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We study the S=1 square lattice Heisenberg antiferromagnet with spatially anisotropic nearest-neighbor
couplings J1x and J1y frustrated by a next-nearest-neighbor coupling J2 numerically using the density-matrix
renormalization-group �DMRG� method and analytically employing the Schwinger-Boson mean-field theory
�SBMFT�. Up to relatively strong values of the anisotropy, within both methods we find quantum fluctuations
to stabilize the Néel-ordered state above the classically stable region. Whereas SBMFT suggests a fluctuation-
induced first-order transition between the Néel state and a stripe antiferromagnet for 1 /3�J1x /J1y �1 and an
intermediate paramagnetic region opening only for very strong anisotropy, the DMRG results clearly demon-
strate that the two magnetically ordered phases are separated by a quantum-disordered region for all values of
the anisotropy with the remarkable implication that the quantum paramagnetic phase of the spatially isotropic
J1-J2 model is continuously connected to the limit of decoupled Haldane spin chains. Our findings indicate that
for S=1 quantum fluctuations in strongly frustrated antiferromagnets are crucial and not correctly treated on
the semiclassical level.
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I. INTRODUCTION

A striking commonality between the recently discovered
iron pnictides superconductors1–5 and the high-Tc cuprates is
that in both cases superconductivity emerges on doping an-
tiferromagnetic parent compounds. In trying to unravel the
mechanisms of superconductivity frustrated quantum antifer-
romagnets on the square lattice have been subject to intense
research over the last decades with particular interest in the
extreme quantum limit S= 1

2 relevant for the cuprates,
whereas the interest in higher spin values increased tremen-
dously with the discovery of the pnictides.

Thereby, the Heisenberg model with antiferromagnetic
exchange couplings J1 and J2 between nearest neighbor �NN�
and next-nearest neighbor �NNN� has served as a prototype
model for studying magnetic frustration. On a classical level,
one finds Néel order to be stable for J2 /J1�1 /2, whereas for
larger ratios the classical ground state is give by a stripe-
antiferromagnet with ordering wave vector �� ,0�. Not sur-
prisingly, the J1-J2 model has been used to rationalize the
�� ,0� magnetism6 of the iron pnictide superconductors and
to subsequently calculate the magnetic excitation spectra7,8

where the incorporation of a strong anisotropy between the
NN couplings turned out to be necessary to reproduce the
low-energy spin-wave excitations. Recently, it has been sug-
gested that the strong anisotropies in the magnetism8 but also
in electronic properties9 of the pnictides originate in the cou-
pling to orbital degrees of freedom arising from an orbital
degeneracy of an intermediate S=1 spin state.10 Even if the
charge degrees of freedom are not completely localized, the
J1-J2 model can be used as the starting point for a symmetry-
based analysis of magnetism and superconductivity in the
iron-based superconductors.11,12

The 1 /S expansion serves as a natural starting point to
investigate the stability of the classical orders against quan-

tum fluctuations which are expected to induce a paramag-
netic phase near J2 /J1=1 /2 where both orders compete. In-
deed, on the level of lowest-order linear spin-wave theory
one finds an intermediate paramagnetic phase for all spin
values.13 However, the incorporation of spin-wave interac-
tions within a modified spin-wave theory �MSWT� �Refs. 14
and 15� or the Schwinger-Boson mean-field theory �SBMFT�
�Ref. 16� drastically changes this picture. Within both ap-
proaches one finds a dramatic stabilization of the classical
orders by quantum fluctuation for the Néel order even up to
values considerably larger than the classical threshold value
J2 /J1=1 /2. This has been interpreted as an order-out-of-
disorder phenomenon giving rise to a fluctuation induced
first-order transition between the two orders. This picture has
been confirmed recently by a functional one-loop
renormalization-group analysis17 where it was shown that the
Néel phase becomes unstable towards a fluctuation induced
first-order transition for S�0.68.

Surely, it is questionable if the semiclassical treatment
can correctly account for the quantum fluctuations in the
regime of strong frustration and small spins. In fact, in
the case S= 1

2 various numerical studies including exact
diagonalization,18–21 variational Monte Carlo22,23 series
expansion24–28 as well as the coupled cluster approach29 give
the consistent picture that in the regime 0.4�J2 /J1�0.6 no
magnetic order is present clearly indicating that the afore-
mentioned semiclassical treatments overestimate the stability
of the ordered states. Another key observation of the series
expansion and in particular of the unbiased exact diagonal-
ization studies is that in the paramagnetic phase the lattice
symmetry is spontaneously broken due to the formation of
columnar valence-bond solid order. Such states have been
predicted before30,31 on the basis of a large N treatment for
nonfrustrated systems in the absence of long-range antiferro-
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magnetic order. These depend however crucially on the value
of the spin, revealing the subtle workings of the spin Berry
phases �see, e.g., Ref. 32 and references therein�. For S= 1

2
these act to give a special stability to “valence-bond” pair
singlets involving nearest-neighbor spins, and the quantum-
disordered phases are actually valence-bond crystals break-
ing the translational symmetry of the square lattice further to
fourfold degenerate spin-Peierls states. But for S=1 the
Berry phases act in favor of the formation of “chain
singlets”30,31 that can stack either along the x or y direction
of the square lattice yielding a twofold degenerate ground
state.

