersymmetry is broken at finite 
temperature as a result of this difference. For example, 
the mass renormalizations for bosons and fermions will 
be different. Our argument suggests that their quantum 
renormalization still cancel, and the breaking of the 
Bose/Fermi degeneracy is strictly a thermal effect. 
 
5. The enlightenment: Ceperley's constrained path 

integral. 
After these preliminaries, we have arrived at the core of 
this paper: Ceperley's 1991 discovery of a path integral 
representation for arbitrary fermion problems that is not 
suffering from the 'negative probabilities' of the standard 
formulation[20]. Surely, one cannot negotiate with the 
NP-hardness of the fermion problem and Ceperley's path 
integral is not solving this problem in a mathematical 
sense. However, the negative signs are transformed away 
at the expense of a structure of constraints limiting the 
Boltzmannian sum over world-line configurations. These 
constraints in turn can be related to a geometrical 
manifold embedded in configuration space: the 'reach', 
which is a generalization of the nodal hypersurface 
characterizing wave functions to the fermion density 
matrix. This reach should be computed self-consistently: 
it is governed by the constrained path integral that needs 
itself the reach to be computed. This is again a NP-hard 
problem and Ceperley's path integral is therefore not 
solving the sign problem. However, the reach contains 
all the data associated with the differences between 
bosonic and fermionic matter, and only its average and 
global properties should matter for the physics in the 
scaling limit since it acts on worldline configurations 
that themselves are averaged. Henceforth, it should be 
possible in principle to classify all forms of fermionic 
matter in a phenomenological way by classifying the 
average geometrical- and topological properties of the 
reach, to subsequently use this data as an input to solve 
the resulting bosonic path integral problem. This 
procedure is supposedly a unique extension of the 
Ginzburg-Landau-Wilson paradigm for bosonic matter 
to fermionic matter. We do not have a mathematical 
proof that this procedure will yield a complete 
classification of fermionic matter, but we have some 
very strong circumferential evidences in the offering that 
it will work. The status of our claim is conjectural in the 
mathematical sense. 
 Let us start out presenting the answer. Ceperley 
proved in 1991 that the following path integral is strictly 
equivalent to the standard fermion path integral Eqs. (16, 
17, 18), 

(R) [R]/
:R R,

1(R,R; ) = R .
!F PP even

D e
N

γ β
γ

ρ β
∈Γ −
→∑ ∫ �S (39) 

This is quite like the standard path integral, except that 
one should only sum over  even permutations (the reason 
to address this in section IV), while the allowed 
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worldline configurations γ are constrained to lie 'within 
the reach Γ '. This reach is defined as, 

(R) = { : R R' | (R,R( ); ) 0}Fβ γ ρ τ τΓ → ≠ (40) 
For all imaginary times 0 < <τ β� . In words, only 
those wordline configurations should be taken into 
account in Eq. (39) that do not cause a sign change of the 
full density matrix at every intermediate imaginary time 
between 0 and β� . In outline, the proof of this result is 
as follows. The fermion density matrix is defined as a 
solution to the Bloch equation 

0
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(R ,R; ) = (R ,R; )F
F

d H
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ρ β ρ β
β

− , (41) 

 with initial conditions 
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N
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In the following we fix the reference point 0R and 
define the reach 0(R , )τΓ as before as the set of points 
{R }τ for which there exists a continuous space-time 
path with 0(R ,R ; ) > 0F τρ τ′ ′ for 0 <τ τ′≤ . Suppose 
that the reach is known in advance. It is a simple matter 
to show that the problematical initial condition, Eq. (42), 
imposing the anti-symmetry can be replaced by a zero 
boundary condition on the surface of the reach. It 
follows because the fermion density matrix is a unique 
solution to the Bloch equation (41) with the zero 
boundary condition. One can now find a path integral 
solution without the minus signs. One simply restricts 
the paths to lie in the reach 0(R , )τΓ imposing the zero 
boundary condition on the surface of the reach. The odd 
permutations fall for sure out of the reach since 

0 0 0 0(R , R ) = (R ,R )F odd FPρ ρ− .
The Ceperley path integral revolves around the reach. 

How to think about this object? The way the path 
integral is constructed seems to break imaginary time 
translations. One has to first pick some 'reference point' 
R in configuration space at imaginary time 0 or β� .
Starting from this set of particle coordinates, one has to 
spread them out in the form of wordline configurations 
to check at every time slice that the density matrix does 
not change sign. The dimensionality of the density 
matrix is 2 1dN + (twice configuration space plus a time 
axis) and the dimensionality of the reach is therefore 
2dN (one overall constraint). However, when we first 
pick a reference point R and we focus on a particular 
imaginary time the dimensionality of this restricted reach 
is 1dN − . In the limit τ → ∞ this restricted reach turns 
into a more familiar object: the nodal hypersurface 
associated with the ground state wave function. The 
density matrix becomes for a given R in this limit, 

*( , ; = ) = ( ) ( )R R R Rρ β′ ′∞ Ψ Ψ  (43) 
and the zero's of the density matrix are just coincident 
with the nodes of the ground-state wave function, 

( ) = 0RΨ , where we have assumed that the ground state 

is non-degenerate. The wave function is anti-symmetric 
in terms of the fermion coordinates, 

( , , , , ) = ( , , , , ),i j j ir r r rΨ −Ψ� � � � � � (44) 
and therefore the nodal hypersurface 

= { | ( ) = 0}NdR RΩ ∈ ΨR , (45) 
 is a manifold of dimensionality = 1dim NdΩ −
embedded in Nd -dimensional configuration space. This 
nodal surface Ω is surely an object that is simpler than 
the full reach Γ and it is rather natural to train the 
intuition using the former. According to Ceperley's 
numerical results[20], it appears that at least for the 
Fermi gas the main features of the reach are already 
encoded in Ω . In a way, the dependence on imaginary 
time is remarkably smooth and unspectacular. A greater 
concern is the role of the reference point, or either the 
fact that the reach depends on two configuration space 
coordinates. In the long imaginary time limit, the reach 
factorizes in the nodal surfaces (Eq. (43)), which means 
that one can get away just considering the nodal surface 
of the ground state wave function, but this is not the case 
at finite imaginary times. It is not at all that clear what 
role the 'relative distance' R R′− plays, although there is 
some evidence that it can be quite important as we will 
discuss in Section IX. Notice that the conventional 
'fixed-node' quantum Monte-Carlo methods aim at a 
description of the ground state, using typically diffusion 
Monte-Carlo methods. As input for the 'fermionic-side', 
these only require the wave function nodal structure. The 
difference between the reach and this nodal structure is 
telling us eventually about the special nature of the 
excitations in the fermion systems since the Ceperley 
path integral can be used to calculate dynamics, either in 
the form of finite temperature thermodynamics or, by 
Wick rotation to real time, about dynamical linear 
response. At this moment in time it is not well 
understood what the precise meaning is of these 
'dynamical signs' encoded in the non-local nature of the 
reach. 
 Another useful geometrical object associated with 
Fermi-Dirac statistics is the Pauli surface, corresponding 
with the hypersurface in configuration space where the 
wave function vanishes because the fermions are 
coincident in real space, 

= ij
i j

P P
≠
∪

= { | = }.Nd
ij i jP R r r∈R (46) 

Obviously, the Pauli surface is a submanifold of the 
nodal hypersurface of dimension =dimP Nd d− . The 
specialty of one dimension is that the Pauli- and nodal 
hypersurfaces are coincident. This property that the 
nodes are 'attached' to the particles is the key to the 
special status of one dimensional physics as we will 
explain in detail in the next section. 
 In the next sections we will discuss in more detail the 
few facts that are known about the reach and nodal 
hypersurface geometry and topology. To complete the  
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Figure 2. Cut through the nodal hypersurface of the ground-
state wave function of = 49N free, spinless fermions in a two-
dimensional box with periodic boundary conditions. The cut is 
obtained by fixing 1N − fermions at random positions (black 
dots) and moving the remaining particle (white dot) over the 
system. The lines indicate the zeros of the wave function 
(nodes). Note that the nodal surface cut has to connect the 

1N − fixed particles since the Pauli surface is a lower 
dimensional submanifold of dimension Nd d− included in the 
nodal hypersurface with dimension 1Nd − .

discussion of the basic structure of the Ceperley Path 
Integral, let us once more emphasize that according to its 
definition Eq. (39) one still has to sum over  even 
permutations in so far these do not violate the reach. As 
for the signful path integral, this translates via the sum 
over cycles into a sum over winding numbers that are 
now associated with triple exchanges of particles. We 
explained already in detail in section IV that this has the 
peculiar consequence that it codes for supersymmetry 
when one is dealing with the free quantum gas that just 
knows about the even permutation requirement. Because 
of the constraints, the 'particles' of the Ceperley path 
integral are actually very strongly interacting and it is 
unclear to what extent this supersymmetry is of any 
relevance to the final solution. In fact, we do know for 
the Fermi-gas that the combined effect of the constraints 
and the triple exchanges is to eventually give back a free 
gas with Fermi-Dirac statistics. As we discussed in 
section IV, there is a 'don't worry theorem' at work 
because the thermodynamics of the supersymmetric gas 
is quite similar to the Bose gas. 