In this paper we investigate the S=1 version of the spa-
tially anisotropic J1-J2 model given by the Hamiltonian

H = J1x �
�i, j�x

SiS j + J1y �
�i, j�y

SiS j + J2 �
��i,j��

SiS j , �1�

where the first two sums run over NN spins with exchange
couplings J1x�J1y in x and y directions, respectively, and the
third sum runs over all NNN pairs with exchange couplings
J2 as illustrated in Fig. 1. We note that both the spatially
isotropic J1-J2 model as well as the decoupled Haldane spin-
chain limit appear as special cases of Hamiltonian �1�.

Unlike for S= 1
2 this model has been hardly explored for

S=1 despite the potential relevance for the iron pnictides,
and to best of our knowledge exact diagonalization studies
are not available. In a very recent coupled cluster treatment33

it has been found that at the isotropic point J1x=J1y =J1 the
Néel and stripe ordered phases are separated by a first-order
transition at J2 /J1�0.55 slightly smaller than the MSWT
�Refs. 14 and 15� and SBMFT �Ref. 16� results and that
the transition remains first order up to an anisotropy
J1x /J1y �0.66. For stronger anisotropies the authors find con-
tinuous transitions very close to the classical transition line

J2=J1x /2 although they were not able to resolve an interme-
diate paramagnetic region within the numerical resolution.
On contrary, a two-step density-matrix renormalization-
group �DMRG� study34 at the particular point J1x /J1y =0.2
indicated a much wider nonmagnetic region with a spin-gap
reaching its maximum ��0.39J1y close to the maximally
frustrated point J2 /J1y =0.1, which is only slightly below the
gap �H�0.41J �Ref. 35� of an isolated Haldane chain.36,37

Starting from the Haldane chain limit �J1x=J2=0� it has
been predicted by the Monte Carlo simulations38 as well as
analytically39 that an infinitesimal coupling J1x leads to the
destruction of the topological string order40 of the Haldane
chain. However, due to the protection by the finite energy
gap of the spin-1 Haldane chain all other ground-state prop-
erties as well as the thermodynamics are only minimally af-
fected by a small interchain coupling J1x and a finite, albeit
small41–44 coupling is necessary to establish magnetic long-
range order. Whereas a similar reasoning should hold for a
vanishing NN coupling perpendicular to the chains �J1x=0�
and small diagonal coupling J2, the Haldane chain phase
seems to be considerably more stable against the simulta-
neous increase of the two mutually frustrating couplings J1x
and J2 as indicated by two-step DMRG results showing an
almost negligible reduction in the spin gap for moderate in-
terchain couplings.34 This suggests that the paramagnetic
phase of the frustrated two dimensional spin model can be
viewed as a continuation of the Haldane spin chain. Re-
cently, based on a theoretical method with a continuous de-
formation of the J1-J2 model, the ground state at the special
isotropic case J2=J1 /2 has been conjectured45 to be a two-
fold degenerate valence-bond solid state along either the
horizontal or vertical direction of the square lattice. The main
result of this paper is that by employing DMRG and by
studying systematically how matters evolve as function of
increasing anisotropy we arrive at solid evidence for the
smooth continuation between the Haldane chain phase and
an isotropic disordered phase near J2=J1 /2.

Since for S=1 exact diagonalization is restricted to very
small system sizes and since the quantum Monte Carlo
�QMC� method suffers from the infamous sign problem in
the presence of frustration we employ the DMRG method46

to map out the phase diagram of the spatially anisotropic
J1x−J1y −J2 model �Eq. �1�� over the whole parameter range
including the decoupled Haldane spin chains and the isotro-
pic J1-J2 model as limiting cases. The DMRG has the merits
of not being biased as analytical treatments based on 1 /S or
1 /N expansions, being capable of dealing with frustrated
systems and allowing to investigate much bigger system than
possible with exact diagonalization. Moreover, it is capable
of reproducing the spin gap of the decoupled Haldane chain
limit with high accuracy.34 The resulting phase diagram is
contrasted by analytical results we obtain within a generali-
zation of the SBMFT to the anisotropic system.

The remainder of the paper is organized as follows. In
Sec. II we outline the SBMFT and calculate the resulting
phase diagram which is used for comparison with the nu-
merical results. In Sec. III we use the DMRG to construct the
phase diagram by a careful finite-size analysis of the mag-
netic structure factor at the ordering wave vectors of the two
magnetically ordered phases as well as of the spin gap in the

FIG. 1. �Color online� The model studied in this paper consists
of a S=1 Heisenberg system with spatially anisotropic nearest-
neighbor couplings J1x and J1y and isotropic next-nearest-neighbor
couplings J2. Pending the balance of these couplings one finds ei-
ther a simple �a� staggered or �b� “stripe” antiferromagnetic order.
In the limit of isolated chains a �c� stack of isolated Haldane spin
chains is formed and based on our DMRG calculations we could
conclude that these survive all the way to the isotropic limit in the
vicinity of the point of maximal frustration �J2 /J1=0.5�.
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nonmagnetic region as a function of the NNN coupling J2 for
various ratios of the NN couplings J1x and J1y. Finally, in
Sec. IV the results obtained within the two methods are com-
pared and the shortcomings of the semiclassical approach are
highlighted. Further, the potential relevance of our findings
for the iron pnictides is discussed.

II. SBMFT

In this section we generalize the SBMF calculation for the
isotropic J1-J2-model16 to the case of anisotropic nearest-
neighbor exchange couplings. For abbreviation we define
JxªJ1x, JyªJ1y, and JdªJ2. Assuming Jx�Jy, the classical
ground states are given by a Néel-ordered state with an or-
dering wave vector Q= �� ,�� for Jd /Jx�1 /2 and by a co-
lumnar antiferromagnetic state with Q= �0,�� for Jd /Jx
�1 /2. Following the previous calculations, we perform a

spin rotation S̃i
x=�iSi

x, S̃i
y =�iSi

y, and S̃i
z=Si

z, where �i
=exp�iQri�= �1, with Q as the ordering wave vectors of the
two classical orders, and represent the rotated spin operators
in terms of Schwinger bosons bi,↑ and bi,↓ as

S̃i =
1

2
bi,�

† ��,��bi,��. �2�

Here �= ��x ,�y ,�z�, with �	 the standard Pauli matrices.
The constraint bi,�

† bi,�=2S ensures that �S2�=S�S+1�. Hamil-
tonian �1� can then be rewritten in the compact form

H =
1

2 �
�i,j�

Jij	�i� j + 1

2
�Fij

† Fij − 2S2�

+
�i� j − 1

2
�Gij

† Gij − 2S2�
 , �3�

where the sum runs over all bonds, and we have introduced
the bond operators Fij

† =bi,�
† bj,� and Gij

† =bi,�
† bj,−�

† . A mean-
field decoupling is then performed with respect to the order
parameters f ij = �Fij

† � /2 and gij = �Gij
† � /2. For the Néel-ordered

phase we have to introduce fields gx and gy for the nonfrus-
trated nearest-neighbor bonds and fd for frustrated NNN
bonds, whereas the �0,�� phase is characterized by order-
parameter fields gy and gd for the nonfrustrated bonds along
the y and diagonal directions and fx for the frustrated x
bonds. The local constraints are replaced by a global one and
treated with a Lagrange multiplier 
. The resulting mean-
field Hamiltonian, which in momentum space is given by

Hmf = �
q

��hq + 
��bq↑
† bq↑ + b−q↓

† b−q↓�

− �q�bq↑
† b−q↓

† + bq↑b−q↓�� , �4�

is easily diagonalized by a Bogolioubov transformation
yielding the dispersion

�q = ��hq + 
�2 − �q
2�1/2, �5�

with

hq = 4fdJd cos qx cos qy , �6a�

�q = 2�gxJx cos qx + gyJy cos qy� �6b�

in the Néel phase and likewise in the �0,�� phase

hq = 2fxJx cos qx, �7a�

�q = 2gyJy cos qy + 4gdJd cos qx cos qy . �7b�

The Lagrange multiplier in the ordered phases is deter-
mined by the requirement that �Q=0 for the corresponding
ordering wave vectors yielding 
=2�gxJx+gyJy�−4fdJd in
the Néel and 
=2�gyJy − fxJx�+4gdJd in the �0,�� phase. The
reduced moment S� in the ordered phases is determined by

S� = S −
1

2��q

hq + 


�q
− 1
 . �8�

Naturally, one might expect that quantum fluctuations tend to
destabilize the classical orders introducing an intermediate
paramagnetic phase. In this case the second-order transitions
between the two different magnetic orders are determined by
the lines where the corresponding magnetizations go to zero,
S�→0. However, the analysis of the isotropic model16 �Jx
=Jy� shows that the quantum fluctuations can lead to a sig-
nificant stabilization of the Néel order leading to a region
where S��,��

� �0 and S�0,��
� �0. In this region which is ex-

pected to persist for not too strong anisotropy, a discontinu-
ous first-order transition between the two different magnetic
orders is likely and can be estimated from a comparison of
the ground-state energies which immediately follow from
Eq. �3� as

E��,�� = − Jx�2gx
2 − S2� − Jy�2gy

2 − S2� + 2Jd�2fd
2 − S2� ,

�9a�

E�0,�� = Jx�2fx
2 − S2� − Jy�2gy

2 − S2� − 2Jd�2gd
2 − S2� .