In conclusion, Ceperley has demonstrated that in 
principle fermion problems can be formulated in a 
probabilistic, Boltzmannian mathematical language, 
paying the prize of a far from trivial constraint structure 
that is a-priori not known while it cannot be exactly 
computed. Qualitatively, the reach is like the nodal 
structure of a wave function. It is obvious that the nodal 
structure codes for physics but this connection is largely 
unexplored, while the remainder of this paper is  
 

Figure 3. Nodal constraint structure in space-time seen by one 
particular particle. In the constraint path integral only world-
line configurations {R }τ are allowed that do not cross or touch 
a node of the density matrix on all time slices, 0(R ,R , ) 0F τρ τ ≠

for 0 <τ β≤ � . Therefore, a particular particle (white circle) is 
constrained by the dynamical nodal tent (grey surface) spanned 
by the 1N − remaining particles trajectories (black circles). In a 
Fermi liquid the nodal tent has a characteristic dimensions and 
particles feel the nodal constraints at an average time scale cτ .
In later chapter we will see that these scales are in one-to-one 
correspondence with the Fermi degeneracy scale FE .

dedicated to the case that it is actually quite easy to make 
progress, at least with regard to the Fermi-liquid. One 
particular property is so important that it should be 
already introduced here. Any wave function of a system 
of fermions has the anti-symmetry property Eq. (44) and 
naively one could interpret this as 'any physical system 
of fermions has its fermionic physics encoded in a 

1Nd − dimensional nodal surface'. This is obviously not 
the case. It is easy to identify a variety of fermionic 
systems where many more nodes are present in the 
fermion wave function than are required to encode the 
physics. A first example are Mott-insulating 
antiferromagnets on bipartite lattices. Because the 
electrons are localized they become effectively 
distinguishable. One can therefore transform away 
remnant signs in the Heisenberg spin problem by 
Marshall sign transformations: the bottom line is that 
such Mott-insulators can be handled by standard bosonic 
quantum Monte Carlo methods. A next example is 
physics in one dimensions, as we will discuss in the next 
section, where again the fermion signs can be 
transformed away completely, in a way that can be 
neatly understood in terms of the topology of the nodal 
surface. Nodal structure is therefore like a gauge field: it 
carries redundant information that is inconsequential for 
the physics. Nodal structure that is in this 'gauge volume' 
we call  reducible nodal structure, while the 'gauge 
invariant' (physical) part of the nodal structure we call  
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Figure  4. Allowed world line configurations in Ceperley path 
integral for one-dimensional fermions. In 1D the nodal 
hypersurface coincides with the Pauli surface and the 
constraints turn into hard-core repulsions between the particles. 
Due to the hard-core constraints particle exchanges are strictly 
forbidden and the particles become distinguishable. When the 
mean square displacement of the particles becomes of the order 
of the average inter-particle spacing, collisions between the 
particles start to happen. This characteristic time scale cτ is 
directly related to the Fermi energy, = /F cE τ� . From the 
statistical physics point of view the Fermi-gas in 1+1D just 
corresponds with a problem of 'one-cycle' ring polymers 
interacting merely through steric constraints. 
 
irreducible, and as a first step one should always first 
isolate the true, irreducible signs. 

6. The Ceperley path integral in 1+1 dimensions. 
The physics of quantum matter in one space dimension 
can be regarded as completely understood[17]. The deep 
reason is that quantum statistics has no physical meaning 
in 1+1D, and it is always possible to find a 
representation where the sign structure drops out 
completely. All signs are reducible in the language of the 
previous paragraph. Accordingly, the quantum problem 
is equivalent to a statistical physics problem in 2 
classical dimensions, and it appears that the problem 
solving capacity of statistical physics has no limit in this 
dimension. The reader might be familiar with the 
standard bosonization techniques. A most elementary 
example is the Jordan-Wigner transformation which is 
usually introduced to demonstrate that = 1 / 2S
quantum spin chain problems are equivalent to 
interacting spinless fermion problems, with as special 
cases the transversal field Ising model (equivalent to 2D 
Ising) mapping onto free Majorana fermions[57], and the 
XY spin chain being equivalent to just free Dirac 
fermions[11]. It is instructive to find out how this is 
processed by the Ceperley path integral. On the one 
hand, although the canonical Jordan-Wigner and 
bosonization methods are of course correct, the way they 
deal with the (anti)symmetry of the states in Hilbert 
space is somewhat implicit and in this regard a 
discussion in terms of Ceperley's reach is most 
informative. The other side is about the powers of 

fermionization; the simple free spinless Fermi-gas 
becomes in the Ceperley path integral representation a 
very serious statistical physics problem. It is difficult to 
imagine a harder 2D statistical physics problem: it is the 
'Pokrovsky-Talapov' problem[58] of fluctuating 
polymers interacting via purely steric constraints. These 
correspond with infinitely strong delta function 
potentials (real, finite range interactions simplify the 
problem!) and accordingly everything is about entropic 
interactions and order-out-of-disorder physics. 
Remarkably, this problem can be solved in a few lines 
using canonical fermions. Although the Ceperley path 
integral has a much richer structure in higher dimensions 
it is surely the case that the higher dimensional Fermi-
liquids have to know in one or the other way about this 
'entropic dynamics'. To highlight this aspect we will 
review here the one dimensional fermion story in a less 
familiar, radically statistical physics way[27, 28]. 

Let us first focus on the workings of quantum 
statistics in 1+1D, using the Jordan-Wigner 
transformation as a template. Consider a chain of 
interacting = 1 / 2s spins, described by (2)SU  

operators, , =S S i Sα β αβγ γε   . Spins live in simple 

tensor product space. In condensed matter physics they 
describe electrons that through a Mott condition got 
localized and localized electrons are 'Boltzmannions', i.e. 
distinguishable particles. The standard construction 
continues claiming that on every site there are two 
available states (spin-up and -down) and this is no 
different from spinless fermions leaving a site 
unoccupied or singly occupied. But the difference is 
clearly in the antisymmetry of the fermion-Hilbert space, 
as encoded in the anti-commutation property of the 
fermion operators. This problem can be dealt with by the 
Jordan-Wigner sign string that works by the virtue that 
in one space dimension a string can see all the particles 
covered by itself between its two end points, 

<
( ) = [ ( )] ( ),z

j n
c n j nσ σ − 

−  
 
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†
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Here ( )c n and †( )c n denote fermionic annihilation and 
creation operators on site n , respectively, and 

= ( ) / 2x yσ σ σ± ± with 2= Sα ασ
�

the conventional 

spin-1/2 Pauli operators. 
 Having these operator identities it becomes then 
trivial to rewrite the spin-Hamiltonian in terms of the 
fermion operators and one finds out in no time that the 
sign strings cancel out, and one obtains a problem that is 
local in the fermions. 
 A little miracle has happened: we started out with 
Boltmannions and by the magic of the above operator 
identities we find out that we might as well consider 
these distinguishable particles as fermions. In fact, one 
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has the free choice to invoke hard core bosons as well in 
the intermediate stage since these share the property with 
spins = 1/ 2s and spinless fermions that one has two 
available states per site. 
 This is surely correct but in the canonical language it 
just appears as a mathematical fact associated with 
operator identities. The Ceperley path integral is in this 
regard more transparent. Let us consider the meaning of 
the reach of the one dimensional Fermi-gas. For a given 
reference point 0R and imaginary time τ one can 
associate with the fermion density matrix 0( , ; )F R Rρ τ a
( 1)Nd − -dimensional nodal hypersurface. However, we 
know that the ( )Nd d− -dimensional Pauli surface is a 
submanifold of the nodal hypersurface and for = 1d the 
Pauli- and the nodal hypersurfaces have the same 
dimensionality and they are therefore the same! This is 
nothing else than the well established wisdom that in one 
dimension the nodes of the wave functions are attached 
to the particle positions, a fact that is at the heart of 
Jordan-Wigner and all other bosonization constructions. 
In dimensions larger than one 'signs can have a life of 
their own' because the nodal hypersurface has a larger 
dimensions than the Pauli surface. This is the simple but 
deep reason for the complete failure of all attempts to 
construct Jordan-Wigner style bosonization procedures 
in higher dimensions. 
 Given that the Pauli- and nodal hypersurfaces 
coincide it becomes quite easy to read the reach. Start 
out with a reference point 0 1 2= ( , , , )NR x x x� ordering 
the particles for instance like 1 2< < < Nx x x� . 'Spread 
out' this configuration in terms of world lines 
meandering along the time direction and the Pauli-
hypersurface reach tells that only configurations are 
allowed where these worldlines never cross each other at 
any imaginary time. This is just the problem of an 
ensemble of polymers with only steric, hard core 
interactions in 2 dimensions! What is the fate of the 
quantum statistics? Let us permute two coordinates in 
the reference point 0 2 1= ( , , , )NR x x x′ � . Because the 
particles one and two cannot pass each other these two 
starting configurations are disconnected: they belong to 
two different nodal cells. Since this is true for any of the 