�9b�

The order-parameter fields entering the mean-field Hamil-
tonian �Eq. �4�� have to be determined self-consistently. Us-
ing the above Bogoliubov transformation we obtain for the
Néel-ordered phase

gx = S� + �
q

�q

2�q
cos qx, �10a�

gy = S� + �
q

�q

2�q
cos qy , �10b�

fd = S� + �
q

hq + 


2�q
cos qx cos qy , �10c�

whereas in the �0,�� phase the self-consistency equations for
the order-parameter fields are given by
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fx = S� + �
q

hq + 


2�q
cos qx, �11a�

gy = S� + �
q

�q

2�q
cos qy , �11b�

gd = S� + �
q

�q

2�q
cos qx cos qy . �11c�

The resulting phase diagram for J1x�J1y is shown in Fig.
2 as a function of the anisotropy 	= �J1y −J1x� /J1y between
the NN exchange couplings and of the relative strength �
=J2 /J1y of the NNN coupling. In agreement with earlier
studies of the isotropic limit J1x=J1y =J1 within SBMFT and
MSWT, we find a dramatic stabilization of the Néel order
above the classical value and a large region 0.51���0.68
where the two competing orders are potentially stable, indi-
cated by S��,��

� �0 and S�0,��
� �0. The crossing of the self-

consistently determined energies of the two states suggests a
first-order transition at ��0.64 considerably larger than the
classical value 1/2 and about 10% bigger than the coupled
cluster result.33 Although the region of coexistence is consid-
erably narrowed by a small anisotropy, we find it to persist
up to 	�0.66 where the first-order line terminates. The ex-
istence of such a tricritical point was also suggested by the
coupled cluster analysis although located at a much smaller
anisotropy 	�0.34. For anisotropies 	�0.66 we find an

intermediate nonmagnetic region �S��,��
� =S�0,��

� =0� separat-
ing the two ordered phases. This region is found to be very
narrow and close to the classical phase boundary �= �1
−	� /2.

Although the existence of a tricritical point and of a very
narrow paramagnetic strip terminating at the Haldane chain
limit J1x=J2=0 is in qualitative agreement with the coupled
cluster results33 the small width of the paramagnetic region is
in disagreement with other available numerical results. For
J1x /J1y =0.2 �	=0.8� a two-step DMRG calculation34 shows
a much wider nonmagnetic region centered around the clas-
sical transition point J2 /J1y =0.1. Interestingly, the spin gap
at this maximally frustrated point is almost identical to that
of an isolated Haldane chain suggesting that even for rela-
tively strong interchain couplings one-dimensional Haldane
chain physics is still important. This is certainly missed by
the SBMF calculation which treats the spin as a continuous
variable and does not distinguish between integer and half-
integer spins crucial for the existence of the Haldane spin
gap. Moreover, it has been established within quantum
Monte Carlo calculations41–43 that for J2=0 the transition
between the Néel ordered phase and the gapped nonmagnetic
phase is located at J1x /J1y =0.044, again indicating that the
paramagnetic region close to the Haldane chain limit is con-
siderably wider than suggested by both the SBMFT and the
coupled cluster results.33 Since for J2=0 the system is not
frustrated quantum Monte Carlo can be considered exact in
this regime.

We have also calculated the transition out of the �0,��
state in linear spin-wave theory for comparison to the SB-
MFT calculation and to preliminary neutron-scattering re-
sults on the pnictides that found �0,�� order but with a small
moment. This method computes the reduction of the classical
antiferromagnetic moment due to zero-point excitations of
spin waves �which captures the 1 /S correction to the classi-
cal moment in a large-S expansion�. The transition line out of
the ordered phase is estimated as the point where the correc-
tion is as large as the original moment.

We assume three antiferromagnetic couplings: J1x, J1y,
and J2, with J1y �J1x, and that we are in a �0,�� ordered
phase, which requires �as is evident from the formula below�
that J1x
2J2. The dispersion relation for spin-wave excita-
tions was previously obtained for this anisotropic J1-J2
model in Ref. 10. The integral for the correction to the clas-
sical moment around the �0,�� case is, in units of the Bohr
magneton and with lattice spacing a=1,

�m = �
�0,2��2

d2k

�2��2� 1
�1 − cos2�ky�/f�kx�2

− 1
 , �12�

with

f�kx� =
2J2 + J1y − J1x�1 − cos�kx��

2J2 cos�kx� + J1y
. �13�

The transition is found numerically to lie very close to the
classical transition line J1x=2J2: the normalized difference
�J2

c −J1x /2� /J1y, where J2
c is the critical coupling where the

correction is equal to the original moment, is always less
than 2% for 0
J1x
0.99J1y. Significant reduction in the

FIG. 2. Phase diagram for S=1 as a function of and anisotropy
	= �J1y −J1x� /J1y �0 between the nearest-neighbor exchange cou-
plings and relative strength of the next-nearest-neighbor coupling
J2 /J1y obtained within SBMFT. Up to an anisotropy 	�0.66 the
�� ,�� and �0,�� antiferromagnetic orders are separated by a first-
order transition �solid line�. At the tricritical point the first-order
line splits into two second-order lines �dashed and dotted� separat-
ing the two magnetic phases from a gapped nonmagnetic phase.
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ordered moment also occurs only near the classical transition
line. The primary difference from the SBMFT calculation is
that the spin-wave calculation always predicts a paramag-
netic phase between stripe and Neél order. The width of this
paramagnetic phase is much smaller in either approach than
in the DMRG calculation of the following section because
these analytical approaches do not capture the strong quan-
tum fluctuations that favor the Haldane phase.