!N permutations, in one dimensions one finds !N nodal 
cells, instead of the two nodal cells of the higher 
dimensional Fermi-gas, as discussed in the next section. 
The full partition sum consists of !N copies of the same 
one-cycle 'Boltzmannion' partition function starting from 
some particle sequence that is just divided by !N . The 
bottom line is that bosonic symmetry or fermionic anti-
symmetry turns in the presence of the Pauli-hypersurface 
reach into a mere redundancy of the description. It has 
the status of a gauge volume and gauge invariant reality 
is caught in terms of a Boltzmannion 'gauge fix'. Surely 
these wisdoms are well known from general 
considerations invoking the braid group, but the merit of 
the Ceperley path integral is that it incorporates these 

considerations in a most explicit way. 
 We now have landed on the statistical physics side: 
the Fermi-gas in 1+1D just corresponds with a problem 
of 'one cycle' ring polymers interacting merely through 
steric constraints[58]. Like the van der Waals liquid, 
problems with just steric interactions have a bad 
reputation. This is obviously about strong interactions 
with the extra difficulty that the potentials are singular: a 
crossing of worldlines costs an infinite potential energy. 
The ramification is that all the physics is driven by 
entropy. Surely, the easy way to solve this problem is to 
fermionize it and everything follows from the simple 
Fermi-gas solution. But how to read these Fermi-gas 
wisdoms in the physical problem of the ring polymers? 
In fact, one of us[27] was facing some time ago a 
problem which is quite similar to the 2D ring polymers 
but where fermionization technology fails: the gas of 
hard core directed quantum strings in 2+1 dimensions, 
which is equivalent to the problem of directed elastic 
membranes in 3D interacting through steric hindrance. 
This problem came up as a toy exercise in the 
investigation of quantum stripes in cuprates and it is 
obviously the direct generalization of the 1+1D Fermi-
gas to 2 space dimensions: just attach an extra space 
dimension and the world-lines spread out in the string 
worldsheets. As it turns out, both the 1+1D Fermi gas 
and the 2+1D string gas can be addressed using a 'self-
consistent phonon' method discovered by Helfrich[59] to 
deal with the entropic interactions associated with 
biological (extrinsic curvature) membranes. Let us just 
sketch the derivation. 
 In the polymer language, the partition sum of the 
Fermi-gas can be written as, 

1

=1
= ( ) ,

N

i
i

d e
τ

φ τ∏∏∫ �
S

Z

2= ( ) ,
2 i

i

Md ττ φ∂∑∫S (49) 

where iφ is the spatial displacement field of the i -th 
particle and the wordline is a 1D elastic manifold with 
spring constant set by the mass M of the particles. This 
is supplemented by the avoidance condition, 

1 2< < < .Nφ φ φ� (50) 
Despite its simple formulation this is a rich problem 
characterized by various scales. Let us first inspect the 
ultraviolet of the problem. The average distance between 
worldlines is = / = 1 /sr L N n where L is the length of 
the system and n the particle density. The worldlines only 
know about each others existence when they collide 
because of the steric nature of the interactions. 
Henceforth, at sufficiently short times the worldlines will 
have meandered over distances that are small compared to 

sr and they cannot have knowledge of each others 
existence. The problem becomes cooperative at the 
characteristic time scale for collisions to occur. This is 
straightforward to estimate. By detailed balance the mean 
square fluctuation of the elastic line grows with τ as, 
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2 2( ) = ( ( ) (0)) = .c i il
M

τ φ τ φ τ〈 − 〉
� (51) 

When ( )cl τ becomes similar to sr a collisions will 
occur and this will take a typical time 

2,c
M nτ −	
�

(52) 

 which in the quantum interpretation this time is 
associated with an energy, 

2
2= = ,

2F
c

E n
mτ

� �  (53) 

and we recognize the Fermi energy[27]! This makes 
perfect sense. The Fermi energy is the characteristic 
energy where the effects of the quantum statistics on the 
otherwise free system becomes noticeable. In the 
Ceperley path integral this translates into the time scale 
where for the first time the particles become aware of the 
presence of the constraints. In the next section we will 
find that the above argument can be trivially extended to 
higher dimensions. 
 The Fermi energy is easy but now the trouble starts. 
When the collisions start to happen the problem becomes 
highly cooperative and in principle hard to deal with in 
terms of exact methods. The key is entropic repulsions, 
the same effect causing a rubber band to stiffen up when 
you heat it. The qualitative argument runs as 
follows[27]. Take the gas of non-interacting polymers as 
a reference point. In this free gas there are two 
possibilities when two polymers meet each other: either 
they cross or do not cross. But in the steric avoidance 
gas, there is only one possibility (do not cross) and 
therefore the system has to pay an entropy cost of log(2)
at every collision relative to the non-interacting system. 
This adds a positive (repulsive) term ( ) log(2)c Bn T k T  to 
the free energy where ( )cn T is the density of collisions 
at temperature T . This will have the effect that upon 
coarse graining the polymers start to repel each other: 
the collisions at short distances caused by the strong 
microscopic fluctuations renormalize at large distances 
into 'entropic springs' keeping the polymers apart! 
 To make this more quantitative[27] we need the 
ingenious trick devised by Helfrich[59]. Quite generally, 
the effect of the entropic repulsions will be to build up 
crystalline correlations and in the scaling limit one has to 
find a crystal with algebraic long range order (2D, finite 
temperature or 1+1D at finite coupling constant). This 
worldline crystal does not carry shear rigidity because 
the worldlines are incompressible in the time direction. 
Henceforth, the crystal is characterized by a space-
direction compressional modulus 0B , besides the time 
direction mass 'spring constant'. The coarse-grained 
action can be written in terms of the effective elastic 
fields ψ as 

2 2
0

1= ( ) ( ) ,
2eff xS d dx Bττ ρ ψ ψ ∂ + ∂ ∫ ∫  (54) 

where = nMρ is the mass density. Now Helfrich's trick 

comes: for finite 0B fluctuations are suppressed relative 
to the case that 0B vanishes and this entropy cost raises 
the free energy by an amount 

0 0 0( ) = ( ) ( = 0)F B F B F B∆ − . But by general principle 
it has to be that the 'true' long wavelength modulus B
should satisfy 
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and in the case of steric interactions, the only source of 
long wavelength rigidity is the fluctuation contribution 
to F∆ . This implies that 0 =B B and Eq. (55) turns into 
a self-consistency condition for this 'true' entropic 
modulus B ! It is an easy exercise to work this out and 
one finds 
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4 3
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s
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Mr
π
η
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where η is a fudge factor associated with the ultraviolet 
cut-off; the self-consistent phonon theory should set in at 
a length x min where crystalline correlations become 
noticeable and because this requires some number of 
collisions = sx min rη where > 1η .

To identify this 'order out of disorder' physics with 
our canonical Fermi-gas we have to invoke some more 
bosonization wisdoms. The bottom line of the 
Tomonaga-Luttinger liquid (Luttinger liquids are 
connected adiabatically to the Fermi-gas) is that he 
electron system is nothing else than a 1+1D 'floating' 
(algebraically ordered) crystal, characterized by a 
spectrum of compressional phonons, the bosonization 
modes. This spectrum is characterized by a single 
dimension: the sound velocity that is coincident with the 
Fermi velocity in case of the free Fermi-gas. This 
velocity is in the 'entropic world' Eq. (54) given by 

= /Fv B ρ and the correct answer follows from Eq. 