III. DMRG

The above SBMFT has clearly shown an interesting nar-
row boundary region between the Néel and stripe ordered
phases in the phase diagram of Fig. 2, where the quantum
fluctuations are expected to become very important. Most
interestingly, it suggests an increasing tendency towards a
fluctuation induced first-order transition on approaching the
isotropic point J1x=J1y. However, the comparison with pre-
vious numerical results34,41–43 indicates that the SBMFT
tends to overestimate the stability of the magnetically or-
dered phases, surely close to the Haldane chain limit but
presumably also for larger values of J1x and J2. In the fol-
lowing we shall refine the boundary region by using DMRG
method.

In the following DMRG calculation, we will set J1y =J1 as
an energy unit, and a periodic boundary condition �PBC� is
used and in each DMRG block up to m=3200 states are to be
kept with the truncation error in the order of or less than
10−5.

A. Isotropic case with J1x=J1y=J1

Let us first consider the isotropic case J1x=J1y =J1 where
the SBMFT suggests the strongest tendency towards a first-
order transition although the transition point J2 /J1�0.64 ob-
tained from a comparison of the energy minima seems to be
suspiciously high compared to the classical transition point
J2 /J1=0.5. Figure 3�a� shows the ground-state energy per
site calculated by DMRG with the sample size varying from
N=4�4 �16 sites� up to N=8�8 �64 sites�. The ground-
state energy reaches the maximum with J2 between 0.54J1
and 0.58J1, which becomes sharper with the increase in
sample size, indicating a region with possible phase transi-
tions below the first-order transition point obtained in SB-
MFT but still notable above the classical transition. As
shown in Fig. 3�b�, we also calculate the ground-state energy
per site and the spin-1 gap as a function of the truncation
error in the isotropic case with J2 /J1=0.54, which has the
largest spin-1 gap. From the figure we can see that E0 /N
shows a linear relation with the truncation error. Most impor-
tantly, the spin-1 gap converges to a constant with decreasing
the truncation error, which gives us the reliable results in the
large m limit.

We examine such a region by calculating the magnetic
structure factor Sz�q� defined by

Sz�q� =
1

N
�
i,j

e−iq�ri−rj��Si
zSj

z� .

As expected, we find that Sz�q� shows a dramatic change
from peaking at Q= �� ,�� �the Néel order� to Q= �0,�� �the

stripe order� with increasing J2 /J1. Figs. 4�a� and 4�b� illus-
trate Sz�q� /N vs J2 /J1 for system sizes N=4�4, 6�6, and
8�8, as well as the thermodynamic limit values obtained by
a finite-size scaling. Here we have used the quadratic func-
tion f�x�=A+Bx+Cx2, with x= 1

N to perform the finite-size
scaling.

The Néel order transition point is found at J2 /J1�0.525
in Fig. 4�a�, which is clearly distinct from the stripe order

FIG. 3. �Color online� �a� The ground-state energy per site E0 /N
at different system size N=4�4 �blue triangle�, 6�6 �red circle�,
and 8�8 �black square� for the isotropic case with J1x=J1y =J1. �b�
Ground-state energy per site E0 /N at N=8�8 as a function of the
truncation error. The dashed line is the extrapolation to zero error
limit. Inset: the spin-1 gap �E as a function of the truncation error.

FIG. 4. �Color online� The evolution of the peak values of the
structure factors, �a� Sz�� ,�� /N, �b� Sz�0,�� /N, and �c� of the
spin-1 gap, at three different size N=4�4, 6�6, and 8�8, as well
as their thermodynamic limit extrapolations in the isotropic case
J1x=J1y =J1=1. The finite-size scaling for the spin-1 gap is shown
in �d�.
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transition point at J2 /J1�0.55 in Fig. 4�b� indicating that the
two magnetically ordered phases are separated by an inter-
mediate nonmagnetic region.

To independently verify the above results, we also calcu-
late the spin-1 gap �E�S=1��E1�S=1�−E0 presented in
Figs. 4�c� and 4�d�. Figure 4�d� illustrates the finite-size scal-
ing for the spin gap �E�S=1� at different values of J2 using
a scaling function f�x�. In Fig. 4�c�, the evolution of the
spin-1 gap as a function of J2 is given. In the thermodynamic
limit, the transition points determined by the spin-1 gap are
at J2�0.525 and J2�0.555, respectively, which are very
close to the previous results determined by the structure fac-
tor. Therefore, for the present S=1 J1-J2 model in the isotro-
pic limit, our numerical approach has established an interme-
diate spin-disordered region with a finite spin gap which
separates the two ordered magnetic phases.

B. Anisotropic case with J1x
J1y=J1

Now we consider how the spin-disordered phase evolves
with the increase in anisotropy at J1x
J1y =J1. First we con-
sider the case at J1x=0.5J1, and the results are presented in
Fig. 5. By using the same finite-size scaling procedure, we
find that the spin-disordered phase is bound by a lower tran-
sition point J2 /J1�0.24 and an upper transition point J2 /J1
�0.28 based on the structure factor calculation. Again the
spin gap calculation gives rise to a consistent spin-disordered
regime between J2 /J1�0.23 and J2 /J1�0.285 as shown in
Fig. 5�c�.

In the same regime, with a fixed J2 /J1=0.25, we have
further studied the phase boundaries by varying J1x /J1. As
shown in Fig. 6, the lower transition point is obtained at
J1x /J1=0.45 and the upper transition point at J1x /J1�0.52,
while the finite-size scaling for the spin-1 gap results in a
similar region between J1x /J1=0.44–0.54.

In the extreme case at J1x=0 and J2=0 with J1y =J1, the
system simply reduces to an array of decoupled S=1 spin
chains with a finite Haldane gap. Figure 7 shows how the
ground state continuously evolves from that of the well-

known decoupled spin chains to the anisotropic two-
dimensional �2D� case by turning on J1x /J1, which remains
disordered until the Néel order sets in at J1x /J1�0.05 with
Sz�� ,�� /N becoming finite in the thermodynamic limit. In-
deed the corresponding spin-1 gap continuously decreases
with the turning on of a finite J1x but only vanishes around
J1x /J1�0.06 as shown in Figs. 7�c� and 7�d�.

Now we turn on J2. At J1x=0, we find that while the
calculated structure factor at �� ,�� continuously reduces as
the sample size increases from N=4�4, 6�6, to 8�8, and
is extrapolated to zero by finite-size scaling, a finite stripe
order Sz�0,�� /N will emerge at J2 /J1y =0.025 in the thermo-
dynamic limit, which is further supported by vanishing
spin-1 excitation gap at the same point as shown in Fig. 8. It
is noted that the best finite scaling for the structure factor
here is obtained with using a f�x�, with x=1 /�N=1 /Ny, for a
square lattice Nx=Ny, instead of x=1 /N used previously. The
justification of such a finite-size scaling for the spin structure
factors at J1x=0 and small J2 /J1y is given in Fig. 9 and its
caption.

FIG. 5. �Color online� The peak values, �a� Sz�� ,�� /N, �b�
Sz�0,�� /N, and �c� the spin-1 gap, versus J2 /J1y at J1x /J1y =0.5 for
different sizes. The finite-size scaling for the spin-1 gap is shown in
�d�.

FIG. 6. �Color online� �a� Sz�� ,�� /N, �b� Sz�0,�� /N, and �c�
the spin-1 gap, versus J1x /J1y at J2 /J1y =0.25 for different sample
sizes. In �d�, the finite-size scaling for the spin-1 gap is given.

FIG. 7. �Color online� �a� Sz�� ,�� /N, �b� Sz�0,�� /N, and �c�
the spin-1 gap, versus J1x /J1y at J2=0 at different sizes. In �d�, the
finite-size scaling for the spin-1 gap is given.
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C. Phase diagram

The resulting phase diagram obtained by the DMRG cal-
culations with careful finite-size scalings of the magnetic
structure factor as well as the spin gap is shown in Fig. 10 as
a function of the anisotropy 	= �J1y −J1x� /J1y between the
NN couplings and the relative strength �=J2 /J1y of the NNN
superexchange.

In contrast to the SBMFT which in the regime of small
anisotropy 	 suggests a first-order transition between the
Néel- and stripe-ordered phases �see Fig. 2�, the DMRG re-
sults clearly indicate a paramagnetic strip separating the two
magnetically ordered phases for all values of the anisotropy
	 including the isotropic point J1x=J1y �	=0�. With increas-
ing 	 the width of this region is found to slightly increase.
Close to the Haldane chain limit the SBMFT predicts an
intermediate nonmagnetic phase although the width of this

region is found to be much larger in the DMRG calculation
in quantitative agreement with a previous two-step DMRG
analysis at fixed 	=0.8 �Ref. 34�.

For J2=0 we can compare our results to recent QMC
simulations,41–43 which in this regime can be considered ex-
act since the system is not frustrated and QMC is therefore
free of any sign problem. Within DMRG we find the transi-
tion between the gapped Haldane phase and the Néel-ordered
phase to occur at J1x /J1y �0.05 �see Fig. 10� in good agree-
ment with QMC transition point J1x /J1y =0.044. Moreover,
in the Haldane chain limit J1x=J2=0 we obtain a spin gap
��0.4 �see Fig. 7�d�� very close to the exact value �H
=0.41 for the Haldane spin chain,35 again demonstrating that
the finite-size scaling is well converged.