(56) for a reasonable = 6η .
To complete this story, one can treat the 2+1D 

directed string gas with the same methodology[27] to 
find out the peculiar result that now both the Fermi 
energy and the Fermi-velocity become exponentially 
small in the density, like 1/3exp( / )Fv const µ−∼ where 

2= / ( )cdµ ρ� with c the worldsheet velocity and d
the interstring distance. This reflects the fact that strings 
fluctuate a lot less than particles, and the entropic 
interactions are suppressed. But in any other regard this 
string gas is quite like the 1+1D Fermi gas! 
 We hope that the reader has appreciated this story. 
We perceive it to an extent as demystifying. The bottom 
line is that the rather abstract mathematical procedures of 
one dimensional physics are just coding accurately for a 
physical world that is dominated by entropic interactions 
and order-out-of-disorder physics. It hits home the case 
that it is quite misleading to call the Fermi-gas a 'gas'.  
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Figure 5. (a) a system of  classical atoms forming a  Mott 
insulating state in the presence of a commensurate  optical 
lattice of infinite strength, living in a  harmonic potential trap 

2( ) =V r rα� of finite strength; (b) the trap in momentum space 

,x yk k instead of real space; the Fermi surface is just the 
boundary between the occupied optical lattice sites and the 
empty ones; (c) a grid of allowed momentum states 

= (2 / )( , , ,....)x y zk L k k kπ where the ik 's are the usual integers 
and any worldline just closes on itself along the imaginary time 
τ direction 0 β→ : single particle momentum conservations 
prohibit anything but the one cycles. 
 
One could argue naively like: 'the system only knows 
about kinetic energy so how can it be anything else than 
a gas'? But Fermi-Dirac statistics translates into a 
statistical physics via Ceperley's path integral 
characterized by a structure of constraints that is 
essentially steric in nature. This is obviously the case in 
1+1D but in this basic regard things are the same in the 
less well understood higher dimensional cases. These 
steric constraint problems have as a generic feature that 
the microscopic 'kinetic energy' fluctuations and the 
macroscopic 'potential energy' scales associated with 
order are governed by the same dimensions. Order-out-
of-disorder is in these kind of worlds an ubiquitous, hard 
to avoid mechanism and the bottom line is that all 
fermion systems in 1+1D fall victim to the algebraic 
order. This is in turn the key to the 'universal success' of 
bosonization[17]. Bosonization is just geared to deal 
accurately with the fluctuations around the ordered state. 
Turning to the spin-full systems there is more life than 
just crystallization (and umklapp pinning). It becomes 
possible for wordlines to 'come to an end' and these 
correspond with dislocations in the space time worldline 
crystals that are dynamically indistinguishable from XY 
vortices. Henceforth, one finds a quantum melting 
equivalent to the 2D Kosterlitz-Thouless transition 
leading into the gapped Luther-Emery state[60]. Another 
fascinating feature is the hidden 'squeezed lattice' 
geometrical order that lies at the heart of spin-charge 
separation. This is accurately encoded in standard 
bosonization, but only recently characterized in full 
using a statistical physics style non-local order parameter 
structure[61]. 
 There is much more to tell about physics in one 
dimensions, but this is less fun because it is fully 
understood. The take home message is a warning: even 
when one fully grasps the nodal structure (not true in 

higher dimension), while the problem maps onto 
something that exists in classical nature (not true either), 
a seemingly trivial fermion problem (the 1+1D Fermi 
gas) turns out to code for a remarkably complex and rich 
world devoid of fermion signs! 
 
7. The Fermi gas as a cold atom Mott-insulator 

in momentum space. 
The Fermi-gas of the canonical formalism is very easy to 
solve exactly, and one would expect that in one or the 
other way this should mean that the constrained path 
integral is also easy to solve. This is not true at all in the 
position representation, as we will discuss in the next 
section. However, considering the derivation of the 
Ceperley path integral there is actually no preferred 
status of real space. The construction is completely 
independent of the representation one chooses for the 
single particle states. On the canonical side momentum 
space is the convenient representation to start from in the 
galilean continuum, or either any other basis that 
diagonalizes the single particle problem. As we will 
show in this section, also the Ceperley path integral of 
the Fermi-gas becomes very easy indeed when one 
chooses to formulate it in momentum space. After a 
couple of straightforward manipulations one finds a sign 
free, Boltzmannian path integral showing a most 
entertaining correspondence: the Fermi-gas is in one-to-
one correspondence with  a system of classical atoms 
forming a Mott insulating state in the presence of a 
commensurate optical lattice of infinite strength, living 
in a harmonic potential trap of finite strength (see 
Fig. 5a). This is literal and the only oddity is that this 
trap lives in momentum space instead of real space; the 
Fermi surface is just the boundary between the occupied 
optical lattice sites and the empty ones. This boundary is 
sharp at zero temperature but it smears at finite 
temperature because of the entropy that can be gained by 
exciting atoms out of the trap! When you are quick, you 
should already have realized that this trap interpretation 
is actually consistent with everything we know about the 
Fermi-gas. Let us now proof it by constructing the 
Ceperley path integral. 
 The central wheel of the Ceperley path integral is the 
fermion density matrix. One should first guess an ansatz, 
use it to construct the path integral, to check if the same 
density matrix is produced by the path integral. Surely 
we know the full fermion density matrix for the Fermi 
gas, and in momentum space this turns out to be a 
remarkably simple affair. The k-space density matrix can 
be written as the determinant formed from imaginary 
time single particle propagators in the galilean 
continuum, 

2| |
2( , '; ) = 2 ( ') .
k

Mg k k k k e
τ

τ πδ
−

− � (57) 
Since we live in the space of exact single quantum 
numbers these propagators are diagonal; in the galilean 
continuum this just means the conservation of 
momentum, but when translational symmetry is broken 
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one should use here just the basis diagonalizing the 
single particle Hamiltonian. 
 Consider now the full momentum configuration 
space 1= (k , ,k )NK … imaginary time density matrix, 

( )( )
=1

1( , '; ) = ( 1) , '; .
!

N
p

F p i i
i

K K g k k
N

ρ τ τ−∑ ∏
P

(58) 

We find that the delta functions cause a great 
simplification. Substituting the single-fermion 
expression Eq. (57) in this expression for the density 
matrix Eq. (58) we obtain: 
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Since the single particle propagators are eigenstates of 
the Hamiltonian, the momentum world lines go 'straight 
up' in the time direction until they arrive at the time τ
where the reconnections can take place associated with 
the permutations. But the δ function enforces that the 
permuted momentum has to be the same as the non-
permuted one, and the worldlines can therefore not wind 
except when the momenta of some pairs of fermions 
coincide. But now the sum of the permutations in Eq. 
(59) is zero due to the Pauli principle. Mathematically, 
this follows from the fact that the expression on the right 
hand side of Eq. (59) is actually a Slater determinant 
formed from the delta-functions ( )2 ( ')p i ik kπδ − as the 
matrix elements of the Nd Nd× matrix, that are indexed 
by momenta ( ){ , '}p i ik k . Hence, when two of the 
momenta coincide (e.g. =i jk k , i j≠ )there are two 
coinciding raws/columns in the matrix and the Slater 
determinant equals zero. The result is that Eq. (58) 
factorizes in !N relabeling copies, associated with !N
nodal cells like in 1+1D, of the following simple density 
matrix describing distinguishable and localized particles 
in momentum space, 
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This has the structure of a Boltzmannian partition sum of 
a system subjected to steric constraints: it is actually the 
solution of the Ceperley path integral for the Fermi gas 
in momentum space! Let us apply periodic boundary 
conditions so that on every time slice of the Ceperley 
path integral we find a grid of allowed momentum states 

, , ,= (2 / )( , , ,....)i i x i y i zk L k k kπ where the ,ik α 's are the 
usual integers (see Fig. 5b). We learn directly from Eq. 
(60) that we can ascribe a distinguishable particle with 
every momentum cell, with a worldline that just closes 
on itself along the time direction: single particle 
momentum conservation prohibits anything but the one 
cycles (see Fig. 5c). In addition, we find that the reach 

just collapses to the Pauli hypersurface, just as in one 
dimensions: per momentum space cell either zero or one 
worldline can be present. These worldlines are given by 
Eq. (57): since we are living in exact quantum number 
space these just go straight up along the time direction, 
since there are no quantum fluctuations: these are 
actually classical particles living in momentum space. 
We do have to remember that these world 'rods' carry a 

fugacity set by a potential 
2| |k

M
τ

�
. Henceforth, we have 

a problem of an ensemble of classical hard core particles 
that live on a lattice of 'cells' in momentum space where 
every cell can either contain one or no particle, with an 
overall harmonic potential envelope centered at = 0k :
this is literally the problem of cold atoms living in a 
harmonic trap, subjected to an infinite strong optical 
lattice potential, tuned such that they form a Mott-
insulating state. The ground state is simple: occupy the 
cells starting at = 0k , while the particles are put into 
cells at increasing trap potential until the trap is filled up 
with the available particles. At zero temperature there 
are no fluctuations and when one exceeds the chemical 
potential the cells remain empty, and there is a sharp 
( 1)d − -dimensional interface between the occupied- and 
unoccupied trap states. This is of course the way we 
explain the Fermi-gas to our undergraduate students. It 
invokes an odd metaphor that however turns out to 
express an exact identification since we learned to 
handle the Ceperley path integral! 