Very interestingly, starting from the Haldane chain limit
we find the maximum spin gap in the paramagnetic phase to
decrease only very slowly with increasing couplings J1x and
J2. Up to J1x /J1y =0.5, the gap is almost identical to the
Haldane spin gap �see Fig. 5�d�� indicating that the Haldane
spin chain is very robust against the simultaneous increase in
the mutually frustrating couplings J1x and J2. Remarkably,
even the paramagnetic phase of the isotropic J1-J2 model
with a maximum spin gap still being about half of the
Haldane gap is continuously connected to the Haldane spin-
chain limit.

At the isotropic point J1x=J1y �	=0� we find an interme-
diate paramagnetic phase for 0.525�J2 /J1�0.555. This re-
gion is considerably smaller than in the S= 1

2 case, where a
paramagnetic regime 0.4�J2 /J1�0.6 presumably with co-
lumnar valence-bond order has been established by various
numerical methods.18–28 Interestingly, the stabilization of the
Néel phase above the classical transition point is in agree-
ment with the SBMFT. Furthermore, we also calculate the
lowest spin singlet excitation gap for the system N=4�4 by

FIG. 8. �Color online� At J1x=0, the structure factors �a�
Sz�� ,�� /N and �b� Sz�0,�� /N as well as the �c� spin-1 gap versus
J2 /J1y are shown at different sizes, including their thermodynamic
extrapolations.

FIG. 9. �Color online� �a� The size dependence of the structure
factor �for a given Ny =6 �six-leg systems�� at J1x=0 and small
J2 /J1y which quickly saturates at Nx�Ny, indicating that x=1 /Ny in
the scaling function f�x� for the structure factor is more appropriate
in this extreme limit. The corresponding finite-size scaling of the
structure factors for square samples are illustrated in �b� and �c�,
respectively. For comparison, the spin-1 gap at different J2 is still
well scaled by x=1 /N in the scaling function as shown in �d�.

FIG. 10. �Color online� Phase diagram for the anisotropic J1-J2

model determined by DMRG. The Néel order and stripe order
phases are separated by a paramagnetic regime with the boundaries
denoted by the red line with full circles for the upper and the blank
line with full squares for the lower transition points, respectively. In
the middle of the paramagnetic region lies in a dotted line with
crosses which marks the maximal spin-1 gap �Emax. Note that the
symbols of circle, square, and triangular denote the phase-transition
points determined by DMRG in the previous figures.
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means of ED, which becomes very small in the intermediate
region. Very interestingly, a small perturbation term added to
the Hamiltonian that breaks the rotational symmetry of the
lattice can lead to a two-fold near degenerate ground state.
Most importantly, in the zero perturbation limit, our calcula-
tions show an increasing tendency that a twofold degenerate
ground state spontaneously breaks the lattice rotation may
exist. However, due to the limitation of DMRG method in
calculating the excited state of the 2D systems, we are not
able to fully investigate this issue at larger system sizes.

Despite the apparent failure of the semiclassical SBMFT
in dealing with the strong quantum fluctuations in the bound-
ary region between the two magnetically ordered phases it is
interesting to note that the paramagnetic region covers the
phase boundaries obtained by SBMFT for the most of J1x

J1y =J1 region except for the part close to the isotropic
limit and that the points where the spin gap is maximum
�indicated by crosses and dotted in Fig. 10� are almost on top
of both the first-order transition line as well as of the two
narrow second-order lines obtained within SBMFT.

IV. DISCUSSION

In summary, we have studied the frustrated spin-1 Heisen-
berg J1x−J1y −J2 model on a square lattice numerically using
the DMRG method and analytically employing the
Schwinger-Boson mean-field theory �SBMFT�. Interestingly,
this model contains both the isotropic J1-J2 model as well as
decoupled Haldane spin chains as limiting cases. Moreover,
it has attracted a lot of attention recently since it has been
motivated as an effective model to describe the �0,�� mag-
netism and the low-energy spin-wave excitations of the cel-
ebrated iron pnictide superconductors. Furthermore it has
been suggested that the drastic reduction in magnetic mo-
ments to a value of 0.4�B is caused by strong quantum fluc-
tuations in the vicinity of a continuous phase transition.
However, to the present day the phase diagram has not been
determined yet.

Within both the SBMFT and the DMRG we find that the
Néel phase is stabilized considerably by quantum fluctua-
tions above the classically stable region up to a relatively
strong anisotropy between the NN couplings. However, in all
other regards the phase diagrams obtained by the two meth-
ods clearly disagree, indicating the importance of the strong
quantum fluctuations.

The SBMFT suggest a fluctuation-induced first-order
transition between the Néel and the stripe antiferromagnets
terminating at a tricritical point and splitting into two
second-order lines separated by an intermediate paramag-
netic region only for large anisotropies. Although the exis-
tence of a tricritical point and a hardly sizable paramagnetic
strip terminating at the decoupled Haldane spin chain point
�J1x=J2=0� are consistent with a recent coupled cluster
calculation,33 the SBMFT definitely falls short on approach-
ing the Haldane chain limit. This becomes clear by a com-
parison with quantum Monte Carlo simulations41–43 showing
a much larger region of stability of the Haldane chain phase
against interchain couplings J1x. Also the previous two-step
DMRG calculation34 at J1x /J1y =0.2 indicates a paramagnetic

region being an order of magnitude wider than found within
the SBMFT.

On the contrary, the phase diagram obtained within
DMRG by a careful finite-size scaling of the magnetic struc-
ture factor and the spin gap is consistent with both the QMC
and the previous DMRG results. Furthermore the spin gap in
the decoupled chain limit agrees well with the exact value
for the isolated Haldane chain. It also agrees excellently with
the work of Sato and Oshikawa,47 who studied the weakly
coupled Haldane chains. The width of the paramagnetic re-
gion slightly decreases on approaching the isotropic point
but remains finite over the entire parameter range. This has
the remarkable implication that the paramagnetic phase of
the frustrated two-dimensional spin model, including the iso-
tropic J1-J2 limit, is continuously connected to the Haldane
spin-chain phase. In other words, the paramagnetic phase can
be viewed as a continuation of the Haldane spin chain phase,
with the caveat that the topological string order has to disap-
pear at any finite interchain coupling.38,39

The reason for the failure of the semiclassical SBMFT in
dealing correctly with the strong quantum fluctuations in the
boundary region between the two classical orders is easy to
understand. The SBMFT deals with the spin as continuous
variable while it is blind for the Berry phase effects that
distinguish between half-integer and integer spin values cru-
cial for the existence of the Haldane gap as well the valence-
bond crystals. This physics is definitely missed by the semi-
classical treatment. Our DMRG results demonstrates that the
Haldane chain phase is very robust against the simultaneous
increase of the couplings J1x and J2 along the strongly frus-
trated boundary region, indicated by the minute reduction in
the spin gap compared to the isolated Haldane chain limit.
Similar results are found in a similar model but with S
=1 /2 spins,48 where the two classical phases, Neel and
stripe, are separated by the quantum-disordered phase cen-
tered on line J1x=2J2.

What does the study of this spin system teach us regard-
ing the superconductivity in the iron pnictides? One could
speculate that the basic physics is similar as in the cuprates.
Although the spins are larger in the pnictides, the geometri-
cal frustration renders the spin system to be on the verge of
undergoing a quantum phase transition in a quantum-
disordered state. This quantum spin physics then sets the
conditions for the emergence of superconductivity in the
doped systems. But in this regard the size of the microscopic
spin does matter more than one intuitively anticipates. For
S=1 /2 the well established fact that the Berry phases con-
spire to turn the quantum-disordered states of the spin-only
systems into valence-bond solids gives a rationale to take
Anderson’s resonating valence bond �RVB� idea for the ori-
gin of high-Tc superconductivity quite seriously. The valence
bonds are protected by the spin gap, and the effect of doping
could well be to just turn the valence-bond solids into trans-
lational quantum liquids that transport two units of electrical
charge. Focusing on the Berry phases in the pnictides one
has only the options of an “intermediate” crystal-field S=1
state10 or the high spin S=2 for the microscopic spin. In the
former case the ground state has a twofold degeneracy and
the building blocks are no longer pair singlets but instead the
chain singlets. Thinking along the RVB lines, what to expect
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when such a system is doped? The dopants will increase the
quantum fluctuations but chains are not pairs. One antici-
pates that doping might drive the system into the nonmag-
netic “Haldane chain phase” breaking the twofold rotational
symmetry of the lattice. One notices that something of the
kind is found in the phase diagram of the pnictides: the struc-
tural transition to the orthorombic phase persists to much
higher dopings than the stripe antiferromagnetism.49 At first
view this seems rather detached from the RVB idea. But now
one has to realize that the charge carriers are themselves
spinful, carrying by default a half-integer spin. Taking for
instance the intermediate S=1 background, the holes would
carry S=1 /2, and t-J models corresponding with a mix of
S=1 and S=1 /2 states have been studied in the past.50 One
anticipates that in an incompressible “chainlike” S=1 back-
ground the S=1 /2 carriers might again be “glued by Berry
forces” into valence-bond pairs, re-establishing a connection

with the RVB mechanism of the cuprates. A similar idea has
been previously proposed from a different approach.51

In conclusion, it is quite questionable that any of these
considerations have a bearing on pnictide superconductivity
but they do make the case that there is still much interesting
physics to be explored dealing with systems characterized by
a larger microscopic spin.
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