Having a statistical physics interpretation, can we now 
address the questions posed in section II? First, what is the 
order parameter of the Fermi-liquid? The answer is: the 
same order parameter that governs the Mott-insulator. 
This order parameter is well understood[11], although it is 
of an unconventional kind: it is the 'stay at home' 
emergent (1)U gauge symmetry[62], stating that at every 
site and at all times there is precisely one particle per site. 
The particle number is locally conserved and henceforth a 
local (1)U symmetry emerges. The 'disorder operators' 
that govern the finite temperature fate of the order 
parameter are just substitutional-interstitial defects: there 
is a finite thermal probability to excite a particle out of the 
trap, and the presence of the vacancies destroys the (1)U
gauge symmetry. Since the disorder operators are zero-
dimensional particles regardless the dimensionality of 
momentum space, thermal melting of the Mott-insulator 
occurs at any finite temperature regardless dimensionality. 
In the next section we will discuss how this might relate to 
the "holography" introduced in section II. 
 We repeat, this is just a rephrasing of the standard 
Fermi gas wisdoms in a non-standard language. The 
strange powers of the Ceperley path integral become more 
obvious when interactions are switched on. In the 
presence of the interactions single-particle momentum is 
no longer conserved, and this means that the worldlines of 
the Ceperley particles in momentum states get quantized: 
it is analogous to making the optical potential barriers 



IJPR Vol. 8, No. 2 Pacifying the Fermi-liquid: battling the devious fermion signs 59 

finite in the cold gas Mott-insulator with the effect that the 
particles acquire a finite tunneling rate between the 
potential wells. One gets directly a hint regarding the 
stability of the Fermi-liquid: Mott-insulators are stable 
states that need a rather large tunneling rate to get 
destroyed. But the story is quite a bit more interesting than 
that, as can be easily argued from the knowledge on the 
canonical side. Let's consider first what would happen in a 
literal cold atom Mott insulator when we start to quantize 
the atoms. Deep inside the trap motions are only possibly 
by doubly occupying the nodal cells and given that in the 
non-interacting limit the 'Hubbard U' is infinite 
(expressing the Pauli surface) such processes are strongly 
suppressed. In the bulk of the trap the Mott state would be 
very robust. However, at the boundary one can make 
cheap particle-hole excitations, and at any finite t the 
interface would no longer be infinitely sharp on the 
microscopic scale: the density profile would change 
smoothly. Eventually one would meet the 'wedding cake' 
situation where the bulk is still Mott-insulating while the 
interface would turn into a superfluid (we live in a bosonic 
world). How different is the Fermi-liquid! We know how 
it behaves from the canonical side. The single-fermion 
self-energy tells us directly about the fate of the k -space 
Mott insulator. We learn that the time required to loose 
information on single-particle momentum is just given by 
the imaginary part of the self-energy and that behaves 
as[15] 21 / ( )k Fk kτ −∼ , Henceforth, it diverges at the 
interface while it get shorter moving into the bulk. In the 
Ceperley bosonic language the Fermi-liquid is like a 
grilled marshmallow: It has a 'crispy', solid Mott 
insulating crust while it becomes increasingly fluid when 
one moves inside! 
 More precisely, the worldlines near the interface are 
fluctuating at short times, since we know that the 
momentum distribution of the bare electrons do smear 
around the Fermi-momentum - they do 'spill out of the 
trap'. However, the effect of integrating out these 
microscopic fluctuations is to renormalize the 'optical 
lattice potential' upwards. This has to be the case because 
in the scaling limit the renormalized worldlines represent 
the quasiparticles and since they produce a perfectly 
sharp interface (i.e. unit jump in the quasiparticle kn ), 
the Mottness has to be perfect. This can only be caused 
by infinitely high effective potential barriers. This 
physics is of course coming from the modifications 
happening in the reach when interactions are turned on. 
The phase space restrictions giving rise to 2ω′′Σ ∼ are 
rooted in Fermi-Dirac statistics and all the statistical 
effects are coded in the reach when dealing with the 
Ceperley formalism. These aspects can be computed by 
controlled perturbation theory and in a future publication 
they will be analyzed in detail. 
 
8. The Fermi-liquid in real space: holographic 

duality. 
We showed in the previous section that at least for the 
Fermi gas the momentum space Ceperley path integral 

becomes a quite simple affair. Momentum space is a 
natural place to be when one is dealing with a quantum 
gas or -liquid, but dealing with a bosonic- or statistical 
physics systems one invariably runs into the general 
notion of duality[57, 63]. Dealing with conjugate 
degrees of freedom, like momentum and position or 
phase and number, one can reformulate the manifestly 
local order on one 'side' into some non-local topological 
order parameter on the dual side. An elementary 
example is the Bose-Einstein condensate. In the 
language of the previous section, one can either form a 
'black hole' in the momentum space 'trap', by putting all 
bosons in the = 0k 'optical lattice cell'. But one can also 
view it in real space, to discover the lively world of 
Section III where the local order in momentum space 
translates into a global, topological description revolving 
around the infinite windings of worldlines around the 
time direction. Such duality structures are ubiquitous in 
Bolzmannian systems, and they are at the heart of our 
complete understanding of such systems: when one has a 
complete duality 'map' one understands the system from 
all possible sides and there is no room for surprises. For 
instance, when one is dealing with a strongly interacting 
system like 4 He one prefers the real space side because 
it is much easier to track the effects of the 
interactions[39]. Also in the strongly interacting fermion 
systems one expects that one is better off on the real 
space side. In this concluding section we will address the 
issue of the dual, real space description of the Fermi-
liquid in the Ceperley path integral formalism. This real 
space side is remarkably complex: despite an intense 
effort even Ceperley and coworkers[23] got stuck to the 
degree that they even did not manage to get things 
working by brute computer force. They ran into a rather 
mysterious 'reference point glassification' problem in 
their quantum Monte Carlo simulations, likely related to 
a contrived 'energy landscape' problem associated with 
the workings of the reach. 
 This is a fascinating problem: there has to be a 
simple, dual real space description of the Fermi gas. The 
obvious difficulty as compared to straightforward 
bosonic duality is the presence of the reach. One has to 
dualize not only the 'life of the worldlines' but also the 
constraints coding for the Fermi-Dirac statistics. 
Topology is at the heart of duality constructions and in 
this regard Ceperley[20], and more recently Mitas[29], 
have obtained some remarkably deep results, which will 
be discussed at length in the first subsection: the 
topology of the reach of the Fermi-liquid in 2d ≥ is 
such that the reach is open for all cycles of Ceperley 
worldlines based on even permutations or triple 
exchange. Henceforth, there is no topological principle 
that prevents infinitely long worldlines to occur and in 
subsection B we will argue that the zero temperature 
order of the Fermi-liquid has to be a Bose condensate of 
the 'Ceperley particles'. This is conjectural but if it 
proves to be correct the Fermi-liquid holography we 
discussed in section II acquires a fascinating meaning:  
the scaling limit thermodynamics of the Fermi-gas in any 
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spatial dimension > 1d is governed entirely by the 
statistical physics associated with distributing the 
Ceperley worldlines over the cycles associated with even 
permutations, and this effective partition sum is 
indistinguishable from the partition sum enumerating the 
cycles of a soft-core boson system in one space 
dimension. 

8. 1. The topology of the Fermi-liquid nodal surface. 
To decipher the structure of constraints as needed for the 
real space Ceperley path integral one has to find out 
where the zero's of the real space density matrix are. By 
continuation, these should be in qualitative regards the 
same in the Fermi-liquid as in the Fermi gas, and in the 
latter case we have an expression of the full density 
matrix in closed form, 
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where 2= / (2 )Mλ � . Henceforth, one needs to find out 
the zero's of this quantity for all 0,R R in the imaginary 
time interval 0 < <τ β . In real space, this is not an easy 
task. Part of the trouble is that at low temperature the 
zero's of the determinant depend on all coordinates at the 
same time. Only in the high temperature limit ( 0)τ →
the nodal surface of the density matrix becomes 
extremely simple[20]. To see this, define first a  
permutation cell 0( )R∆P as the set of points closer to 

0RP than to any other 0'RP . Obviously, the 
configuration space is divided into !N permutation cells 
which are convex polyhedra bounded by hyperplanes, 

0 0( ' ) = 0R R R⋅ −P P . The density matrix is simply a 
sum over all permutations and for 0( )R R∈ ∆P and 
sufficiently high temperatures this sum is completely 
dominated by the term 2

0( 1) exp[ ( ) / (4 )]p R R λτ− − −P
since all the other terms are exponentially damped 
relative to it. Therefore, in the high temperature limit, 

0( , ; )F R Rρ τ will have the sign of P inside of 0( )R∆P
and the nodal hypersurface is simply given by the 
common faces shared by permutation cells of different 
parities. 
 The reach acts both in a local way, much in the same 
way as we learned in the (1+1)-dimensional case as a 
special 'steric hindrance' structure having to do with 
entropic interactions, etcetera. However, it also carries 
global, topological properties and these are now well 
understood because of some remarkable results by 
Mitas[29], who managed to proof the 'two nodal cell' (or 
'nodal domain') property of the higher dimensional 
Fermi-gas reach[20]. The topology of the nodal surface 
is associated with the structure of cycles as discussed in 
section III but now for the Ceperley path integral. The 
latter can be written as 

= ( , ; ),D e
e

Z dR R Rρ β∑∫ �
P

P (62) 

where eP refers to even permutations, while Dρ� refers 
to the density matrix of distinguishable particles that are 
however still subjected to the reach constraints. As in the 
case of the Feynman path integral, this sum over even 
permutations can be recasted in a sum over cycles 
associated with all possible ways one can reconnect the 
worldlines at the temporal boundary, of course limiting 
this sum to those cycles that are associated with even 
permutations. We learned in section IV that for free 
wordlines even permutations translate into the 
supersymmetric quantum gas. But the Ceperley particles 
are not at all free, and the topology of the nodal surface 
tells us about global restrictions on the cycles that can 
contribute to Eq. (62). 
 It is immediately clear that the counting of cycles is 
governed by topology: to find out how to reconnect 
wordlines arriving at the temporal boundary from the 
imaginary time past, to worldlines that depart to the 
imaginary time future one needs obviously  global data. 
This global information residing in the reach is just the 
division of the reach in nodal cells we already 
encountered in the (1+1)-dimensional context and the 
momentum space Fermi gas. There we found that the 
space of all permutations got divided in !N nodal cells, 
with the ramification that the sum in Eq. (62) is actually 
reduced to one cycles. Mitas has delivered the proof that 
in 2d ≥ the reach carries a two nodal cell topology, 
implying that  all cycles based on even permutations lie 
within the reach. Since only this topological property of 
the reach can impose that certain cycles have to 
rigorously disappear from the cycle sum, this does imply 
that all cycles based on even permutations can contribute 
to the partition sum, including the cycles containing 
macroscopic winding numbers. Henceforth, the Ceperley 
worldlines can Bose condense in principle and it is now 
just matter of finding out what the distributions of the 
winding numbers are as function of temperature. This is 
what really matters for the main line of this story. 
Finding out the the way that Mitas determined the two-
cell property is quite interesting and we will sketch it 
here for those who are interested. When you just want to 
understand the big picture, you might want to skip the 
remainder of this subsection. 
 Quite recently Mitas[29] proved a conjecture due to 
Ceperley[20], stating that the reach of the higher 
dimensional Fermi gas is 'maximal' in the sense that, for 
a given 0R and τ , the nodal surface of 0( , ; )F R Rρ τ
separates the configuration space in just two nodal cells, 
corresponding with Fρ being positive- and negative 
respectively. This is a quite remarkable property: for 
every pair R and 'R in the same domain (lets say 

> 0Fρ ), one can change R into 'R without 
encountering a zero crossing of Fρ .

The easy way to prove this property goes as 
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follows[29]. First, it can be demonstrated[20] that once 
there are only two nodal cells at some initial 0τ than this 
property has to hold for any 0>τ τ . This follows 
straightforwardly from the imaginary time Bloch 
equation for the density matrix, 

( , ; ) = ( , ; )R R H R Rρ τ ρ τ
τ
′∂ ′−

∂
, (63) 

with initial condition, 
( , ;0) = det ( ' )i jR R r rρ δ′ −   , (64) 

and the Bloch equation is a linear equation. This is a 
very powerful result because it gives away that the two-
cell property 'descents for the ultraviolet': one has just to 
prove it at an arbitrary short imaginary time which is the 
same as arbitrary high temperature. Ignoring Planck 
scale uncertainties, etcetera, the form Eq. (61) has to 
become asymptotically exact for sufficiently small β ,
also in the presence of arbitrary interactions as long as 
they are not UV-singular! As we already noticed, this 
high temperature limit is rather tractable. 
 We now need to realize that we still have to take into 
account the 'remnant' of quantum statistics in the form of 
even permutations. Every even permutation can be 
written as a succession of exchanges of three particles 
, , , ,i j k j k i→ because these amount to two particle 

exchanges. When such an exchange does not cross a 
node (i.e. it resides inside the reach) the three particles 
are called 'connected'. By successions of three particle 
exchanges one can build up clusters of connected 
particles. All one has now to demonstrate is that a point 

tR exists where  all particles are connected in a single 
cluster, because this complete set of even permutations 
exhaust all permutations for a cell of one sign, because 
the odd permutations necessarily change the sign. One 
now needs a second property called tiling stating that 
when the particles are connected for the special point tR
this has also to be the case for all points in the cell. And 
tiling is proved by Ceperley for non-degenerate ground 
states and also for finite temperature. Actually due to the 
linearity of the Bloch equation, its fixed node solution is 
unique, and the tiling property in the high temperature 
limit will lead to the same property at any lower 
temperature. 
 Before we prove that the above holds for the high 
temperature limit density matrix, let us just dwell for a 
second on what this means for the winding properties of 
the constrained path integral. The even permutation 
requirement means that, as for the standard worldline 
pathintegrals, we have to connect the worldlines with 
each other at the temporal boundary, but now we have to 
take care that we single out those cycles corresponding 
with even (or three particle) exchanges. The 'maximal 
reach' just means that cycles containing worldlines that 
wind an arbitrary large number of times around the time 
axis  never encounter a node ! As noted before by 
Ceperley, this has the peculiar implication that in some 
non-obvious way the Fermi-gas has to know about Bose 

condensation. Since nodal constraints do allow for 
infinite windings there seems to be no 'force in the 
universe' that can forbid these infinite windings to 
happen and since the Cepereley path integral is 
probabilistic, when these infinite windings happen one 
has to accept it as Bose condensation. We will come 
back to this theme in a moment. 
 Following Mitas, one can now prove the two cell 
property of the high temperature limit using an inductive 
method. Assume that all N particles in the low β limit 
at a fixed 0R are connected in one cluster, to see what 
happens when an additional 1N + particle is added. 
Single out two other particles 1N − , N and move these 
three particles away from the rest without crossing a 
node. Now we can profit from the fact that in the low β
limit the density becomes factorizable: the determinant 
factors into a product of the determinant of the three 
special particles and the determinant of the rest. It is easy 
to show that the three particle determinant has the two 
cell property, proving that the N+1's particle is in the 
cluster of N particles. Since this is true for any N , the 
starting assumption that all particles in the cluster is 
hereby proven. 
 For free fermions, Mitas also proved the two nodal 
cell property for non-degenerate ground states using a 
similar induction procedure. The trick is to choose a 
special point tR in the configuration space, at which one 
can easily show how all the particles are connected into a 
single cluster. Once proven for this single point, tiling 
ensures that the same is true for the entire nodal cell. 
Mitas aligned the particles into lines and planes, thus 
forming some square lattice in the real space. This way 
the number of arguments of the wave functions is 
reduced and more importantly, the higher dimensional 
wave functions can be factorized into products of sine 
functions and the one dimensional wave functions, 
which are much easier to deal with than their higher 
dimensional counterparts. One distinct property of the 1 
dimensional wave functions is that they are invariant 
under cyclic exchanges of odd numbers of particles, 
namely for N odd,  

1 11 (1, , ) = (1, , ),x
D DC N N+ Ψ Ψ� �  (65) 

 where 1
xC+ represents the action to move every particle 

by one site in the x+ direction, with the last particle 
moved to the position of the first one, that is 
1 2, 2 3, , 1N→ → →� .
Consider for example the non-degenerate ground state of 
5 particles in 2 dimensions. For this state, it becomes 
straightforward to show that each group of the 3 near 
neighbors living in the real space square lattice are 
connected by products of four triplet exchanges, which 
are all performed along the 1 dimensional lines. Proven 
this, one can proceed as in the high temperature limit, by 
adding more particles to the lattice. And these newly 
added particles can be shown to be connected to the 
original particles' cluster by the similar method used for 
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5 particles. The only difference is that now one needs to 
consider the whole line of particles, on which the new 
particle is added, and thus a sequence of four cyclic 
exchanges, instead of the special triplet exchanges are 
required. Since for non-degenerate ground states, there 
are odd number of particles on each line, cyclic 
exchanges will not produce extra minus signs, thus 
leading to the same result as triplet exchanges. This 
completes the proof for 2 dimensions, and the high 
dimensional cases are essentially the same. 
 However, winding is a topological property that 
should be independent of representation. In the long time 
β → ∞ limit the path integral contains the same 
information as the ground state wave function, and for 
the Fermi-gas we can actually easily determine the 
winding properties inside one of the nodal cells using the 
random permutation theory. This demonstrates that at 
zero temperature the Fermi-gas is indeed precisely 
equivalent to the Bose gas, within the nodal cell. 
 
8. 2. There is only room for winding at the bottom. 
The conclusion of the previous subsection is that the 
Ceperley wordlines can in principle become infinitely 
long because the topology of the reach allows them to 
become macroscopic. Does this mean that the zero-
temperature order parameter of the Fermi-liquid is just 
an algebraic bose condensate of Ceperley wordlines 
characterized by a domination of the partition sum by 
macroscopic cycles? The two nodal cell topological 
property is a necessary but insufficient condition for this 
to be true. However, there are more reasons to believe 
that the Fermi-liquid has to be of this kind. 
 As we discussed at length in section II, the zero- and 
finite temperature Fermi-liquid are separated by a phase 
transition and it appears that only the winding sector of 
the Ceperley path integral can be responsible for this 
transition. The argument is simple and general. With 
regard to ordering dynamics the real space Ceperley path 
integral is governed by Boltzmannian principle and let us 
find out what 'substance' is available to form an order 
parameter. The nodal surface in isolation cannot be 
responsible, since it is an immaterial object that just 
governs the behavior of the 'Ceperley particles' . 
Henceforth, whatever its (singular) properties, these have 
to be reflected in the behavior of the matter. In principle 
one can imagine subtle topological changes occurring in 
the nodal surface but in the previous subsection we 
found this not to be the case in the Fermi-gas. 
Henceforth, searching for the thermodynamic singularity 
we should keep our eyes on the worldlines and these 
should be subjected to the generalities associated with 
bosonic matter. One source of thermodynamic 
singularity is that the system of bosons breaks the 
translational- and/or rotational symmetry of space, 
forming a crystal or some liquid crystal. Although the 
one dimensional Fermi-gas is such a crystal in disguise, 
it is impossible to hide a (partial) crystallization in 
higher dimensions: the higher dimensional Fermi-liquid 

is undoubtedly a true liquid. The worldlines have to be 
delocalized, but dealing with indistinguishable particles, 
being bosons or the 'even permuting' Ceperley particles, 
one has to account for an extra set of degrees of 
freedom: the reconnections at the temporal boundary. 
From a statistical physics perspective, Bose 
condensation appears as an order out of disorder 
phenomenon. Lowering temperature has the net effect of 
increasing the 'configurational entropy' associated with 
all possible ways of reconnecting worldlines, or either 
the appearances of cycles characterized by different 
windings. Worldlines get longer and thereby the length 
over which they can meander increases, and this in turn 
increases effectively the fugacity of long cycles. The 
more cycles can contribute, the larger the 
'configurational entropy' associated with the cycles and 
this gain in space time 'configurational entropy' 
(physically the decrease of quantum zero point energy) 
causes eventually a flat distribution of the winding 
configurations, and in the Bose system this sets in at a 
sudden phase transition. Since all particles 'are part of 
the same wordline' the Bose condensate is 
macroscopically coherent. We learned that the reach 
allows the Ceperley particles to form infinite windings. 
We learn from the Bose condensate that at zero 
temperature only crystallization can prohibit the 
'reconnection entropy' to take over, because the thermal 
de Broglie wavelength diverges. Henceforth, there does 
not seem to be any feature of the reach that can prohibit 
this to happen as well to the Ceperley worldlines at zero 
temperature. 
 There is a quite direct argument to support this view 
which was put forward by Ceperley some time ago[20, 
21]. As we already emphasized a number of times, on 
the canonical side the Fermi-liquid order manifests itself 
through the jump in the momentum distribution. Let us 
now turn to the zero temperature single particle density 
matrix,  

1 2 1 2( ) = ( , , ; , , ; )N Nn r dR r r r r r r rρ + ∞∫ � �  

= .ik r
kdke n⋅∫ (66) 

In the boson condensate ( )Bn r constant→ revealing the 
off-diagonal long-range order which is equivalent to the 
domination of infinite cycles. In the Femi-liquid on the 
other hand, 

/2/2
1( ) ( ).

( )
F d Fd

F
n r J k r

k r
	 (67) 

The oscillations governed by the Bessel function 
/2( )d FJ k r can be easily traced back to the size of the 

nodal pocket as discussed in a moment. However, the 
envelope function /2( ) d

Fk r − just behaves like the one 
particle density matrix of a Bose condensate showing off-
diagonal long range order, like in the interacting Bose 
system in 1+1D at zero temperature. Relating this to the 
real space Ceperley path integral, this signals the presence 
of infinite cycles formed from Ceperley world lines. 
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Believing the arguments in the above, indicating that 
the Fermi liquid 'order' in the real space language is 
associated with the statistics of the windings, we are still 
facing the problem why this behaves as a system of soft 
core, interacting bosons in 1+1D: as we discussed in 
section II, we learn from the canonical description that 
the 'reconnection entropy' of the Fermi-liquid in arbitrary 
dimensions at finite temperature is counted in the same 
way as that of a soft-core (i.e. winding) Bose system in 
1+1 dimensions. This is surely not due to some remnant 
of the 'supersymmetric' quantum statistics coming from 
the even windings because we learned in Section IV that 
this is quite similar to normal Bose statistics. We suspect 
that this "holography" has its origin in a non-topological, 
microscopic feature of the reach. 
 It seems impossible to explain such a 'dimensional 
reduction' In terms of local particle-particle interactions 
and in one or the other way the reach apparently acts 
likely as a many particle interaction. An indication that 
this mysterious 'interaction' on microscopic time and 
length scales follows from the thermodynamics of the 
Sommerfeld gas. We observe that temperature enters the 
Eq.'s (11)-(13) always in the ratio / FT E . Temperature 
has the role of limiting the length of the imaginary time 
axis and this information enters the free energy via some 
effective return probabilities. These in turn relate in a 
simple way with the Fermi-energy because otherwise the 
free energy would not be a simple algebraic function of 

/ FT E , and the meaning of the Fermi-energy is quite 
clear. In analogy with the one dimensional case, the 
Fermi-energy is the quantum kinetic energy associated 
with the fact that the free volume in which a Ceperley 
particle moves is restricted by the reach to be of order of 
the inter-particle distance. The reach is for a given 0R
and τ just a ( 1)Nd − -dimensional manifold embedded 
in Nd dimensional space. It can be visualized by 
constructing d dimensional cuts through configuration 
space obtained by fixing 1N − particle coordinates and 
moving one particle around, tracking the sign changes of 
the density matrix, as in Fig. 2. For the Fermi-gas this is 
obviously a smooth, non-fractal manifold. We also know 
that the Pauli hypersurface lies on the nodal surface. 
Given the typical inter-particle distance sr , one expects 
that every particle moves around in a free volume with a 
typical linear dimension sr	 , enclosed by the 
impenetrable nodal surface. This is the well known 
'nodal pocket'; following Ceperley[20, 21], one can 
isolate it by analyzing the sign changes of the one 
particle density matrix. But one might as well consider 
the meaning of the Fermi-energy. FE sets the ultraviolet 
scale of the higher dimensional Fermi gas in much the 
same way as it does in 1+1D. There we saw that it 
corresponds to the time where the constraints become 
noticeable in the form of a confinement effect. The nodal 
pockets in higher dimensions have the same confining 
effect as the 'Pauli pockets' in one dimension: the nodal 
surface 'hangs' over the Pauli surface forming 'cages' in 

which the worldlines of individual particles are locked 
up (see Fig 3). The derivation Eq.'s (51-53) generalizes 
straightforwardly to any dimension after adjusting 
volume factors. The inter-particle density 

1/ 1/= ( / ) =d d
sr V N n where n is the density. It follows 

for the mean square displacement 2( )cl τ , the collision 
time cτ and the characteristic energy scale, 

2 2( ) = ( ( ) (0)) = ,c i il d
M

τ φ τ φ τ〈 − 〉
� (68) 

2/1 ,d
c

M n
d

τ −	
�

(69) 

2
2/= = ,

2
d

F
c

E d n
mτ

� �  (70) 

and one recognizes immediately that the characteristic 
energy scale coincides with the Fermi-energy. 
 Let us now return to the question of what is 
responsible for the holography. The Fermi-energy 
emerges at microscopic times, and has a simple 
interpretation in terms of the microscopic geometry of 
the reach (the nodal pocket). Combining this observation 
with the fact that the free energy of the Fermi-gas at 
finite temperature is a simple algebraic function of the 
ratio / FT E suggests that the winding statistics 
responsible for the thermodynamics is in some quite 
direct way influenced by the nodal pocket property of 
the reach. It is intriguing that the dimensionality of the 
nodal pocket is the same as the dimensionality of space, 
suggesting that it has in principle the capacity to render 
the winding statistics to become independent of 
dimensionality, but we have not managed yet to find out 
how this works in detail. The reader is cordially invited 
to give this fascinating problem a deep thought. 
 
Appendix 
Windings vs. Loops 
The partition function in the canonical ensemble for such 
a system, given in terms of the density matrix as in (15) 
and (18), with = 0V , factorizes into a product of 
Gaussian convolution integrals1. The convolutions then 
extend the path lengths in the imaginary time direction 
of paths where the end-points are permuted among each 
other, as seen in figure 1. In the extended zone scheme 
such paths satisfy periodic boundary conditions, 
regardless of whether the particles are bosons or 
fermions, and have path lengths which are integer 
multiples of the length of the temporal direction (inverse 
temperature), w β� , where the integer is interpreted as a 
winding number. The bose/fermi nature of the particles 
is still present in an overall permutation sign in summing 
over all permutations which generate the windings. The 
contribution of each path of winding number w to the 
partition function of N particles is the same as that of a 
single particle (which can only have winding number 

____________________________________________ 
1. The details of this calculation can be found in chapter 7 of [26]. 
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one) living at w times the inverse temperature  

( ),
00 = ( ) .N wZ Z wβ∆ (A-1) 

We will now show that the partition function of a free 
system of N particles at inverse temperature β can be 
written in terms of a sum over windings subject to a 
certain constraint, with the partition function of a single 
particle appearing in the product. There are altogether 

!N permutations of the the N particles. When 
decomposing these into cycles we need to keep track of 
the number of cycles of length w in a given 
permutation. Let us denote, for a given permutation, the 
number of cycles in that permutation of length w , by 

wC . Then with each permutation is associated a series of 
numbers wC , with = 1,...,w N . Then, a sum over all 
permutations can be rewritten as a sum over all integers 
assigned to the various wC , subject of course to an 
overall constraint, this constraint being that the total 
length of all cycles taken together must be N . We write 
this constraint as  

=1
=

N

w
w

wC N∑ (A-2) 

 since the length of cycles in the class wC is w . Among 
the !N permutations, the number of which have a given 
set of values of wC has been given already in (21), 
which we reproduce here  

1

=1

!( ,..., )= .

!
N N

Cww
w

NM C C

C w∏
(A-3) 

 If we sum this quantity over all configurations of wC s′

such that =1 =N
w L∑ , for any 1 L N≤ ≤ , at fixed N ,

{ , }1

=
=1

1 1( ,..., )= ( , )
C CN
N

C Lw
w

NM C C S N L

∑

∑
�

(A-4) 

 where 1( , )S N L is the Stirling number (unsigned) of the 
first kind, and counts the number of permutations among 
all !N permutations that consist of L loops, for any 
number of loops 1 L N≤ ≤ . Since there are !N
permutations, summing this quantity over all allowed 
loop numbers must reproduce  

1
=1

( , )= !.
N

L
S N L N∑ (A-5) 

 Naturally, summing over all cycles of various lengths, 
we have the total number of cycles  

=1
= Total number of  cycles

N

w
w

C .∑ (A-6) 

In writing the partition function in the canonical 
ensemble in terms of cycles we encounter a sum of 
products of the form  

=1
( 1) ,

w

N
±∑ ∏P

P
(A-7) 

 with P denoting a permutation. Note here that the first 
sum over all permutations fixes the values of the wC ,
subject to the constraint on total length =wwwC N∑ .
This sum of products can be rewritten as a sum over all 
values of the various wC , again subject to the constraint 
on total length  

{ }1
=

1
=1

( , , ) ,
C CN
wC Nw

w

N

w N
w

C Cε

∑

∑ ∏
�

� (A-8) 

where 
(1 )

1( , , ) = ( 1)
w Cwww NC Cε

+
± ∑� is the parity of 

a given permutation. With these we can write the 
canonical partition function as [26]  

[ ]
{ }1

=

( )
00

=1

1( )= ( ) ,
! C CN

wC Nw
w

N
CN ww

w
Z M Z w

N
β ε β

∑

∑ ∏
�

(A-9) 

(dropping for clarity the 1, , NC C� on M and wε ). 
After some starightforward reorganization this becomes  

{ }1
=

( ) 01
0

=1

1 ( )( )= ( 1) .
!C CN

wC Nw
w

N CwN w
ww

Z wZ
C w

β
β

∑

− ±  ∑ ∏
�

(A-10) 

 One may readily check that the partition function above 
satisfies the recursion relation  

( ) (1) ( )1
0 0 0

=1

1( )= ( 1) ( ) ( ) ,
N

N N nn

n
Z Z n Z

N
β β β−−±∑ (A-11) 

subject to the boundary condition (0)
0 = 1Z , allowing one 

to generate the N -particle partition functions from the 
bottom up. 
 In writing the partition function for an NZ -particle 
system as it appears in (A-9) and (A-10), we have taken 
the viewpoint that we sum over all windings. Yet, it is 
evident in equations (A-4) to (A-6) that we might also 
choose to view the same partition function as a sum over 
all possible numbers of loops. In other words, we may 
identify the sums as follows  

{ } { }1 1
= =

=

=1
=

C C C CN N
wC N C Rw w

w w
wC Nw

w

N

R
∑ ∑

∑

∑ ∑ ∑
� �

. (A-12) 

The second sum on the right hand side is subject to two 
constraints. But we will see shortly that when we 
construct the grand canonical partition function, the 
constraint =wwwC N∑ will be removed, since we sum 
over all canonical partition functions for the various 
particle numbers, leaving only the one enforcing the 
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number of loops =wwC R∑ .
Define the partition function for N -particles and R -

loops as  

{ }1
=

=

( ) (1)
0, 0

=1
( ) = ( ) .

C CN
C Rw

w
wC Nw

w

N CN w
R

w
Z M Z wβ β

∑

∑

 
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�

� (A-13) 

Note that no sign appears here, and so this gives the 
same result whether we are studying bosons or fermions. 
We can now perform the winding to loop regrouping on 
(A-9), to see that  

( ) ( )
0 0,

=1

( 1)( )= ( 1) ( ) .
!

NN
N NR

R
R

Z Z
N

β β
±

±∑ � (A-14) 

We note that by going to this view, we have greatly 
reduced the number of alternating signs in the sums that 
we have to deal with, from !N signs in (A-9) to N sings 
in (A-14). For those interested in numerical simulations 
this from of the partition function might offer a substantial 
improvement in the rate of convergence. 
 The analogue of the recursion relation (A-11) is then 
cycle form is  

1
( ) ( )

00, 0, 1
=1

1( ) = ( ) ( ) ( 2),
N

N N n
R R

n
Z Z n Z R

N
β β β

−
−
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00,1

1( ) = ( ).NZ Z N
N
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We are now going to use the canonical partition function 
to construct the grand canonical one, where the particle 
number is no longer a fixed, but a fluctuating quantity. 
The grand canonical partition function is the sum over 
all canonical partition functions of different particle  
 

numbers, each weighted by a Boltzmann for N
particles, and at chemical potential µ ,

( )
,0 0

=0
( ) ,N N

G
N

Z Z eβµβ
∞

≡ ∑ (A-16) 

 with the free partition function satisfying  
,0
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G d
Z

Z w

w

β
β (A-17) 

Using the form of the canonical partition function in (A-
10), we have then for the grand canonical partition 
function, after a rearrangement, the following  
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where because we sum over all partical numbers, the 
constraint in (10) has been removed (as promised), i.e.  

=0 { } =0=11
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 In terms of cycles, the removal of the constraint means 
we have  

=0{ } =1{ }1 1
= =

=
N C C R C CN N
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